
Dynamic neural network with matrix-extended
residual connections⋆

Szymon Świderskia and Agnieszka Jastrzębskaa,b

aWarsaw University of Technology, Warsaw, Poland
bThe John Paul II Catholic University of Lublin, Poland

Abstract. The issue of adjusting neural network structure is one of
the core problems in artificial intelligence. The issue of adjusting neural
network structure is one of the core problems in artificial intelligence.
A highly desirable scenario is a dynamic architecture that evolves struc-
turally during the training process. In this paper, we propose a new and
powerful tool that facilitates dynamic changes in network structure. We
introduce a novel form of residual connections based on matrix exten-
sions, enabling adaptable weight matrices and enhancing structural flex-
ibility. The approach enhance the potential for structural modifications.
We conducted a series of comprehensive experiments confirming that
the new residual connections scheme behaves very well. The new type
of connection improves performance by enabling better error flow dur-
ing the error backpropagation phase, resulting in more efficient training.
Our method demonstrates superior performance and enhanced tracka-
bility during the training process. The paper is supplemented by Python
source code to ensure reproducibility. This method marks a significant
starting point, showing immense potential for more advanced dynamic
neural network models and transfer learning with dynamic models.

Keywords: dynamic neural network · changing architecture · training ·
shrinking · growing · residual connections with matrix extensions · self-
changing neural networks.

1 Introduction

The architecture of a neural network plays a critical role in determining its
efficiency and overall performance. Designing an effective architecture requires
making decisions about the number of layers, their connections, and other hy-
perparameters. While many networks rely on fixed structures, our focus is on
models that can modify their architecture during training—a challenging task
that requires innovative solutions. To support this dynamic adaptation, we in-
troduce a new way of connecting layers, called matrix-extended residual connec-
tions. This method significantly improves the process of dynamically modifying
network structures during training.
⋆ The research was funded by the National Science Centre, Poland, grant number

2024/53/B/ST6/00021.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97629-2_14

https://dx.doi.org/10.1007/978-3-031-97629-2_14
https://dx.doi.org/10.1007/978-3-031-97629-2_14

2 S. Świderski and A. Jastrzębska.

Inspired by the mechanism of skip connections present in ResNet [6], this
method has been designed to better accommodate networks with evolving struc-
tures. While the primary goal is to improve the performance of dynamically
changing architectures, these connections are also valuable for static architec-
tures, providing broader applicability. They enhance the traceability and inter-
pretability of the learning process, offering deeper insights into model behavior.

The proposed modification to the classical skip connections is particularly ef-
fective for dynamic neural networks, where the structure evolves during training.
The newly designed connections help preserve learned information while seam-
lessly integrating new layers, essential for maintaining stability and performance
in such networks.

In our previous work, titled “Dynamic Growing and Shrinking of Neural Net-
works with Monte Carlo Tree Search” [14], we presented a basic method for
modifying network architecture during training. That approach used standard
skip connections, which performed as initially described in the ResNet paper [6].
In this paper, we introduce a new way of connecting layers that significantly en-
hances the efficiency of dynamic structural changes. Beyond dynamic networks,
these connections show promise for applications such as transfer learning, where
preserving and extending learned information is critical. The proposed design
for residual connections handling enables seamless architecture expansion with-
out any loss of previously learned knowledge, offering a powerful tool for both
dynamic and static neural networks.

To support reproducibility and practical use, we have released our implemen-
tation as an open-source package named growingnn. The package is available on
PyPi at https://pypi.org/project/growingnn/, where all relevant links, including
the GitHub repository with the source code and documentation, can be found.
This tool aims to simplify the development and experimentation of dynamic
neural networks for researchers and practitioners.

2 Literature survey

The design of neural network architectures has always been challenging for de-
velopers. This led to the development of many new approaches over the years.
Two key papers were particularly influential for this work, namely “Deep Resid-
ual Learning for Image Recognition” [6] and “Dynamic Growing and Shrinking of
Neural Networks with Monte Carlo Tree Search” [14]. The first paper introduced
the concept of skip connections, also known as residual connections, in neural
networks.

The second paper, published by our team, presented an algorithm that al-
lows dynamic modification of the network structure during training in a highly
efficient manner. By integrating the best aspects of these two approaches, we
developed a powerful new method that introduces exciting possibilities in the
field of growing neural networks.

One of the most well-known methods for dynamically changing network struc-
tures is GradMax [3]. This method can adjust the architecture during training

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97629-2_14

https://dx.doi.org/10.1007/978-3-031-97629-2_14
https://dx.doi.org/10.1007/978-3-031-97629-2_14

Dynamic neural network with matrix-extended residual connections 3

without losing previously learned data. While the general concept is similar
to our approach, the procedures for modifying the network architecture differ
significantly. In GradMax, changes are based on SVD (Singular Value Decompo-
sition). This approach ensures that new neurons do not interfere with existing
knowledge. In contrast, our method uses specialized connections, referred to as
residual connections with matrix extensions.

A recent paper, “Dynamic Neural Network Structure: A Review of Its The-
ories and Applications” [5], provides a detailed overview of dynamic neural net-
work structures. This paper describes a taxonomy and associated naming con-
vention for dynamic neural networks. The group most relevant to our approach
is the adaptive layer group, within which three main types of methods exist.

The first type of an adaptive layer method is called stacking layer, where the
architecture is modified by adding layers sequentially [12]. The second type is
called residual approximation. It originates from ResNet [6]. We can classify our
new contribution to this subgroup. They adjust residual block connections to
alter the network structure dynamically. The third type, shortcut connections,
originates from the ResNeXt [17] architecture. These building blocks are more
complex, with an emphasis on connections that bypass multiple layers. The pa-
per “Going Deeper with Convolutions” [15] introduced a method that enables
support for very deep architectures with residual-like connections. However, this
approach is limited by concatenation layers, which combine inputs from various
layers into a unified structure. Our approach addresses these limitations by intro-
ducing new types of connections. Additionally, shortcut-based structures often
rely on predefined building blocks that restrict their ability to expand flexibly.

We believe that the methods belonging to the adaptive layer group [5] are all
effectively unified in our algorithm. This highlights the significance of our work,
as it provides a straightforward and efficient way to integrate these ideas. In our
algorithm, we generate a set of actions in each iteration. These actions allow
us to add sequential or residual layers, encompassing the capabilities of all the
methods described in the adaptive layer group. The method presented in this
paper is not limited to building blocks or any type of concatenate layer. The
new way of residual connections allows to easily create new connections without
any data loss on the connection.

In the field of dynamic neural networks, two key approaches focus on opti-
mizing network structure. The first is reinforcement learning, which has demon-
strated auspicious results [18]. The core idea behind this approach involves evalu-
ating and grading structural changes to determine the most optimal adjustments.
The second approach is evolutionary algorithms. Neuroevolution [13] is an ap-
proach to developing neural networks by leveraging evolutionary algorithms,
optimizing not just the weights but also the architectures, hyperparameters,
activation functions, and even learning rules of neural networks.

It is also worth mentioning papers that present non-standard, interesting
ideas, such as the Cascade-Correlation Architecture [4], which adds new neurons
for each unrecognized pattern; the work by Kilcher et al. [8], which explores
escaping flat regions through structural modifications; and the Convex Neural

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97629-2_14

https://dx.doi.org/10.1007/978-3-031-97629-2_14
https://dx.doi.org/10.1007/978-3-031-97629-2_14

4 S. Świderski and A. Jastrzębska.

Networks [1], which demonstrates how neural networks can adapt to various
linear structures by adding neurons to a single hidden layer at each step.

3 The method

The described algorithm is based on Stochastic Gradient Descent (SGD) and
Adam optimizer [10]. It operates with a model represented as a directed acyclic
graph of layers. Each layer is an independent node that manages its own in-
coming and outgoing connections to other layers. In this algorithm, the training
procedure is divided into generations and then further into epochs. One epoch
consists of one forward and backward propagation.

A generation consists of a training phase with multiple epochs, followed by a
structure modification phase. After training, all possible changes to the current
structure are generated. We refer to these changes as actions in this paper. The
simulation provides information on which action is the best, and the best action
is then applied to the structure. The overall flow of our method is in Figure 1.

Start

For each
generation

Train with simple
SGD

Generate all possible
changes of structure

Execute one best
change on structure

Fig. 1: Block diagram showing the flow of the method addressed in this study.

We modify the architecture using three types of actions. The first type in-
volves adding a sequential layer between two directly connected layers. The sec-
ond type adds a layer with residual connections; a layer is added between two
not directly connected layers through skip connections. The third type consists
of actions that remove an existing layer. In each generation, the algorithm gener-
ates all possible actions for the current state and evaluates them using a Monte
Carlo simulation to determine and execute the best action.

The graph starts from the smallest possible setup: an input and output layer
linked by a single connection and evolves over generations by adding or removing
layers. Architecture changes in a given generation only if there is no improvement
in accuracy, which means that if a given structure is capable of learning a given
dataset, training continues without a change in the structure.

3.1 Data flow in dynamic neural structure

Residual connections in deep learning bring a significant change in training ca-
pabilities, but these solutions have their own limitations. If we analyze the data
flow in residual connections [6], we can see that building blocks are limited in

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97629-2_14

https://dx.doi.org/10.1007/978-3-031-97629-2_14
https://dx.doi.org/10.1007/978-3-031-97629-2_14

Dynamic neural network with matrix-extended residual connections 5

terms of learning capabilities. The error that is backpropagated is partially lost
due to the building block structure. Data flowing through the building block at
some point needs to go through a summation phase to combine outputs from
two different layers into one.

(a) Classical ResNet
Forward Propagation

(b) Matrix-Extended ResNet
Forward Propagation

(c) Classical ResNet
Backward Propagation

(d) Matrix-Extended ResNet
Backward Propagation

Fig. 2: Comparison of data flow in forward and backward propagation in
Classical ResNet and Matrix-Extended ResNet.

The building block structure in ResNet consists of one residual (skip) con-
nection that skips a given number of layers. We will use examples illustrated in
Figure 2 to present the limitations of classical ResNet connections. In those ex-
amples, layers li, li+1, . . . , lk+1 are connected sequentially, with each li connected
to li+1. The skip connection is connected from li to an additional layer lR and
from lR to lk+1.

The signal flow is depicted by blue rectangles labeled with In and arrows,
as shown in Figure 2. During the forward propagation phase, the output from
layer Li is forwarded to two subsequent layers: one via a skip connection and the
other sequentially, as illustrated in Figure 2a. After this step, data flows through
all layers without loss, except at layer lk+1. In this layer, inputs from lk and lR
are combined through summation, expressed as In1 + In2. Although this input
combination is valid for layer lk+1, we hypothesize that a significant portion of
the interpretable data for lk+1 is lost. In our proposed approach, referred to
as the residual matrix extended connection (Figure 2b), we omit the summation
step. Instead, the matrices are integrated to generate a new input signal for layer
lk+1, as visualized in Equation 3.

In the back-propagation phase for the classical ResNet, layer lk+1 sends the
same error to both lR and lk+1. When both layers receive the same error, their
potential to detect distinct features is limited. While this approach effectively
addresses exploding or vanishing gradients, allowing the network to have a much

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97629-2_14

https://dx.doi.org/10.1007/978-3-031-97629-2_14
https://dx.doi.org/10.1007/978-3-031-97629-2_14

6 S. Świderski and A. Jastrzębska.

deeper structure, we aim to retain these advantages while enhancing efficiency.
Our method does not backpropagate the same error to all connected layers. Af-
ter extending the matrix for the new connection, we know which part belongs
to each layer and send only the error assigned to that part. The layer that back-
propagates the error calculates it individually for each connected layer, based on
the corresponding part of the main weight matrix, as shown in Equation 3.

3.2 Matrix-extended residual connections

New residual connections with matrix extension are based on reshaping matrices.
This helps the neural network adjust to the new connections without losing
information.

In the first epoch, after adding a new connection, the neural network will
return exactly the same output, but the number of all trainable weights will
increase. This means that the layer will not forget any data it has already learned,
but it will have a larger number of weights that are initially set to zero.

– Before adding new connection:

z[l] = W[l]a[0] + b[l] (1)

– After adding n connections with classical ResNet approach:

z[l] = W[l]
n∑

i=0

a[i] + b[l] (2)

– After adding n connections with Matrix-extended ResNet:

z[l] =

W
[l]

...
0

 [
a[0] · · · a[n]

]
+ b[l] (3)

In the presented formulas, a represents the data forwarded from the preceding
layer, W is the weight matrix, and b is the bias. z[l] denotes the output of a layer
l, which is subsequently processed by an activation function and passed to the
next layers. To handle multiple input signals without data loss, we extend the
weight matrix by adding rows filled with zero values and combining all incoming
signals into a single matrix in a column-wise manner. The output remains the
same as before during the first epoch after introducing this change (i.e., after
adding the new connections). However, in subsequent backpropagation steps,
these newly added zero weights become trainable, enabling additional flexibility
for the layer. This approach allows us to add or remove a specific number of
layers without losing data or functionality.

With our approach, the backpropagated error through multiple residual con-
nections does not need to be duplicated. Instead, only the error related to the

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97629-2_14

https://dx.doi.org/10.1007/978-3-031-97629-2_14
https://dx.doi.org/10.1007/978-3-031-97629-2_14

Dynamic neural network with matrix-extended residual connections 7

specific part of the weight matrix corresponding to a given layer’s input is prop-
agated. This ensures that each layer receives a backpropagated error that is
directly calculated for it.

Our new approach can be interpreted as increasing the number of connections
but not the number of neurons, which brings a new field of possibilities to the
algorithms that change the structure while training. Adding those connections
can not only bring changes to the structure but also increase the number of
trainable weights inside the layer without causing any loss in network memory.

3.3 Trackability of neural network learning process

We extend traditional residual connections with a novel approach called matrix-
extended residual connections. This method offers improved traceability by dis-
tributing the back-propagated error more effectively. Our approach ensures that
each layer receives a unique error signal that is tailored specifically to it. This
allows for a more precise analysis of the error propagation and enables a deeper
understanding of the learning process. This brings a significant change in our
algorithm since the structure can grow to extensive and complicated graphs.
Under the assumption that each layer analyzes a distinct set of features, our
method facilitates a clearer interpretation of learning dynamics.

Figure 3 illustrates the evolution of the network structure on the CIFAR-10
dataset. Each dot represents a single layer. The color of the dot indicates the error
propagated through that layer: red corresponds to the highest propagated error,
while blue indicates the smallest error. The error for each layer is calculated and
normalized according to the following formula: min

(
max

(∑
|E|

Emax
, 0
)
, 1
)
, where

E is the error received in a given epoch by a given layer. In the presented images,
we only show the state from the last epoch of a given generation, just before
the change in structure, and the maximum error Emax is defined as Emax =∏
(shape of E).
After analyzing how the error evolves during training and structural changes,

we can apply methods such as MDA [7] to visualize and understand the features
learned by each layer. This approach provides a deeper insight into the overall
learning process of the neural network.

4 Empirical analysis

4.1 Dataset and empirical setup

In the conducted experiments, we used three widely recognized datasets: MNIST
[2], Fashion-MNIST (FMNIST) [16], and CIFAR-10 [11]. MNIST contains hand-
written digits. FMNIST consists of images of various clothing items, providing a
more complex challenge. CIFAR-10 includes images of objects from 10 different
classes, such as animals and vehicles, offering a more diverse and challenging
dataset.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97629-2_14

https://dx.doi.org/10.1007/978-3-031-97629-2_14
https://dx.doi.org/10.1007/978-3-031-97629-2_14

8 S. Świderski and A. Jastrzębska.

(a) Generation 1 (b) Generation 2 (c) Generation 3

(d) Generation 4 (e) Generation 5 (f) Generation 6

Fig. 3: History of structural changes during CIFAR-10 training. Error
magnitudes are shown in red (high) and blue (low). Classical ResNet

connections were used.

We conducted a series of experiments to validate the three hypotheses out-
lined in Section 4.2. To encourage structural growth, each experiment started
with a minimal configuration: a single 3×3 convolutional input layer and a dense
output layer with 10 neurons. For MNIST and FMNIST, we used three genera-
tions with 10 epochs per generation and a hidden size of 50; for CIFAR-10, six
generations with 50 epochs per generation and a hidden size of 100. All con-
volutional layers used 3×3 kernels, ReLU activations in hidden layers, and a
sigmoid output. Training used a batch size of 128 and multiclass cross-entropy
loss. A simulation scheduler guided the search, with each simulation running for
60 minutes to find the best action. Proposed actions were graded via 20-epoch
training runs, using 20 random samples per class. The simulation algorithm was
a modified Monte Carlo Tree Search (MCTS), optimized for efficient action space
exploration.

In our experiments, we partitioned each dataset into training and testing
subsets, with the testing set comprising 20% of the data. We ensured an even dis-
tribution of images per class using stratified sampling via the train_test_split
function from the sklearn library. Consequently, for MNIST, the training set con-
tained 48,000 images, and the testing set had 12,000 images. Fashion MNIST was

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97629-2_14

https://dx.doi.org/10.1007/978-3-031-97629-2_14
https://dx.doi.org/10.1007/978-3-031-97629-2_14

Dynamic neural network with matrix-extended residual connections 9

divided similarly, with 48,000 training and 12,000 testing images. For CIFAR-10,
which consists of 60,000 images in total, we allocated 40,000 images for training
and 10,000 for testing.

4.2 Classification quality of the new approach

The conducted experiments aimed to empirically validate three hypotheses con-
cerning the proposed residual connection mechanism. We compare it with the
classical residual connections from the ResNet model.

RH1 The first hypothesis states that dynamically modifiable residual connec-
tions with matrix extensions tend to guide the weight distribution in the
network toward a normal distribution.

RH2 The second hypothesis states that residual connections with matrix exten-
sions improve learning capabilities by allowing the error signal to propagate
more effectively through the network.

RH3 The third hypothesis states that dynamically modifiable residual connec-
tions with matrix extensions perform better than traditional residual con-
nections and are particularly effective in networks that dynamically change
their architecture during training.

The first hypothesis (RH1) proposes that dynamically modifiable residual
connections with matrix extensions guide the weight distribution toward a nor-
mal distribution. In this experiment, we initialized neural networks with three
types of general weight distributions: uniform, Gaussian, and gamma. After this,
we run the experiments with our algorithm, which modifies the network struc-
ture.

Table 1: Comparison of mean values for three repetitions across three datasets
and distribution types between classical ResNet and matrix-extended ResNet,
based on skewness and kurtosis of the weight distribution in the final epoch.
Dataset Distribution Type Classical ResNet Matrix-extended ResNet

Skewness Kurtosis Skewness Kurtosis

CIFAR-10
Gamma 0.11 -1.48 3.67 12.84
Normal 0.34 -0.86 0.85 0.31
Uniform 0.26 -1.32 1.45 2.25

FMNIST
Gamma 0.20 -1.33 3.60 12.74
Normal 0.58 -0.90 0.51 -0.70
Uniform -0.08 -1.31 1.02 1.13

MNIST
Gamma 0.38 -1.12 0.45 -0.47
Normal 0.34 -1.08 2.06 4.39
Uniform -0.06 -1.48 1.70 4.89

Mean 0.23 -1.21 1.70 4.15

The graphs in Figure 4 illustrate how weight distribution changes over the
course of training. Each line in a graph represents the weight distribution for an

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97629-2_14

https://dx.doi.org/10.1007/978-3-031-97629-2_14
https://dx.doi.org/10.1007/978-3-031-97629-2_14

10 S. Świderski and A. Jastrzębska.

(a) Classical ResNet
Gamma distribution

(b) Classical ResNet
Normal distribution

(c) Classical ResNet
Uniform distribution

(d) Matrix-extended
ResNet

Gamma distribution

(e) Matrix-extended
ResNet

Normal distribution

(f) Matrix-extended
ResNet

Uniform distribution

Fig. 4: Comparison of weight distribution changes throughout the neural
network structure between the classical ResNet and the matrix-extended

ResNet connections on MNIST dataset.

epoch. The earliest epoch is displayed at the bottom, and the final distribution
is shown at the top. Our analysis focuses on the input and output layers, as they
consistently reflect changes in the overall weight distribution of the network.

As illustrated in Figure 4, the proposed method consistently exhibits spikes
near zero in the weight distributions, with the number of weights close to zero
increasing over the course of training. In comparison, the classical ResNet ap-
proach shows minimal variation in its weight distribution across epochs. Table 1
presents the average distribution metrics across all seeds. While both methods
display some asymmetry, the proposed approach yields a mean kurtosis of 4.15,
which is closer to the value of a normal distribution [9]. In contrast, the classical
method has an average kurtosis of −1.21, indicating a significantly flatter dis-
tribution. These findings suggest that our method produces distributions that
more closely resemble normality, a result influenced by the growing number of
zero weights introduced after each structural modification.

The second hypothesis (RH2) states that residual connections with matrix
extensions improve learning capabilities by propagating the error signal more
effectively through the network. During each epoch, we calculated a normalized
error for every layer. The formula for calculating this normalized error is detailed
in Section 3.3. This error does not directly reflect the overall performance of

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97629-2_14

https://dx.doi.org/10.1007/978-3-031-97629-2_14
https://dx.doi.org/10.1007/978-3-031-97629-2_14

Dynamic neural network with matrix-extended residual connections 11

the network but rather indicates the magnitude of the error passing through
a specific layer.

(a) Generation 1 (b) Generation 2 (c) Generation 3

(d) Generation 4 (e) Generation 5 (f) Generation 6

Fig. 5: History of structural changes during CIFAR-10 training. Error
magnitudes are shown in red (high) and blue (low). Matrix-extended ResNet

connections were used.

Figure 5 illustrates the learning process in the proposed solution, where the
error stabilizes more effectively, as indicated by the predominance of blue nodes
representing low error. In contrast, Figure 3 shows the traditional approach,
showing a higher overall error between layers. In the standard ResNet architec-
ture in Figure 3, each layer transmits identical error signals to all connected lay-
ers via residual connections. In contrast, our approach utilizes a matrix-extended
connection in Figure 5, allowing for layer-specific error propagation. In the con-
ventional approach, when a high error occurs in one layer, it propagates through
the residual connections to all subsequent layers, causing a cascade of high er-
rors across many layers. This results in inefficient error transmission, making it
harder for the network to learn effectively. This is supported by Table 2, which
shows that the mean and variance of errors across all layers are lower for the
matrix-extended ResNet connections.

The third hypothesis (RH3) states that dynamically modifiable residual con-
nections with matrix extensions outperform traditional residual connections and

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97629-2_14

https://dx.doi.org/10.1007/978-3-031-97629-2_14
https://dx.doi.org/10.1007/978-3-031-97629-2_14

12 S. Świderski and A. Jastrzębska.

Table 2: Mean and variance for normalized error distribution across the whole
neural network structure.

Dataset Seed Classical ResNet Matrix-extended ResNet
Mean Variance Mean Variance

CIFAR-10
0 0.485 0.058 0.007 0.000
1 0.199 0.010 0.000 0.000
2 0.011 0.000 0.074 0.014

FMNIST
0 0.081 0.003 0.029 0.001
1 0.056 0.003 0.052 0.004
2 0.079 0.016 0.022 0.001

MNIST
0 0.027 0.001 0.009 0.000
1 0.013 0.000 0.011 0.000
2 0.031 0.001 0.007 0.000

Mean 0.109 0.010 0.024 0.002

are particularly effective in networks that change their architecture dynamically
during training. The experiments for the first and second hypotheses demon-
strated the benefits of our method. To further support this, we compared the
accuracy of a model trained with matrix-extended connections to that of a clas-
sical ResNet with skip connections.

Table 3: Comparison of training accuracy between the classical ResNet model
and the model with matrix-extended connections.

Dataset Seed Classical ResNet Matrix-extended ResNet

CIFAR-10
0 64.16% 99.96%
1 82.20% 100.0%
2 98.15% 98.13%

FMNIST
0 89.30% 88.19%
1 91.68% 86.66%
2 78.14% 90.75%

MNIST
0 98.14% 97.83%
1 97.84% 98.31%
2 97.36% 98.06%

Mean 88.55% 95.32%

The most significant differences were observed with the CIFAR-10 dataset.
In this case, the matrix-extended ResNet connections demonstrated superior
learning capabilities, delivering better results. As shown in Table 3, our method
generally led to better results. The training history, illustrated in Figures 6a and
6d, shows that each structural change in the classical approach caused consider-
able instability. In contrast, our method exhibited visible instability only in seed
0 of the third generation. In the matrix-extended connections, we observe several
smooth spikes following each generation, which occur every 50 epochs. There is

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97629-2_14

https://dx.doi.org/10.1007/978-3-031-97629-2_14
https://dx.doi.org/10.1007/978-3-031-97629-2_14

Dynamic neural network with matrix-extended residual connections 13

(a) Classical ResNet
CIFAR-10

(b) Classical ResNet
MNIST

(c) Classical ResNet
FMNIST

(d) Matrix-extended
ResNet, CIFAR-10

(e) Matrix-extended
ResNet, MNIST

(f) Matrix-extended
ResNet, FMNIST

Fig. 6: Comparison of training history with accuracy per epoch between the
classical ResNet and the matrix-extended ResNet connections.

a significant improvement compared to the old method, indicating that the new
approach has substantial potential for modifying the learning structure with-
out losing any previously acquired data. The results shown in Table 3 indicate
that the matrix-extended ResNet connections outperform the classical ResNet
connections. The mean accuracy for the matrix-extended ResNet connections is
95.32%, compared to 88.55% for the classical ResNet connections. It is important
to note that all training was conducted using our code written from scratch and
that we employed basic tools for training, such as Stochastic Gradient Descent.
These results are based on the training dataset, as our focus is on the training
method rather than the model’s performance on the test dataset. Our goal is to
analyze the training procedure itself, not the test performance. To validate the
method, we had to address specific features that are observable when a model
is trained.

5 Conclusion

This paper presents a novel solution to common challenges in dynamic neural
networks. We introduce matrix-extended ResNet connections, allowing struc-
tural changes without losing previously learned knowledge. These connections
improve the efficiency of information flow by eliminating the summation step
typically found in ResNet skip connections. This design enables easier and more

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97629-2_14

https://dx.doi.org/10.1007/978-3-031-97629-2_14
https://dx.doi.org/10.1007/978-3-031-97629-2_14

14 S. Świderski and A. Jastrzębska.

flexible modification of the network structure during training, supporting dy-
namic adaptation without disrupting existing representations.

Moreover, our approach goes beyond simply addressing the summation step.
Many other methods discussed in the literature also involve some form of merg-
ing, which has similar limitations. Our method simplifies this process by directly
modifying the matrix, offering several advantages. No additional step is required
to connect layers; the layer connections are straightforward and more closely
resemble natural neural behaviors. The summation steps do not align with the
foundational concept of artificial neurons, which was to emulate the behavior
of natural neurons. In our approach, connecting a new layer allows neurons to
establish additional connections that include the newly added layer. This opens
new possibilities for algorithms that dynamically adjust their structure during
training.

The conducted experiments validate the proposed thesis. Dynamically modi-
fiable structures with matrix-extended residual connections enhance learning ca-
pabilities by providing better-adjusted error flow during backpropagation. Con-
ducted experiments show that our method outperformed classical residual con-
nections, achieving higher accuracy. When comparing the training history, it is
clear that in the traditional approach, each change resulted in a visible drop in
performance for the CIFAR-10 dataset. On the other hand, the training history
for matrix-extended connections showed no negative impact in most changes, as
there was no summation point or any additional step that could negatively affect
the results. We also analyzed the error propagation through the network for both
methods. In the classical approach, the summation step forces the error to be
replicated, leading to significantly higher errors in most layers of the structure.
In contrast, our solution maintains a low error throughout most of the structure,
thereby making the learning process more efficient.

Additionally, our method offers a novel way to track the training process,
enabling a more precise error propagation analysis and a deeper understanding
of the learning dynamics. This is especially beneficial for large, complex networks.

All training code was written from scratch without additional frameworks, fo-
cusing on simple datasets. This demonstrates that effective and fast training can
be achieved using only a CPU. The open-source implementation is available as a
Python package named growingnn on PyPi: https://pypi.org/project/growingnn.

References

1. Bach, F.R.: Breaking the curse of dimensionality with convex neu-
ral networks. Journal of Machine Learning Research 18, 1–53 (2017),
https://jmlr.org/papers/volume18/14-546/14-546.pdf

2. Deng, L.: The mnist database of handwritten digit images for machine learning
research. IEEE Signal Processing Magazine 29(6), 141–142 (2012)

3. Evci, U., Vladymyrov, M., Unterthiner, T., van Merriënboer, B., Pedregosa, F.:
GradMax: Growing neural networks using gradient information. In: Proc. of ICLR
2022 (2022), https://iclr.cc/virtual/2022/poster/7131

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97629-2_14

https://dx.doi.org/10.1007/978-3-031-97629-2_14
https://dx.doi.org/10.1007/978-3-031-97629-2_14

Dynamic neural network with matrix-extended residual connections 15

4. Fahlman, S.E., Lebiere, C.: The Cascade-Correlation Learning Architecture, p.
524–532. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (1990)

5. Guo, J., Chen, C.L.P., Liu, Z., Yang, X.: Dynamic neural network structure: A
review for its theories and applications. IEEE Transactions on Neural Networks and
Learning Systems pp. 1–21 (2024). https://doi.org/10.1109/TNNLS.2024.3377194

6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90

7. Islam, M.T., Zixia, Z., Ren, H., Badiei Khuzani, M., Kapp, D., Zou, J.,
Tian, L., Xing, L.: Revealing hidden patterns in deep neural network feature
space continuum via manifold learning. Nature Communications 14 (12 2023).
https://doi.org/10.1038/s41467-023-43958-w

8. Kilcher, Y., Bécigneul, G., Hofmann, T.: Escaping flat areas via function-
preserving structural network modifications. In: Proc. of ICLR 2019 (2019),
https://openreview.net/forum?id=H1eadi0cFQ

9. Kim, T.H., White, H.: On more robust estimation of skew-
ness and kurtosis. Finance Research Letters 1(1), 56–73 (2004).
https://doi.org/https://doi.org/10.1016/S1544-6123(03)00003-5,
https://www.sciencedirect.com/science/article/pii/S1544612303000035

10. Kingma, D., Ba, J.: Adam: A method for stochastic optimization. International
Conference on Learning Representations (12 2014)

11. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny
images (2009)

12. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. In: 3rd International Conference on Learning Representations
(ICLR 2015). pp. 1–14. Computational and Biological Learning Society (2015)

13. Stanley, K., Clune, J., Lehman, J., Miikkulainen, R.: Designing neural net-
works through neuroevolution. Nature Machine Intelligence 1 (01 2019).
https://doi.org/10.1038/s42256-018-0006-z

14. Świderski, S., Jastrzębska, A.: Dynamic growing and shrinking of neural net-
works with monte carlo tree search. In: Franco, L., de Mulatier, C., Paszynski,
M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds.) Computational
Science – ICCS 2024. pp. 362–377. Springer Nature Switzerland, Cham (2024)

15. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D.,
Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with con-
volutions . In: 2015 IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR). pp. 1–9. IEEE Computer Society, Los Alami-
tos, CA, USA (Jun 2015). https://doi.org/10.1109/CVPR.2015.7298594,
https://doi.ieeecomputersociety.org/10.1109/CVPR.2015.7298594

16. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms. CoRR abs/1708.07747 (2017),
http://arxiv.org/abs/1708.07747

17. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual
transformations for deep neural networks. In: 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). pp. 5987–5995 (2017).
https://doi.org/10.1109/CVPR.2017.634

18. Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable ar-
chitectures for scalable image recognition. In: 2018 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition. pp. 8697–8710 (2018).
https://doi.org/10.1109/CVPR.2018.00907

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97629-2_14

https://dx.doi.org/10.1007/978-3-031-97629-2_14
https://dx.doi.org/10.1007/978-3-031-97629-2_14

