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Abstract. We present an open-source Physics Informed Neural Network
environment for simulations of transient phenomena on two-dimensional
rectangular domains, with the following features: (1) it is compatible
with Google Colab which allows automatic execution on cloud environ-
ment; (2) it supports 2D linear or non-linear time-dependent PDEs; (3)
it provides simple interface for de�nition of the residual loss, boundary
condition and initial loss, together with their weights; (4) it support Neu-
mann and Dirichlet boundary conditions; (5) it allows for customizing
the number of layers and neurons per layer, as well as for arbitrary acti-
vation function; (6) the learning rate and number of epochs are available
as parameters; (7) it automatically di�erentiates PINN with respect to
spatial and temporal variables; (8) it provides routines for plotting the
convergence (with running average), initial conditions learnt, 2D and 3D
snapshots from the simulation and movies (9) it includes a library of
problems: (a) non-stationary heat transfer; (b) atmospheric simulations
including thermal inversion; (c) tumor growth simulations; and (d) the
Stokes problem.

Keywords: Physics Informed Neural Networks, Colab, Atmospheric sim-
ulations, Tumor growth simulations, Material science simulations

1 Introduction

The goal of this paper is to replace the functionality of the time-dependent solver
we published using isogeometric analysis and fast alternating directions solver
[5�7] with the Physics Informed Neural Network (PINN) python library that can
be easily executed on Colab. The PINN proposed in 2019 by Prof. Karniadakis
revolutionized the way in which neural networks �nd solutions to initial-value
problems described using partial di�erential equations [1] This method treats
the neural network as a function approximating the solution of the given partial
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di�erential equation u(x) = PINN(x). After computing the necessary di�er-
ential operators, the neural network and its appropriate di�erential operators
are inserted into the partial di�erential equation. The residuum of the partial
di�erential equation and the boundary-initial conditions are assumed as the loss
function. The learning process involves sampling the loss function at di�erent
points by calculating the PDE residuum and the initial boundary conditions.
The PINN methodology has had exponential growth in the number of papers
and citations since its creation in 2019. It has multiple applications, from solid
mechanics [15], geology [4], medical applications [11], and even the phase-�eld
modeling of fracture [14]. Why use PINN solvers instead of classical or higher or-
der �nite element methods (e.g., isogeometric analysis) solvers? PINN/VPINN
solvers have a�ordable computational costs. They can be easily implemented
using pre-existing libraries and environments (like Pytorch and Google Colab).
They are easily parallelizable, especially on GPU. They have great approxima-
tion capabilities, and they enable �nding solutions to a family of problems. With
the introduction of modern stochastic optimizers such as ADAM [3], they easily
�nd high-quality minimizers of the loss functions employed.

In this paper, we present the PINN library with the following features

� It is implemented in Pythorch and compatible with Google Colab.
� It supports two-dimensional linear or non-linear problems de�ned on a rect-
angular domain.

� It is suitable for smooth problems without singularities resulting from large
contrast material data.

� It enables the de�nition of the PDE residual loss function in the space-time
domain.

� It supports the loss function for de�ning the initial condition.
� It provides loss functions for Neumann and Dirichlet boundary conditions.
� It allows for customization of the loss functions and their weights.
� It allows for de�ning an arbitrary number of layers of the neural network
and an arbitrary number of neurons per layer.

� The learning rate, the kind of activation function, and a number of epochs
are problem-speci�c parameters.

� It automatically performs di�erentiation of the PINN with respect to spatial
and temporal variables.

� It provides tools for plotting the convergence of all the loss functions, to-
gether with the running average.

� It enables the plotting of the exact and learned initial conditions.
� It plots 2D or 3D snapshots from the simulations.
� It generates gifs with the simulation animation.

We illustrate our PINN-2DT code with four numerical examples. The �rst one
concerns the model heat transfer problem. The second one is the simulation of the
thermal inversion and the process of pollution removal by arti�cially generated
shock waves, and the last one is the simulation of brain tumor growth.

There are the following available PINN libraries. First and most important
is the DeepXDE library [12] by the team of Prof. Karniadakis. It is an exten-
sive library with huge functionality, including ODEs, PDEs, complex geometries,
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di�erent initial and boundary conditions, and forward and inverse problems. It
supports several tensor libraries such as TensorFlow, PyTorch, JAX, and Pad-
dlePaddle. Another interesting library is IDRLnet [13]. It uses pytorch, numpy,
and Matplotlib. This library is illustrated on four di�erent examples, namely
the wave equation, Allan-Cahn equations, Volterra integrodi�erential equations,
and variational minimization problems.

What is the novelty of our library? We do not claim to be better than these
alternative high quality and multi-functionality libraries. The main point of our
library is its simplicity of use and straight compatibility with Google Colab. It is
a natural �copy" of the functionality of the IGA-ADS library [5] into the PINN
methodology. It contains a simple, straightforward interface for solving di�erent
time-dependent problems. Our library can be executed without accessing the
HPC center just by using the Google Colab.

The structure of the paper is the following. In Section 2, we recall the general
idea of PINN on the example of the heat transfer problem. Section 3 is devoted to
our code structure, from Colab implementation, model parameters, basic Python
classes, how we de�ne initial and boundary conditions, loss functions, how we run
the training, and how we process the output. Section 4 provides four examples
from heat transfer, wave equation, thermal inversion and the process of pollution
removal by arti�cially generated shock waves, and tumor growth simulations. We
conclude the paper in Section 5.

2 Physics Informed Neural Network for transient

problems on the example of heat transfer problem

Let us consider a strong form of the exemplary transient PDE, the heat transfer
problem. Find u ∈ C2(0, 1) for (x, y) ∈ Ω = [0, 1]2, t ∈ [0, T ] such that

∂u(x, y, t)

∂t︸ ︷︷ ︸
time evolution

−ϵ
∂2u(x, y, t)

∂x2
− ϵ

∂2u(x, y, t)

∂y2︸ ︷︷ ︸
di�usion term

= f(x, y, t)︸ ︷︷ ︸
forcing

, (x, y, t) ∈ Ω × [0, T ], (1)

with initial condition u(x, y, 0) = u0(x, y), and zero-Neumann boundary con-
dition ∂u

∂n = 0 (x, y) ∈ ∂Ω. In the PINN approach, the neural network is the
solution, namely

u(x, y, t) = PINN(x, y, t) = Anσ (An−1σ(...σ(A1[x, y, t] +B1)...) +Bn−1) +Bn,

where Ai are matrices representing DNN layers, Bi represent bias vectors, and
σ is the sigmoid, which as we have shown in [2], is the best choice for PINN. We
de�ne the loss function as the residual of the PDE

LOSSPDE(x, y, t) =(
∂PINN(x, y, t)

∂t
− ϵ

∂2PINN(x, y, t)

∂x2
− ϵ

∂2PINN(x, y, t)

∂y2
− f(x, y, t)

)2

.(2)
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We also de�ne the initial condition loss LOSSInit(x, y, 0) = (PINN(x, y, 0)−
u0(x, y))

2
, as well as the loss of the residual of the boundary condition

LOSSBC(x, y, t) =
(

∂PINN(x,y,t)
∂n (x, y, t)− 0

)2

.

3 Structure of the code

Our code is available at https://github.com/pmaczuga/pinn-notebooks
The code can be downloaded, openned in Google Colab, and executed in the

fully automatic mode. There are the following model parameters to de�ne

� LENGTH, TOTAL_TIME. The code works in the space-time domain, where the
training is performed by selecting point along x, y and t axes. The LENGTH pa-
rameter de�nes the dimension of the domain along x and y axes. The domain
dimension is [0,LENGTH]x[0,LENGTH]x[0,TOTAL_TIME]. The TOTAL_TIME

parameter de�nes the length of the space-time domain along the t axis. It is
the total time of the transient phenomena we want to simulate.

� N_POINTS. This parameter de�nes the number of points used for training.
By default, the points are selected randomly along x, y, and t axes. It is
easily possible to extend the code to support di�erent numbers of points or
di�erent distributions of points along di�erent axes of the coordinate system.

� N_POINTS_PLOT. This parameter de�nes the number of points used for prob-
ing the solution and plotting the output plots after the training.

� WEIGHT_RESIDUAL, WEIGHT_INITIAL, WEIGHT_BOUNDARY. These parameters
de�ne the weights for the training of residual, initial condition, and boundary
condition loss functions.

� LAYERS, NEURONS_PER_LAYER. These parameters de�ne the neural network
by providing the number of layers and number of neurons per layer.

� EPOCHS, and LEARNING_RATE provide a number of epochs and the training
rate for the training procedure.

Inside the Loss class, we provide interfaces for the de�nition of the loss func-
tions. Namely, we de�ne the residual_loss, initial_loss and boundary_loss.
Since the initial and boundary loss is universal, and residual loss is problem
speci�c, we provide �xed implementations for the initial and boundary losses,
assuming that the initial state is prescribed in the initial_condition routine
and that the boundary conditions are zero Neumann. The code can be easily
extended to support di�erent boundary conditions. We provide examples of loss
functions in the next section.

We provide several routines for plotting the convergence of the loss function
and for plotting the running average of the loss (see Fig. 1), for plotting the
initial conditions in 2D and for plotting snapshots of the solution (see Fig. 2).

4 Examples of the instantiation

Heat transfer. We �rst present the instance of our library for the heat transfer
problem described in Section 2. The residual loss function LOSSPDE(x, y, t) =
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Fig. 1: Heat equation. Convergence of the residual loss function. Running average
from the convergence of the residual loss function. Numerical error of the trained
PINN solution to the heat transfer problem with manufactured solution.

Fig. 2: Heat equation. Initial conditions in 2D. Snapshot from the simulation

(
∂PINN(x,y,t)

∂t −∂2PINN(x,y,t)
∂x2 − ∂2PINN(x,y,t)

∂y2 − f(x, y, t)
)2

translates into the

following code

def residual_loss(self , pinn: PINN):

x,y,t=get_interior_points(self.x_domain ,

self.y_domain ,self.t_domain ,self.n_points ,pinn.device ())

u = f(pinn , x, y, t); z = self.floor(x, y)

loss = dfdt(pinn , x, y, t, order =1) - \

dfdx(pinn , x, y, t)**2-dfdy(pinn , x, y, t)**2

We employ the manufactured solution technique, where we assume the so-
lution of the following form u(x, y, t) = exp−2Π2t sinΠx sinΠy, for (x, y, t) ∈
[0, 1]2 × [0, T ]. To obtain this particular solution, we set up the zero Dirichlet
boundary conditions, which require the following code

def boundary_loss_dirichlet(self , pinn: PINN):

down ,up,left ,right=get_boundary_points(self.x_domain ,

self.y_domain ,self.t_domain ,self.n_points ,pinn.device ())

x_down , y_down , t_down = down

x_up , y_up , t_up = up

x_left , y_left , t_left = left

x_right , y_right , t_right = right

loss_down = f( pinn , x_down , y_down , t_down )

loss_up = f( pinn , x_up , y_up , t_up )
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6 P. Maczuga et al.

loss_left = f( pinn , x_left , y_left , t_left )

loss_right = f( pinn , x_right , y_right , t_right )

return loss_down.pow (2).mean()+loss_up.pow (2).mean()+ \

loss_left.pow (2).mean()+loss_right.pow(2).mean()

We also setup the initial state u0(x, y) = sin (Πx) sin (Πy) which translates
into the following code

def initial_condition(x:torch.Tensor ,y:torch.Tensor)->

torch.Tensor:

res = torch.sin(torch.pi*x) * torch.sin(torch.pi*y)

return res

The default setup of the parameters for this simulation is the following:

LENGTH = 1. TOTAL_TIME = 1.

N_POINTS = 15 N_POINTS_PLOT = 150

WEIGHT_RESIDUAL = 1.0 WEIGHT_INITIAL = 1.0

WEIGHT_BOUNDARY = 1.0 LAYERS = 4

NEURONS_PER_LAYER = 80 EPOCHS = 20_000

LEARNING_RATE = 0.002

The convergence of the loss function and the running average of the loss are
presented in Fig. 1. The comparison of exact and trained initial conditions and
the snapshot from the simulation is presented in Fig. 2 for time moment t = 0.1.
The mean square error of the computed simulation is presented in Fig. 1. We
can see the high accuracy of the trained PINN results.

Thermal inversion and the process of pollution removal by arti�-

cially generated shock waves. In this example, we aim to model the thermal
inversion e�ect. The numerical results presented in this section are the PINN
version of the thermal inversion simulation performed using isogeometric �nite
element method code [5] described in [9]. The scalar �eld u in our simulation
represents the water vapor forming a cloud. The source represents the evapora-
tion of the cloud evaporation of water particles near the ground. The thermal
inversion e�ect is obtained by introducing the advection �eld as the gradient of
the temperature. Following [10] we de�ne ∂T

∂y = −2 for lower half of the domain

(y < 0.5), and ∂T
∂y = 2 for upper half of the domain (y > 0.5).

We focus on advection-di�usion equations in the strong form. We seek the
cloud vapor concentration �eld [0, 1]2 × [0, 1] ∋ (x, y, t) → u(x, y, t) ∈ R

∂u(x, y, t)

∂t
+ b(x, y, t) · ∇u(x, y, t)−∇ · (K(x, y) ∇u(x, y, t))

=f(x, y, t), (x, y, t) ∈ Ω × (0, T ],

∇u · n =0, (x, y, t) ∈ ∂Ω × (0, T ],

u(x, y, 0) =u0(x, y), (x, y, t) ∈ Ω × 0.

(3)
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This PDE translates into

∂u(x, y, t)

∂t
+

∂T (y)

∂y

∂u(x, y, t)

∂y
−0.1

∂u(x, y, t)

∂x2
− 0.01

∂u(x, y, t)

∂y2

=f(x, y, t), (x, y, t) ∈ Ω × (0, T ],

∇u · n =0, (x, y, t) ∈ ∂Ω × (0, T ],

u(x, y, 0) =u0(x, y), (x, y, t) ∈ Ω × 0.

(4)

We de�ne the loss function as the residual of the PDE

LOSSPDE(x, y, t) =

(
∂PINN(x, y, t)

∂t
+

∂T (y)

∂y

∂PINN(x, y, t)

∂y

−0.1
∂PINN(x, y, t)

∂x2
− 0.01

∂PINN(x, y, t)

∂y2
− f(x, y, t)

)2

.

(5)

Followng [9] we modify the loss function to introduce the term modeling the
arti�cially generated shock wave. The convergence of the loss function is sum-
marized in Fig. 3. The snapshots from the simulations are presented in Fig. 4.
In the thermal inversion, the cloud vapor that evaporated from the ground stays
close to the ground, due to the distribution of the temperature gradients. To

Fig. 3: Thermal inversion: Convergence of the loss function. Tumor growth: Con-
vergence of the loss function.

model the generation of the arti�cial shock waves, following the idea described
in [9], we modify the advection by adding the term responsible for the generated
shock wave.

Tumor growth. The next example concerns the brain tumor growth, as
described in [11]. We seek the tumor cell density [0, 1]2 × [0, 1] ∋ (x, y, t) →
u(x, y, t) ∈ R, such that

∂u(x, y, t)

∂t
= ∇ · (D(x, y)∇u(x, y, t))+ρu(x, y, t) (1− u(x, y, t))

(x, y, t) ∈ Ω × (0, T ],

∇u · n = 0, (x, y, t) ∈ ∂Ω × (0, T ], u(x, y, 0) = u0(x, y), (x, y, t) ∈ Ω × 0,

(6)
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Fig. 4: Top panel: Thermal inversion. Bottom panel: Hail cannon simulation.

which translates into

∂u(x, y, t)

∂t
− ∂D(x, y)

∂x

∂u(x, y, t)

∂x
−D(x, y)

∂2u(x, y, t)

∂x2

−∂D(x, y)

∂y

∂u(x, y, t)

∂y
−D(x, y)

∂2u(x, y, t)

∂xy
− ρu(x, y, t) (1− u(x, y, t)) = 0.

Here, D(x, y) represents the tissue density coe�cient, where D(x, y) = 0.13 for
the white matter, D(x, y) = .013 for the gray matter, and D(x, y) = 0 for the
cerebrospinal �uid (see [11] for more details). Additionally, ρ = 0.025 denotes
the proliferation rate of the tumor cells. We simplify the model

∂u(x, y, t)

∂t
−D(x, y)

∂2u(x, y, t)

∂x2
−D(x, y)

∂2u(x, y, t)

∂xy

−ρu(x, y, t) (1− u(x, y, t)) = 0.

(7)

We de�ne the loss function as the residual of the PDE

LOSSPDE(x, y, t) +

(
∂u(x, y, t)

∂t
− ∂D(x, y)

∂x

∂u(x, y, t)

∂x
−D(x, y)

∂2u(x, y, t)

∂x2

−∂D(x, y)

∂y

∂u(x, y, t)

∂y
−D(x, y)

∂2u(x, y, t)

∂xy
− ρu(x, y, t) (1− u(x, y, t))

)2

(8)

We summarize in Fig. 3 the convergence of the loss function. Additionally,
Fig. 5 presents the snapshots from the simulation.

Stationary non-linear Navier-Stokes problem. Let us focus on the sta-
tionary cavity �ow problem [16] described with the stationary non-linear Navier-
Stokes equation for the incompressible �uid; see Figure 7. The Dirichlet boundary
condition drives the cavity �ow for the velocity ux = 1, uy = 0 on the top bound-
ary. On the remaining parts of the boundary, the velocity is equal to 0, and the
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Fig. 5: Tumor growth. Snapshots from the simulation.

ϵ thick transition zone in the left and right top corners ensures the possibility
of a weak formulation. This problem exhibits pressure singularities at the two
corners. Let Ω = (0, 1)2 be the open boundary. The cavity �ow problem reads:
Find velocity u and pressure �eld p such that:


−∆u

Re
+ u · ∇u+∇p = 0 in Ω,

∇ · u = 0 in Ω,

u = h in Γ

, h =



0 x ∈ (0, 1), y = 0

0 x ∈ {0, 1}, y ∈ (0, 1− ϵ)

1 x ∈ (0, 1), y = 1

ϵ− y + 1

ϵ
x ∈ {0, 1}, y ∈ (1− ϵ, 1)

(9)
System (9) can be rewritten as

w1(x1, x2) =
∂u1(x1, x2)

∂x1
, w2(x1, x2) =

∂u1(x1, x2)

∂x2

z1(x1, x2) =
∂u2(x1, x2)

∂x1
, z2(x1, x2) =

∂u2(x1, x2)

∂x2

−∂w1(x1, x2)

∂x1
− ∂w2(x1, x2)

∂x2
+

∂p(x1, x2)

∂x1
+

u1(x1, x2)w1(x1, x2) + u2(x1, x2)w2(x1, x2) = 0,

−∂z1(x1, x2)

∂x1
− ∂z2(x1, x2)

∂x2
+

∂p(x1, x2)

∂x2
+

u1(x1, x2)z1(x1, x2) + u2(x1, x2)z2(x1, x2) = 0,

∂u1(x1, x2)

∂x1
+

∂u2(x1, x2)

∂x2
= 0.
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Fig. 6: Non-stationary cavity �ow problem. Convergence of PINN training.

Despite the non-linear problem, we easily de�ne the following residuals

RES0 =
∂u1

∂x1
− w1, RES1 =

∂u1

∂x2
− w2, RES2 =

∂u2

∂x1
− z1,

RES3 =
∂u2

∂x2
− z2, RES4 = −∂w1

∂x1
− ∂w2

∂x2
+

∂p

∂x1
+ u1w1 + u2w2 − f1,

RES5 = − ∂z1
∂x1

− ∂z2
∂x2

+
∂p

∂x2
+ u1z1 + u2z2 − f2,

RES6 =
∂u1(x1, x2)

∂x1
+

∂u2(x1, x2)

∂x2
.

The Stokes code is available at https://colab.research.google.com/
drive/15eDVY7DyRfu5ugJRISETPjk-A-W6wA88
The obtained solution is shown in Figure 7. The Colab execution time on

L4 graphic card, for 20,000 iterations with 4 layers of 200 neurones (a total of
200× 200× 3 = 24, 000, 000 parameters), with 100× 100 integration points and
learning rate 0.005 is around 15 minutes. The bene�t of PINN solution with
respect to traditional �nite element method solution is that it does not require
any linearization or special stabilization methods. The non-linear PDEs are (split
into a �rst order system though) are directly implemented in the loss function.

5 Conclusions

We have created a code https://github.com/pmaczuga/pinn-notebooks that
can be downloaded and opened in the Google Colab. It can be automatically exe-
cuted using Colab functionality. The code provides a simple interface for running
two-dimensional time-dependent simulations on a rectangular grid. It provides
an interface to de�ne residual loss, initial condition loss, and boundary condition

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97629-2_13

https://dx.doi.org/10.1007/978-3-031-97629-2_13
https://dx.doi.org/10.1007/978-3-031-97629-2_13


PINN-2DT Compatible with Google Colab 11

Fig. 7: The �rst and second components of the velocity vector �eld for the cavity
�ow problem. The pressure scalar �eld for the cavity �ow problem.

loss. It provides examples of Dirichlet and Neumann boundary conditions. The
code also provides routines for plotting the convergence, generating snapshots
of the simulations, verifying the initial condition, and generating the animated
gifs. We also provide four examples, the heat transfer, the thermal inversion
from advection-di�usion equations, the brain tumor model, and the Stokes prob-
lem. The future work may involve development of the Variational PINN library
with adaptive test space, following [17�22]. The PINN methods are naturally
slower than �nite element method codes, but they enable easy approximation of
non-linear PDEs, without the necessity of linearization of the formulation. The
non-linear problem can be directly incorporated into the residual.
Acknowledgements This work was supported by the program �Excellence ini-
tiative - research university" for the AGH University of Science and Technology.
The visit of Maciej Paszy«ski at Oden Institute was partially supported by J.
T. Oden Research Faculty Fellowship.

A Code sniplets

Thermal inversion and shock wave generation The residual loss includes
now the vertical temperature gradient dTy, the di�usion variables Kx and Ky,
and the source term source.

def residual_loss(self , pinn: PINN):

x, y, t = get_interior_points(self.x_domain , self.

y_domain , self.t_domain ,

self.n_points , pinn.device ())

loss = dfdt(pinn , x, y, t).to(device)

- self.dTy(y, t)*dfdy(pinn , x, y, t).to(device)

- self.Kx*dfdx(pinn , x, y, t,order =2).to(device)

- self.Ky*dfdy(pinn , x, y, t, order =2).to(device)

- self.source(y,t).to(device)

return loss.pow(2).mean

def source(self ,y,t):

d=0.7; res=torch.clamp(( torch.cos(t*math.pi)-d)*1/(1-

d), min =0)
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res2 = (150 - 1200 * y) * res

res3 = torch.where(t <= 0.3, res2 , 0)

res4 = torch.where(y <= 0.125, res3 , 0)

return res4.to(device)

During the training, we use the following global parameters

LENGTH = 1. WEIGHT_BOUNDARY = 10.0

TOTAL_TIME = 1. LAYERS = 2

N_POINTS = 15 NEURONS_PER_LAYER = 600

N_POINTS_PLOT = 150 EPOCHS = 30_000

WEIGHT_RESIDUAL = 20.0 LEARNING_RATE = 0.002

WEIGHT_INITIAL = 1.0

The shock wave implementation in the advection term involves the following
modi�cations to dTy routine:

def dTy(self ,x:torch.Tensor ,y:torch.Tensor ,t:torch.Tensor)

->torch.Tensor:

sin_term=torch.sin(torch.pi*t/2)*torch.sin(torch.pi*x)

-0.8* torch.sin(torch.pi*t/2)

es_threshold=torch.maximum (5* sin_term ,torch.tensor (0.0,

device=x.device))

mask=(y<res_threshold);peak_value=torch.tensor (-3.0,

device=device ,dtype=x.dtype)

def_val=torch.tensor (0.0, device=device ,dtype=x.dtype)

foff_rate=torch.tensor (1.0, device=device ,dtype=x.dtype)

inverted_mask_np =(~ mask).cpu().numpy ()

distances_np=scipy.ndimage.distance_transform_edt(

inverted_mask_np)

distances=torch.from_numpy(distances_np).to(device=

device ,dtype=x.dtype)

falloff_values=torch.clamp(peak_value+foff_rate*

distances ,max=def_val)

final_grid=torch.where(mask.to(device),peak_value.to(

device),falloff_values.to(device))

return final_grid.to(device)*(-2)

Tumor growth simulations The loss function involves now the variable
di�usion terms and the proliferation terms

def residual_loss(self , pinn: PINN):

x, y, t = get_interior_points(

self.x_domain , self.y_domain , self.t_domain ,

self.n_points , pinn.device ())

rho = 0.025

def D_fun(x, y) -> torch.Tensor:

res = torch.zeros(x.shape , dtype=x.dtype , device=

pinn.device ())

dist = (x -0.5) **2 + (y-0.5) **2

res[dist < 0.25] = 0.13; res[dist < 0.02] = 0.013

return res
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D = D_fun(x, y); u = f(pinn , x, y, t)

loss = dfdt(pinn ,x,y,t)-D*dfdx(pinn ,x,y,t,order =2) \

- D*dfdy(pinn ,x,y,t,order =2)-rho*u*(1-u)

return loss.pow(2).mean()

The initial and boundary condition loss functions are unchanged. The initial
state is given as follows:

def initial_condition(x: torch.Tensor , y: torch.Tensor) ->

torch.Tensor:

d = torch.sqrt((x-0.6) **2 + (y-0.6) **2)

res = -d**2 - 4*d + 0.4; res = res * (res > 0)

return res

We setup the following model parameters

LENGTH = 1. WEIGHT_BOUNDARY = 1.0

TOTAL_TIME = 1. LAYERS = 4

N_POINTS = 20 NEURONS_PER_LAYER = 80

N_POINTS_PLOT = 150 EPOCHS = 50_000

WEIGHT_RESIDUAL = 1.0 LEARNING_RATE = 0.005

WEIGHT_INITIAL = 1.0

Non-linear stationary Navier-Stokes The residual loss for non-linear
stationary Navier-Stokes is the following

def calculate_loss(pinns: list[PINN], x: torch.Tensor , y:

torch.Tensor) -> torch.Tensor:

ux = pinns [0]; uy = pinns [1]; p = pinns [2]

duxdx = pinns [3]; duxdy = pinns [4]; duydx = pinns [5]

duydy = pinns [6]; u1 = f(ux, x, y); u2 = f(uy , x, y)

du1dx = f(duxdx , x, y); du1dy = f(duxdy , x, y)

du2dx = f(duydx , x, y); du2dy = f(duydy , x, y)

uxdotgradux = u1 * du1dx + u2 * du1dy

uydotgraduy = u1 * du2dx + u2 * du2dy

d2uxdx = dfdx(duxdx ,x,y); d2uxdy = dfdy(duxdy ,x,y)

dpdx = dfdx(p,x,y,order =1); d2uydx = dfdx(duydx , x, y)

d2uydy = dfdy(duydy , x, y); dpdy = dfdy(p,x,y)

loss1 = -d2uxdx - d2uxdy + dpdx + uxdotgradux

loss2 = -d2uydx - d2uydy + dpdy + uydotgraduy

loss3 = duxdx(x, y) + duydy(x, y)

loss_duxdx = duxdx(x, y) - dfdx(ux, x, y)

loss_duxdy = duxdy(x, y) - dfdy(ux, x, y)

loss_duydx = duydx(x, y) - dfdx(uy, x, y)

loss_duydy = duydy(x, y) - dfdy(uy, x, y)

return loss1.pow(2).mean()+loss2.pow(2).mean()+ \

loss3.pow (2).mean()+loss_duxdx.pow (2).mean()+ \

loss_duxdy.pow (2).mean()+loss_duydx.pow (2).mean()+ \

loss_duydy.pow (2).mean()

The boundary conditions and zero pressure value at the center point are
enforced using the hard constraints.
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def zero_dirich(x,y):return 20*x*(1-x)*y*(1-y)

def force_up_stream(x,y):return torch.exp ( -1000*(y-1) **2)

def zero_middle(x,y):return -torch.exp ( -1000*(y-0.5) **2)*

torch.exp ( -1000*(x-0.5) **2) +1.0

def ux_constraint(logs ,x,y):return logs*zero_dirich(x,y)

+force_up_stream(x,y)

def uy_constraint(logs ,x,y):return logs*zero_dirich(x,y)

def p_constraint(logs ,x,y):return logs*zero_middle(x,y)

The code requires an extension to support PINN with vector output

ux_pinn = PINN(LAYERS , NEURONS_PER_LAYER , hard_constraint=

ux_constraint)

uy_pinn = PINN(LAYERS , NEURONS_PER_LAYER , middle_layers=

ux_pinn.middle_layers , hard_constraint=uy_constraint)

p_pinn = PINN(LAYERS , NEURONS_PER_LAYER , middle_layers=

ux_pinn.middle_layers , hard_constraint=p_constraint)

duxdx_pinn = PINN(LAYERS , NEURONS_PER_LAYER ,

middle_layers=ux_pinn.middle_layers)

duxdy_pinn = PINN(LAYERS , NEURONS_PER_LAYER ,

middle_layers=ux_pinn.middle_layers)

duydx_pinn = PINN(LAYERS , NEURONS_PER_LAYER ,

middle_layers=ux_pinn.middle_layers)

duydy_pinn = PINN(LAYERS , NEURONS_PER_LAYER ,

middle_layers=ux_pinn.middle_layers)

pinns = [ux_pinn , uy_pinn , p_pinn , duxdx_pinn , duxdy_pinn ,

duydx_pinn , duydy_pinn]

multiPINN = MultiPINN(LAYERS , NEURONS_PER_LAYER , pinns=

pinns).to(DEVICE)
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