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Abstract. Optimization plays a central role in modern radiation therapy,
where it is used to determine optimal treatment machine parameters in
order to deliver precise doses adapted to each patient case. In general,
solving the optimization problems that arise can present a computational
bottleneck in the treatment planning process, as they can be large in terms
of both variables and constraints. As high precision is often sought, second-
order optimization algorithms, such as sequential quadratic programming
(SQP) and/or interior point methods (IPM) are commonly used. Existing
implementations of these algorithms often use direct linear solvers inter-
nally, and are typically intended to run on CPUs. Utilizing iterative linear
solvers instead is an active research topic in the optimization community,
and one which carries the potential to enable efficient GPU acceleration
for these types of optimization problems. Numerical stability issues make
this a difficult problem for optimization solvers targeting problems from
a wide range of application areas, however. In this paper, we develop
and implement a GPU-accelerated interior point method for optimization
problems from radiation therapy using iterative linear algebra. We utilize
a so called doubly augmented formulation of the Karush-Kuhn-Tucker
linear systems, together with a Jacobi-preconditioned conjugate gradient
solver, which is able to find sufficiently accurate search directions while
running on GPU. By evaluating our solver on real optimization problems
from a commercial treatment planning system for radiation therapy, we
show that our method can accelerate the aggregated time-to-solution by
1.4 and 4.4 times, respectively, for two patient cases.

1 Introduction

Optimization problems arise in a number of applications areas, including machine
learning [3], operations research [23], radiation therapy planning [5,31] and many
more. In many applications, the problems are large and challenging in terms of
the number of variables and constraints, and the computational performance of
the optimization solver is key. The focus in this work will be on interior point
methods (IPMs) [22] for optimization, which are well known for their polynomial
time complexity and good practical performance.

The specific application we have in mind for this work is optimization of
radiation therapy treatment plans. In treatment planning, optimization is used
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to find control parameters for the treatment machine to deliver a precise dose
that is concentrated to the tumor volume, thus achieving the desired killing
of tumor cells while sparing surrounding healthy tissue as much as possible.
The computations required in this process can be time-consuming, which makes
computational speed a crucial factor. GPU computing is already widely used in
radiation treatment planning [13], such as for dose calculation [8,17] and various
image processing workloads [12]. With the advent of deep neural networks and
machine learning, GPUs have also found uses in neural network based automatic
segmentation algorithms [25].

One part of the computational workflow that has not yet benefited from GPU
acceleration is the optimization algorithm itself. There may be many reasons for
this, not least that other computational components, such as dose calculation
[8], previously dwarfed the time required for optimization, a situation that is
inevitably changing as large performance gains are realized in those areas. Another
reason may be algorithmic in nature, in that current algorithms used for precise
optimization may be inherently challenging to parallelize to the degree required
to use GPUs efficiently.

An active research topic in the literature on IPMs is utilizing iterative linear
solvers (e.g. Krylov subspace methods) as the method for solving linear systems
internally. Traditionally, IPMs often rely on direct linear solvers, motivated in
large part by numerical stability issues and inherent ill-conditioning of the linear
systems involved. The move to iterative linear solvers, while challenging in terms
of stability and preconditioning, may be crucial for the performance of IPMs on
large-scale problems [10]. Another potential benefit of moving to iterative linear
solvers, and one of the primary motivations for the method presented in this
paper, is better suitability for massively parallel computing hardware such as
GPUs,

In this paper, we present a GPU-accelerated IPM implementation for quadratic
optimization problems, based on previous work on using Krylov subspace solvers
to solve linear systems [16]. Furthermore, while our focus lies on interior point
methods for quadratic optimization problems, we mainly consider the case where
the quadratic problems are solved as part of a sequential quadratic programming
(SQP) algorithm for general nonlinear optimization problems. We show that
our solver can outperform existing, clinically used CPU-based solvers on real
problems. To the best of our knowledge, this is the first of its kind in GPU
accelerated IPMs for radiation therapy optimization.

2 Related Work

GPU accelerated optimization algorithms are already widely used in many
contexts, especially for problems where first-order gradient-based algorithms
(which do not require Hessian information) are used. Prominent examples include
algorithms based on gradient descent for training deep neural networks and
similar. For second-order methods with Hessian information such as IPMs and
SQP, GPU accelerated solvers do not appear to be as widespread.
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For linear programming, GPU accelerated IPMs have been studied previously
by Smith et al. and Gade-Nielsen [27,9], which are both based on a matrix-free
method proposed by Gondzio [11]. Notably, Gondzio’s matrix-free method also
uses a preconditioned conjugate gradient method, with regularization in the IPM
itself as well as a custom preconditioner. GPU accelerated IPMs have also been
studied for other types of optimization problems such as quadratic programming
for training support vector machines [14], as well as more general nonlinear
optimization [6]. The paper by Cao et al. [6] is similar to ours in that it uses a
preconditioned conjugate gradient method with Jacobi preconditioning as well.
However, they consider mainly equality constrained optimization problems and
use a different formulation of the Karush-Kuhn-Tucker (KKT) system.

GPU acceleration for IPMs using direct linear solvers has also been studied
previously, see [19], where the KKT-system is condensed into a dense form, which
is more amenable to GPU accelerated factorization. In [30], a refactorization
approach is considered, where pivots from previous factorizations are reused, since
the sparsity pattern of matrices often remains the same between IPM iterations.
Approaches combining inexact factorization and iterative refinement have also
been considered [29], as well as hybrid methods combining factorization and
iterative methods to solve KKT systems [24], with promising performance results
demonstrated on optimal power flow problems, another application area where
large-scale optimization problems are frequently encountered. An example of a
software package for IPM with support for GPU acceleration is HiOp [20], which
has also been used for optimal power flow problems [21].

For first-order optimization methods for quadratic optimization problems,
GPU acceleration has been explored in for example the alternating direction
method of multipliers (ADMM) based solver OSQP [28]. The GPU porting of
OSQP is described in [26]. As a general rule, first-order methods trade achievable
accuracy in favor of computational speed, which may be a very worthwhile
trade-off for many applications, but may not be the most suited for radiation
therapy where a high degree of accuracy is sought.

3 Background

The optimization algorithm used in this work is based on the method described
in [16]. Our contribution in this work is to port the algorithm to GPU accel-
erators, address related challenges in performance optimization, and evaluate
the performance compared to existing solvers on a set of realistic problems, in
order to evaluate the performance compared to state-of-the-art. We give a brief
overview of the optimization method used for completeness, but refer to [16] for
more details.

3.1 Interior Point Methods

IPMs are commonly used for many types of constrained continuous optimization
problems, including linear, quadratic, nonlinear and semidefinite programming.
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Our interest in this paper is in IPMs for quadratic programming (i.e. optimization
problems with quadratic objective function and linear constraints). Generally
those problems are of the form

min. 1

2
xTHx+ pTx

s.t. l ≤ Ax ≤ u,
(1)

where H is the n × n Hessian of the objective function, p ∈ Rn are linear
coefficients of the objective function and A is an m× n matrix with coefficients
for the linear inequality constraints. A common trick in optimization solvers is to
introduce slack variables sl, su for inequality constraints, thereby transforming
them into equality constraints and a simple positivity constraint for the slack
variables instead. The positivity constraints for the slack variables are handled
by replacing them with a logarithmic barrier term in the objective, yielding a
problem of the form

min. 1

2
xTHx+ pTx−−µ

∑
i

log((sl)i)− µ
∑
i

log((su)i)

s.t. Ax− sl − l = 0

−Ax− su + u = 0.

(2)

With sl, su ≥ 0 handled implicitly. The intuition is that the logarithmic terms
in the objective tend towards infinity as the boundary of the feasible region is
approached from within, or in this case, when sl, su become close to zero. µ is
known as the barrier parameter, and its value can be chosen by the solver. IPMs
proceed by solving the barrier problem while successively decreasing the value of
the barrier parameter µ towards 0.

It can be shown that there exists Lagrange multipliers λ such that solutions
x to the barrier problem (2) satisfy the following system of equations:

rH := Hx+ p−ATλl +ATλu = 0

rl := Ax− sl − l = 0

ru := −Ax+ su + u = 0

rc1 := (λl)i(sl)i − µ = 0, i ∈ {1, ...,ml},
rc2 := (λu)i(su)i − µ = 0, i ∈ {1, ...,mu},

(3)

where λl denotes the multipliers for the lower bounds and λu for the upper
bounds. The slack variables s are subscripted in the same way.

A popular approach is a so called primal-dual [22] approach, which is based
on solving the system of equations (3) directly using Newton’s method. Newton’s
method applied to (3) gives a linear system to solve of the form

H −AT AT

A −I
−A −I

Sl Λl

Su Λu




∆x
∆λl

∆λu

∆sl
∆su

 = −


rH
rl
ru
rc1
rc2

 , (4)
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where Λ, S are diagonal matrices with the Lagrange multipliers and slack variables
on the diagonal, respectively, and e is an appropriately sized vector of ones.
Newton’s method does not take into account the implicit condition that the slack
variables and Lagrange multipliers remain positive throughout. This is accounted
for by some line search method instead, where the search direction is scaled by
some step length α such that the slacks and multipliers remain positive.

3.2 Sequential Quadratic Programming

Sequential quadratic programming (SQP) [4] is an optimization algorithm for
solving nonlinear optimization problems with constraints. The basic idea is to
solve, in each SQP iteration, a quadratic subproblem consisting of a quadratic
approximation of the objective function or Lagrangian and linear approximation
of the constraints. To give a concrete example, consider a problem of the form:

min. f(x)

subject to g(x) ≤ 0,
(5)

where f : Rn → R is the objective function and g : Rn → Rm are the constraints.
We assume both f(x) and g(x) to be three times continuously differentiable. We
define the Lagrangian of the problem as

L(x, λ) = f(x)− λT g(x). (6)

In SQP, we find search directions to iteratively solve problem (5) from the
quadratic sub-problem

min.
d

dT∇2
xxL(x, λ)d+ dT∇f(x)

subject to dT∇g(x) + g(x) ≤ 0,
(7)

where d is the search direction for the current iteration. These QPs solved in
an SQP solver will often be referred to as QP subproblems in the remainder of
the paper. For many practical problems, the Hessian of the Lagrangian may
be too expensive to compute exactly. In such cases, it is common to use quasi-
Newton type approximations of the Hessian instead. This is the approach used
in the treatment planning optimization problems considered later in this paper,
where a Broydon-Fletcher-Goldfarb-Shanno (BFGS) [15] type quasi-Newton
approximation for the Hessian is used. The solution of the QP subproblems is
a major computational burden in SQP solvers. Thus, SQP solvers both rely on
an efficient solver fo quadratic programs internally, and also provide a way to
extend a solver for QPs to the nonlinear setting. In this paper, we use our GPU
accelerated IPM solver for the QP-subproblems.

4 Implementation

Solving the system (4) is the computational core of our method. As is common
in practical implementations, we reduce the size of the system through block-row
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Algorithm 1 Interior Point Method
1: for i← 1 to N do
2: Solve (9) using preconditioned conjugate gradient (PCG) (GPU)
3: Assemble full search direction from solution to (9) (CPU)
4: Compute maximum step length αx, αλ (CPU)
5: x← x+ αx∆x (CPU)
6: λ← λ+ αλ∆λ (CPU)
7: s← s+ αx∆s (CPU)
8: Update diagonal D in KKT system (CPU / GPU)
9: Compute residuals r (CPU)

10: if ||r|| < µ then
11: if µ ≤ µtol then
12: Return solution
13: end if
14: µ← µ/10
15: end if
16: end for

elimination for efficiency reasons. Furthermore, it is common that our optimization
problems will include bound constraints on the variables (of the form a ≤ x ≤ b).
In the more general formulation (1), these are handled implicitly in the linear
constraints. For computational efficiency however, it is beneficial to separate the
rows of the constraint matrix A corresponding to such bound constraints. The
result of these reductions gives us a system to solve of the form(

Q −BT

B D

)(
∆x
∆λA

)
=

(
r1
r2

)
, (8)

where

Q = H + S−1
lx

Λlx + S−1
ux

Λux
, B =

(
A
−A

)
,

D =

(
Λ−1
lA

SlA

Λ−1
uA

SuA

)
, ∆λA =

(
∆λlA

∆λuA

)
.

S denotes diagonal matrices with the slack variables on the diagonal, and Λ
denotes diagonal matrices with the Lagrange multipliers on the diagonal. They
are subscripted based on the type of constraint they correspond to: lx and ux

for lower and upper bounds on the variables, respectively, and lA and uA for
lower and upper bounds on the linear constraints, respectively. A more detailed
derivation of the block reductions leading to the formulation above can be found
in [16].

To symmetrize system (8), we consider a doubly augmented formulation due
to Forsgren and Gill [7](

Q+ 2BTD−1B BT

B D

)(
∆x
∆λA

)
=

(
r1 + 2BTD−1r2

r2

)
. (9)
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A high-level algorithmic overview of our method is shown in Algorithm 1
(adapted from [16]). The doubly augmented matrix in (9) is positive definite when
Q is, which enables the use of a conjugate gradient (CG) solver. Furthermore,
the ill-conditioning of the system arises in part due to the poor scaling of the
diagonal block D, making Jacobi preconditioning a natural choice, which has the
advantage of being very cheap to apply.

The main part of the computation that we have ported to GPU is the solution
of the doubly augmented linear system (9) on line 2, while the remainder of the
algorithm is run on CPU. The data transfer required in each iteration is not
large, as we keep the doubly augmented KKT system on the GPU throughout
the optimization, only updating the diagonal D, and the diagonal term of the
Hessian block block each iteration. More concretely, the data transfer between
CPU and GPU in each iteration consists of:

– The residuals which form the basis of the RHS of (9)
– The solution (∆x,∆λA) from the PCG solver
– The diagonal matrix D
– The diagonal terms S−1

lx
Λlx + S−1

ux
Λux of the Hessian block.

4.1 GPU Acceleration

The most time-consuming part in the optimization algorithm is the preconditioned
CG solver used to solve the KKT system at each iteration, which makes it a
natural target for GPU acceleration. There are essentially three components to
this, computing the matrix-vector products with the KKT-matrix on the GPU,
the Jacobi preconditioner, and then general performance considerations for CG
on GPUs.

Doubly Augmented KKT Matrix-Vector Multiplications Multiplications
with the doubly augmented matrix are relatively straightforward to implement
efficiently on GPU, and we always work with the matrix in unassembled form by
computing the products with different sub-blocks of the matrix separately. In the
doubly augmented matrix, the Hessian H is stored on the GPU exclusively, as
are the diagonal block D and the diagonal terms in Q. The constraint matrix B
is stored on both CPU and GPU. Since the constraint matrix remains constant
throughout the optimization, the copy to GPU is done when the problem is
initialized and no further data transfer between CPU and GPU is needed for the
constraint matrix in the solver. We store the sub-blocks of the B matrix in CSR
format, and we also pre-compute and store their transposes. This enables us to
use transpose-free SpMV kernels for all of our sparse matrix-vector products,
which improves performance.

The C++ code for our solver is written to allow execution on both CPU
and GPU for the solver. As an example of design choices to accommodate
this, the class representing the doubly augmented matrix is templated on the
dense vector type used. This is to allow both CPU and GPU execution. For
the GPU accelerated case, we provide the template argument CudaDenseVector
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(representing a GPU dense vector implemented in CUDA) and for the CPU case,
we use the corresponding CPU class DenseVector. The matrix-free approach
enabled by the use of Krylov solvers is also seen in the code, as the multiplication
is done by accumulating results from each separate block and term of the matrix
separately. No fully assembled representation of the entire doubly augmented
matrix is ever required, we only store the components of the full matrix (e.g.
Hessian H and constraint matrix). The code makes extensive use of C++20’s
std::span, to extract views over contiguous blocks of arrays. This is especially
useful in our application, as the doubly augmented matrix is naturally divided
into blocks, and performing matrix-vector multiplications (or other operations)
using it naturally means needing to perform calculations on sub-sections of the
vector. std::span enables us to perform operations on chunks of the vector easily,
without the use of costly additional copies. Being essentially a thin wrapper
around a raw pointer and size, std::span is also usable for both CPU and GPU
arrays, which we use to simplify code and interfaces for code meant for both
CPU and GPU calculations.

Computing the Jacobi Preconditioner For the Jacobi preconditioner, one
needs to compute the diagonal elements of the KKT-matrix. For the bottom
right block, consisting of the D matrix, this is trivial, since the matrix is already
diagonal, so one can simply extract the elements directly. The top left block is
different, since it is not explicitly formed in the solver.

The computation of the diagonal of the Hessian is relatively straightforward,
and this calculation only needs to be performed once, since the Hessian does
not change throughout the optimization. For the remainder of the optimization,
we cache the pre-computed diagonal of the Hessian and provide that directly
whenever required.

For the diagonal of the 2ATD−1A term in the top left block, the situation is
more complicated. First, this term changes each IPM iteration, since the diagonal
matrix D does, and secondly, computing the diagonal in parallel on the GPU is
less straightforward. We address this by keeping an extra copy of the constraint
matrix on the CPU, which is used to compute diag(ATD−1A). This presents
some overhead in data transfer between CPU and GPU, but since the diagonal
only needs to be recomputed once per IPM iteration (of which there are typically
fewer than 100), this trade-off was found to be acceptable.

5 Experimental Setup

In the following we describe the experimental setup, in terms of the hardware
and software used as well as the source of the test problems.

5.1 Hardware and Software Environment

The following test systems were used to conduct the performance evaluations in
this work.
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– Bluedog is a local workstation equipped with an AMD Ryzen 9 7900X CPU,
and 64 GB of DDR5 RAM @ 5200 MT/s. The GPU is an Nvidia GeForce
RTX 4080 with 16 GB of GDDR6X RAM.

– RS_WKS is a local Windows workstation with RayStation version 2024A
installed. The system is equipped with an Intel Core i9-7940x CPU and 64
GBs of DDR4 RAM @ 2666 MT/s.

– NJ is a local server at KTH equipped with an AMD EPYC 7302p 16 core
CPU. The GPU is an Nvidia A100 with 40GB of HBM2 memory.

We evaluate the performance of our method in multiple ways. We measure
the impact of GPU acceleration by evaluating the performance improvement
compared to the CPU version of the solver. The CPU version of the solver is
capable of parallel execution through the use of multithreaded BLAS. We use
OpenBLAS 0.3.24 for the CPU version of the solver, with the default value used
for the number of threads. Our SpMV implementation on the CPU is parallelized
using OpenMP. These computational kernels (BLAS and SpMV) should occupy
the majority of computational time in the solver. The GPU version of the solver
utilizes the cuBLAS and cuSPARSE library heavily for dense and sparse linear
algebra kernels. We also analyze the performance of our solver on a range of
different GPUs, to see how the performance varies across GPUs for our problem
case. Finally, to give an idea of how the GPU accelerated solver may improve
solution times for radiation treatment planning in practice, we compare our
optimization solver to the one implemented in RayStation, which is a commercial
treatment planning system used in clinics around the world. RayStation’s QP
solver is capable of multi-threaded execution in many cases, but the degree of
parallelization varies substantially between cases.

5.2 Test Problems from Radiation Treatment Planning

Problem Vars. Lin. cons. Bound cons.
Proton H&N 77373 0 77373
Proton H&N (after spot filtering) 33531 0 33531
VMAT H&N 13425 68618 13425

Table 1: Dimensions of the optimization problems used in the performance
analysis in terms of number of variables, linear constraints and bound constraints.
The proton case is shown before and after spot filtering, which occurs after 100
SQP iterations.

The optimization problems we use are quadratic programming subproblems
exported directly from the RayStation SQP solver. These are the problems the
SQP method solves to find search directions in each iteration, and represent
the main computational burden. We consider two cases, one for cancer in the
head and neck region treated using protons, and one head and neck case treated
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using photons with a treatment technique known as Volumetric Modulated Arc
Therapy (VMAT) [18]. For the proton case, the SQP solver performs so-called
spot filtering after 100 SQP iterations, which reduces the size of the optimization
problem by eliminating variables that are close to zero. Spots, in this case, are
intensities of the proton beam in discrete points along the scanning path which
can be controlled to achieve the desired dose. Dimensions of the QP subproblems
for our test problems are shown in Table 1. The total number of SQP iterations
used were 200 and 33, for the proton and photon VMAT case, respectively. This
also corresponds to the number of QP subproblems for the different cases.

We expect the QP subproblems to become more expensive to solve in later
SQP iterations due to the quasi-Newton Hessian becoming larger for each iteration,
since each iteration adds two terms to the BFGS Hessian approximation, which
makes the (dense) matrix of update vectors two columns larger. Spot filtering
resets the quasi-Newton Hessian approximation, which is another important
factor in reducing computational cost after filtering.

5.3 Matrix dimensions and Computational Cost

The size of the matrices in each QP subproblem varies slightly from iteration
to iteration. The largest matrix components of the doubly augmented KKT
linear system are the quasi-Newton Hessian H = H0 + UWUT , and the linear
constraint matrix B. The remaining blocks and terms are diagonal matrices, and
thus comparatively cheap to perform calculations with. In the quasi-Newton
Hessian, H0 is a square diagonal matrix (corresponding to the initial guess for
the BFGS Hessian) with the dimension equal to the number of variables in the
optimization problem, which can be found in Table 1. W is a diagonal k × k
matrix, where k is the twice the SQP iteration that the current QP-subproblem
corresponds to (since two new rank one updates are added to the BFGS Hessian
each SQP iteration). Finally, U is a dense n× k matrix with the BFGS update
vectors as columns.

6 Results

This section presents our results from benchmarking the CPU and GPU perfor-
mance, as well as comparison with the RayStation solver on a set of realistic
problems.

6.1 GPU and CPU comparison

We begin by measuring the execution time of our solver on different GPUs and on
the CPU to see the impact of GPU acceleration. Figure 1 shows some results from
this comparison. We see that the GPU acceleration brings significant performance
benefits to our solver, as we would expect, with an approximately 6× speedup of
the total execution time when comparing the CPU baseline with the RTX4080
results for the proton head and neck case and approximately 5.1× for the VMAT
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(a) Head and Neck proton arc problem.
Spot filtering after 100 SQP iterations,
where some variables that are close to
zero are pruned from the problem.

0 5 10 15 20 25 30
SQP Iteration

0

2

4

6

8

10

12

14

Ti
m

e 
(s

)

Total CPU: 301.829 s
Total A100: 104.413 s
Total RTX4080: 58.696 s

CPU
A100
RTX4080
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Fig. 1: Comparison of performance for our solver on different GPUs and on the
CPU. The CPU and RTX4080 benchmarks were run on Bluedog. The A100
benchmark was performed on NJ.

head and neck case. The execution time of early SQP iteration for the VMAT case
shows relatively large oscillations, which seem to be due to numerical differences
between the problems causing slower convergence speed (i.e. more IPM or and/or
Krylov iterations). The reason why the QP-subproblems alternate between being
easier and more difficult is not fully understood. Interestingly, the solver performs
better on the RTX4080 system (Bluedog) than on the A100 system (NJ), despite
the peak throughput in both memory bandwidth and floating point operations
being higher for the A100. Further profiling and analysis suggests that relatively
small kernel sizes and larger latency for the A100 may be a large contributing
factor to the performance deficit. Merging multiple smaller computational kernels
into larger ones (and consequently relying less on cuBLAS for smaller kernels)
may alleviate this issue [1]. Further performance engineering in that direction is
left for future work.

6.2 Performance Comparison on Realistic Cases

Figure 2 shows the solution time comparison between our solver running on Blue-
dog (with the Nvidia RTX 4080 GPU) and RayStation running on RS_WKS.
The times shown are solution times for QP subproblems in the SQP solver.
The runs using our GPU accelerated optimizer are performed on exported QP
subproblems from RayStation. The timing for the RayStation solver is isolated
to only include the solution of the QP subproblems, in order to make a fair
comparison. Other work in each SQP iteration is not included in the RaySta-
tion solution times. In total, we see that our optimization solver outperforms
RayStation’s optimizer by 4.4× for the proton problem and roughly 1.4× for the
photon VMAT problem. For the proton case, the dashed vertical line in the plot
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(a) Head and Neck proton arc problem.
Spot filtering occurs after 100 SQP it-
erations, marked with a dashed vertical
line, where some variables that are close
to zero are pruned from the problem.
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(b) VMAT Head and Neck problem.

Fig. 2: Comparisons of solution times for QP subproblems between RayStation’s
QP solver and our GPU accelerated solver. Only solution times for QP subprob-
lems is measured, and does not include updating the quasi-Newton Hessian or
other operations. Total solution time (on all subproblems) for the RayStation
optimizer and our solver is shown in the text box.

shows the point where spot filtering occurs, which is an intermediate step in the
SQP optimization where variables that are close to zero are pruned from the
problem. The reason, we believe, for the relatively larger improvement for the
proton case is twofold. First, the proton case is a bound constrained problem,
and tended to require fewer CG iteration in each IPM iteration to converge.
Secondly, the main computations in the VMAT case are sparse matrix-vector
products, which may relatively speaking benefit less from GPU porting compared
to the dense matrix-vector operations for the proton case. While a completely
fair comparison between a CPU and GPU implementation is challenging — and
is made more complicated by the fact that the algorithms used also differ (direct
versus iterative linear solvers) — we emphasize that the RayStation optimization
algorithm is originally developed for CPU only, and may not benefit from direct
porting to GPU at all. The comparison above is rather intended to give an idea
of the speedup obtainable in practice by shifting to the GPU based optimization
solver instead.

7 Conclusions and Future Work

In this paper, we presented our GPU accelerated interior point method imple-
mentation which is tailored for solving optimization problems from treatment
planning for radiation therapy. The move to GPU was enabled by a shift from
using direct linear solvers to iterative linear solvers internally, based on the
method proposed in [16]. Much research in the optimization literature has been
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conducted on the use of iterative linear solvers for IPMs, however, most optimiza-
tion packages still use direct linear solvers. We showed in this paper that a GPU
accelerated implementation based on iterative linear algebra can outperform
existing approaches on real problems from radiation therapy optimization.

Some aspects of the IPM implementation used in this work are still rather
crude and could be further investigated and improved. An example is the rather
conservative method to update the barrier parameter µ, where we decrease its
value only when the current barrier subproblem is solved somewhat accurately.
Further work on improving the selection of barrier parameter values, which
should likely take into account the inexactness of the search direction due to the
iterative linear solver [2], and similar may push the performance even further.
Additionally, our comparison of performance between GPU models suggests that
there is still room for further performance optimizations in the implementation.
For example, kernel launch overhead for small computational kernels could be
addressed by merging smaller computational kernels into larger ones, thus relying
less on cuBLAS for computations. However, it is encouraging that even with
a relatively simple IPM implementation, the use of iterative linear solvers and
GPUs is able to improve the overall time-to-solution compared to the clinically
used solver in RayStation.

Overall, our GPU accelerated solver was able to improve total optimization
times by 1.4× and 4.4× respectively, when compared to an optimization solver
from a clinically used treatment planning system on realistic problems. Further-
more, enabling the use of more powerful computational hardware may provide
future proofing in a field where demands for computational efficiency are ever
increasing.
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