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Abstract. The paper presents the fast parametric integral equations
system (FPIES) for domain solutions of potential 2D boundary value
problems (BVPs). The FPIES has been successfully applied in modelling
2D potential BVPs and finding solutions on the boundary. The combi-
nation of the modified fast multipole technique with the PIES reduced
the numerical computation time and RAM usage in the fast PIES. Sim-
ilar techniques are used to find solutions in the domain. The method is
demonstrated with the solution in the domain of two BVPs.
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1 Introduction

The fast parametric integral equations system (FPIES) [1, 2] is a robust numeri-
cal tool for solving boundary value problems (BVPs). The method is an extension
of the conventional PIES [3], allowing the solution of large-scale BVPs on a stan-
dard PC. The PIES does not require a mesh. Therefore, it can be considered as
a mesh-free method. However, unlike other mesh-free methods (such as particle
methods [4], Galerkin methods [5] or cloud methods [6]), which are mainly used
in simulations related to, for example, plastic materials, fluid dynamics or crack
simulations, the application of the PIES is comparable to widely used numerical
element methods such as the FEM [7-9] and the BEM [10-12] or the still being
developed the FEM-BEM hybrids [13], isogeometric analysis (IgA) [14] or the
Virtual Element Method (VEM) [15].

The FPIES, as the successor of the PIES, offers the same remarkable advan-
tages compared to the FEM and the BEM. At first, the lack of discretization
of the problem’s boundary and domain is due to the direct inclusion of para-
metric functions describing the boundary of the problem into the mathematical
formalism of the FPIES. These functions are widely used in computer graphics
and include, among others, Bézier and B-spline curves, Coons and Bézier sur-
face patches. Therefore, a small number of control points is required to define the
shape of the boundary in the FPIES. In addition, the use of parametric functions
reduces the dimensionality of a solved problem by one. At last, despite the high
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accuracy of the solutions obtained by the FPIES, it is possible to improve the
accuracy with only a slight modification of the input data (precisely, the number
of collocation points), unlike the BEM and the FEM, where the discretization
process has to be repeated.

Previous studies on the conventional PIES have focused on various aspects
of the method, including the distribution of collocation points [16], the use of
NURBS curves [17], or application to problems described by other PDEs, such
as Navier-Lame equations [18]. PIES use for nonlinear problems is also described
in [19]. All these studies have confirmed its higher accuracy compared to BEM
or FEM. However, time-consuming calculations and RAM utilization increase
with the problem size’s square. Therefore, similarly to the BEM, to compute
the PIES matrices, we need O(N?) operations and another O(N?3) operations
to solve the obtained system using direct solvers (where N - the number of
equations of algebraic equations system).

On the other hand, the FPIES uses the fast multipole method (FMM) [20-
22], which eliminates the main disadvantage of the PIES, namely the generation
of dense non-symmetric coefficient matrices and the Gaussian elimination used to
solve the final system of algebraic equations. Thanks to the FMM and modified
binary tree [23], the system of algebraic equations A - = b in the IFPIES is
generated implicitly and solved by iterative GMRES solver [24]. It means that
only the result of the multiplication of the matrix A by the vector of unknowns
x is stored in memory, in contrast to the conventional PIES, which has to store
the dense matrix A and the vector b in RAM. The application of the FMM
allows for a significant reduction in computational time to order O(NlogN) and
a decrease in utilization of RAM to O(N). Previous studies on the FPIES have
focused on efficient and accurate solutions to the problems described by single-
and multi-connected domains [2, 25], as well as some analysis on key parameters
[26,27]. Also, a comparison to a competing method such as fast multipole BEM
(FMBEM) is described in [28].

So far, the authors of this paper have used the FPIES to find solutions of
BVPs on the boundary. Solutions in the domain can be obtained using the
technique applied in the conventional PIES [3]. The main goal of this paper is to
present the FPIES applied to find numerical solutions for 2D potential BVPs in
the domain using the fast multipole technique. The efficiency and accuracy of the
FPIES are tested on the potential problems described by linear and curvilinear
boundary segments.

2 The fast parametric integral equations system

The FPIES for 2D potential problems [2] was obtained as the result of modifica-
tion of the conventional PIES [3]. The way of obtaining the FPIES included the
modification of the PIES kernels (to allow for the Taylor series approximation
used by the FMM) and the modification of the tree used by the FMM (to include
the way of defining the boundary in the PIES) is clearly presented in, among
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others, [23] and [25]. The following formula presents the final form of the FPIES
for solving BVPs on the boundary [2]:
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where moments My (7)) and Ny (7)) are computed twice only and have the form:
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Ny is the number of terms in Taylor series, J;(s) is the Jacobian, s;_; correspond
to the beginning of j-th segment, while s, to its end, u;(s) and p;(s) are boundary
functions (3), n(®) is the complex notation of normal vector to the curve, which
creates segment j, R is the real part of complex number and superscript (c)
means the complex variable.

Expressions 7,7 are the complex version of parametric functions describing
the boundary:

7= 500 =5VE +isP @), 7 =56) = 5" () +i57 ()

where S,(:)(sn) (i={1,2}, k={4,1} sn = {5, s}) are parametric curves or lines,
which define particular segments of the boundary of the problem (I or j). The
points 7/ and 7/, are obtained during tracing the tree structure.

Boundary functions u;(s) and p;(s) in (1) are approximated by the following

series:
N N
k) (k k) (k
)= uLP(s), pils) =3 pPLH(s), (3)
k=0 k=0

where u( ) and p( ) are unknown or given values of boundary functions in defined
points of the segment J, N - is the number of terms in approximating series (3),

which approximated boundary functions on the segment j and Lg-k) (s) - the base
functions (Lagrange polynomials) on segment j.
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3 Numerical solutions in the domain

Solving the FPIES (1) results in solutions on the boundary only. To find solutions
in the domain, a modification of the integral identity from the conventional PIES
is required. The original identity uses the solutions of the PIES, and it has the
following form [3]:

Sj

u(zx) = Z / {U;‘(a:,s)pj(s) - Pf(x,s)uj(s)}Jj(s)ds. (4)
I=ts
Integrands U *(z,s) and ﬁ; (z, s) are presented in the following form:
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where r; = z(1) —Sj(l)(s) and ry = x(2)—5§2)(s), (1) and £(?) are the coordinates
of the solution point in the domain, n(*) and n(?) are components of vector
normal to the curve. The shape of the boundary is included in (5) by 1 and 7o
which contain parametric curves.

At first, we should write data in complex number system:
= SJ(.l)(s) + z’SJ(.z)(s), 2@ =2 4i2® 0 0 (s5) = nM(s) 4 in@(s).

Then
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Therefore, the complex integrands U;(c)(at(c), 7) and P;(C)(m(c), 7) have the
following form:
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where (2(®) — 7)* is a complex conjugate to (z(¢) — 7).

Then, similarly to the FPIES, we can use the same fast multipole tree and
Taylor series. Therefore, moments My (7.) and Ni(7.) are calculated previously.
Substituting kernels U +(©) (x(c) T) and P*(C) (:L‘(C)ﬂ') into (4), we obtain the
following expression:
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To find solutions in the domain, only moments in the leaves are used.

o - solution point in the domain

Fig. 1. Solutions in the domain

To reduce the number of computations, we also expanded equation (7) using
Taylor series about any point z. € {Zc1,Zc2, ..., Zcx } close to the points of solu-
tions (presented in Fig.1). Therefore, the integral identity in the FPIES has the
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following form:
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where Ny(7.) = 0.

4 Numerical results

All tests of the presented algorithm are performed on PC based on Intel Core
15-4590S with 32 GB RAM. The program is compiled by g++ 7.5.0 (with -O2
optimization) on 64-bit Ubuntu Linux operation system (kernel 6.8.0). conven-
tional PIES was a bit modified and uses iterative solver GMRES to find the
solution of the system of algebraic equations.

4.1 Current flow through the square plate

The first example is the current flow through the square plate presented in Fig. 2.
Boundary conditions presented in the figure mean potential u (red electrodes)
and flux p on the rest of the boundary.

=n

01

Fig. 2. The example of current flow through the square plate

The research focused on computation speed of solutions in the domain. The
FPIES approximation of the modified PIES kernels uses 20 terms in the Taylor
series, and the GMRES tolerance is 10~®. The number of collocation points is
the same for all segments (from 2 to 8). Therefore, we should solve systems from
2 040 to 8 160 algebraic equations. The same number of terms in Taylor series
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was also used to approximate the integral identity. The number of groups of
solution points (points z.) was equal to 289, while the number of all solution
points in the domain was equal to 65 025 (uniformly distributed over the entire
domain).

Tab. 1 presents the obtained time of solving the problem (CPU time - solv-
ing), the computation of solutions in the domain (CPU time - domain) and the
RAM usage of the applications.

Table 1. CPU time and RAM utilization between the fast and conventional PIES

Number of| CPU time - solving [s] | CPU time - domain [s] | RAM utilization [MB|
col. pts. |FPIES PIES FPIES PIES FPIES PIES
2 0.86 7.79 9.82 270.89 6.73 70.14
3 1.61 16.42 13.26 369.18 8.47 148
4 2.88 30.92 19.43 559.84 10.85 260
5 4.42 51.12 24.44 733.08 13.61 403
6 6.94 78.12 31.65 926.5 16.89 578
7 8.80 112.66 35.59 1174.21 20.68 786
8 12.40 154.06 44.14 1 462.57 24.73 1024

As can be seen from Tab. 1, the conventional PIES is much slower than the
FPIES. For the highest number of equations (8 collocation points), the FPIES
required less than 1 minute and 24.73 MB of RAM to solve the problem and
compute solutions in the domain, while the conventional PIES required almost
27 minutes and 1024 MB of RAM. Fig. 3 presents the overview of the CPU time
and RAM utilization between both applications.

We also calculated the mean square error (MSE) of the domain solutions
between the FPIES and the conventional PIES to show the accuracy of the
method.

Table 2. MSE of domain solutions between the fast and conventional PIES

Number of collocation points
2 3 4 5 6 7 ]
1.97-10"12.18 - 10~ ™[2.18 - 10~ 1[2.12 - 10~ [1.78 - 10~ T*[2.17 - 10~ 11[1.95 - 10~ 1T

As can be seen from Tab. 2, solutions in the domain in the FPIES are as
accurate as in the conventional PIES. The MSE for over 65 000 solution points
does not exceed 3-107!!. A graphical representation of solutions in the domain
in the form of potential distribution on the plate is presented in Fig. 4.

4.2 The perforated plate

The second example is the perforated plate (square plate with many holes) shown
in Fig. 5. The boundary conditions are given in this figure.
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Fig. 3. CPU time and RAM utilization between the PIES and conventional PTES

As in the first example, the research focused on the computation speed of
solutions in the domain. The same number of terms in the Taylor series (Np =
20) is used in the FPIES kernels, and the GMRES tolerance is also equal to 1078,
The number of collocation points is the same on all segments (from 2 to 8). We
should solve systems from 4 160 to 16 640 algebraic equations in this example.
The same number of terms in Taylor series was also used to approximate the
integral identity. The number of groups of solution points (points x.) was equal
to 1 600, while the number of all solution points in the domain was close to 300
000 (uniformly distributed over the whole domain).

This research also confirms that the conventional PIES is much slower than
the FPIES. As can be seen from Tab. 3, for the highest number of equations
(8 collocation points), the FPIES required less than 4% minutes and 165 MB
of RAM to solve the problem and compute solutions in the domain, while the
conventional PIES used over 4% hours and 4 247 MB of RAM. Fig. 6 gives an
overview of the CPU time and RAM usage between the two applications.
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Fig. 4. Potential distribution on the plate
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Fig. 5. The example of perforated plate

The highest MSE value of domain solutions between the FPIES and conven-
tional PIES is less than 5.0 - 1078, Therefore, the accuracy of the FPIES method
is as accurate as the conventional PIES.
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Table 3. CPU time and RAM utilization between the fast and conventional PIES

Number of| CPU time - solving [s] | CPU time - domain [s| | RAM utilization [MB|
col. pts. |FPIES PIES FPIES PIES FPIES PIES
2 10.01 31.76 35.18 2 855.86 19.01 272
3 18.59 75.34 52.42 4167.13 32.77 604
4 30.79 142.77 73.78 6 380.91 50.76 1 068
5 47.28 226.65 94.62 8 295.64 73.72 1 665
6 68.11 343.78 116.39 10 481.7 98 2 393
7 92.80 498.10 138.73 13 025.4 129 3254
8 121.85 679.37 161.31 16 566.5 165 4 247
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Fig. 6. CPU time and RAM utilization between the PIES and conventional PIES

We also compared the FPIES with the FMBEM [28]. It has been proved pre-
viously (among others in [3]) that the application of the BEM requires meshes
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with a large number of elements to obtain accuracy similar to the PIES. There-
fore, the boundary in the FMBEM is composed of 10 400 linear elements.

Solutions are compared with ones obtained from 4 collocation points FPIES.
The GMRES tolerance (convergence criterion) equals 1075, and the number of
terms in the Taylor series is set to 20, similar to previous examples. The accuracy
of the solutions is calculated as the mean square error (MSE) between the results
of the FPIES and the fast multipole BEM.

Table 4. Comparison of CPU time and RAM utilization between the FMBEM and
the fast PIES

CPU time [s] |RAM utilization [MB]|No. of GMRES it. MSE
FPIES [FMBEM| FPIES | FMBEM | FPIES |FMBEM
104.57 | 217.38 | 50.76 121 17 7 2.3904 - 107°

As can be seen from Table 4, both CPU time and RAM utilization are smaller
in the FPIES. The MSE between the FPIES and the FMBEM is not as small as
in the previous examples.

5 Conclusions

The paper presents the FPIES for domain solutions of potential 2D BVPs. The
FPIES has previously been successfully applied to modelling 2D potential BVPs
and finding solutions on the boundary. The fast multipole technique applied to
the integral identity significantly reduces the CPU time for computing domain
solutions. Presented examples confirm the high efficiency of the FPIES in solving
complex engineering problems on a standard PC in a reasonable time. However,
the real power of the FPIES is related to the size of the problems to be solved.
The conventional PIES to solve the problems with a system of 16 640 equations
(perforated plate, 8 collocation points) uses almost 4.25 GB RAM in 4% h, while
the FPIES requires only 165 MB RAM in 4% min.

Obtained results strongly suggest that this line of research should be contin-
ued. The authors intend to extend the FPIES algorithm to problems modelled
by other differential equations.
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