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Abstract. Hailstorms are intense, localized weather phenomena that
can severely impact agriculture, infrastructure, and property, making
precise forecasting essential for risk management. The Weather Research
and Forecasting (WRF) model is widely used for numerical weather pre-
diction, offering numerous physical parameterization options to represent
atmospheric processes. However, due to the large number of possible con-
figurations, identifying the most suitable configuration is a challenge.
This research uses a genetic algorithm (GA) to systematically refine
WRF physics schemes for hail prediction in Central Europe, specifi-
cally for the hail events of June 2022. Within this framework, WRF
configurations are treated as individuals in a population that evolves
through selection, crossover, and mutation over multiple iterations. Fit-
ness is evaluated using the F2 score. This methodology allows to evaluate
more than 2.4 million possible setups improving the WRF model’s capac-
ity to accurately represent hailstorms. This strategy provides a robust
framework for testing a wide range of setups, proving its value in refining
parameterizations to better forecast impactful weather phenomena.

Keywords: Hail Modeling · Genetic Algorithm · Numerical Weather
Prediction (NWP)

1 Introduction

Hail is a significant weather phenomenon that poses a severe risk to agriculture,
infrastructure, and property worldwide. It is a form of precipitation consisting
of balls or irregular ice particles that develop within convective clouds under
strong upward air currents [2]. Although relatively rare, hailstorms can cause
extensive damage due to their localized and intense nature, resulting in billions
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of US dollars (USD) in damages annually [24], making accurate prediction es-
sential for risk mitigation and disaster preparedness. Hail formation is driven
by extreme atmospheric conditions, such as strong updrafts, supercooled water,
and freezing-level dynamics. These processes involve complex microphysical in-
teractions, which make accurately predicting hail challenging using traditional
numerical weather prediction (NWP) models. Accurate hail forecasting requires
high-resolution simulations using advanced models like the Weather Research
and Forecasting (WRF) model, which includes multiple physics parameteriza-
tions for simulating atmospheric processes such as microphysics, convection, ra-
diation, and planetary boundary layer (PBL) interactions. Choosing the optimal
combination of these schemes is critical but challenging due to the large number
of possible configurations.

Research on the WRF model has highlighted the importance of optimizing
physical parameterization to enhance its ability to accurately simulate severe
weather events, including hailstorms. Previous studies have demonstrated the
sensitivity of WRF outputs to different parameterization choices. For exam-
ple, [29] showed that the local rainfall intensity during Typhoon Fitow was highly
sensitive to the microphysics schemes chosen, particularly regarding graupel and
hail parameterizations. Similarly, [26] highlighted the impact of different combi-
nations of microphysics, cumulus, and PBL schemes on the forecasting of trop-
ical cyclones, affecting their track, intensity, and rainfall. In another study [5],
the authors examined the impact of land surface physics on the simulation of
horizontal convective rolls in a tropical coastal environment, affecting turbulent
structures and the distribution of heat. Furthermore, in [25], it was found that
the choice of microphysics greatly affected updraft characteristics during severe
thunderstorms in Southeast India, while [20] showed that the model performance
was more sensitive to selection of microphysics schemes than to PBL options.
Despite these insights, traditional sensitivity tests are limited to a subset of
physics parameterization options, providing valuable but incomplete insights, as
they do not explore all possible configurations and their interactions, which are
crucial for accurately simulating complex phenomena like hail.

To address this challenge, we have applied evolutionary computation, in par-
ticular, a Genetic Algorithm (GA) has been used to efficiently explore a wider
range of WRF physics schemes and identify optimal configurations to simulate
hail events. Unlike traditional methods that test fixed or limited sets of config-
urations, GA applies evolutionary principles to iteratively refine WRF setups
across multiple generations. GA significantly expands the solution space and
systematically improves the simulation accuracy through continuous improve-
ments [23]. In the proposed GA, the WRF configuration options are encoded as
“genes” and each “individual” represents a specific configuration of the model.
While GAs have successfully optimized WRF parameterizations for applications
such as wind and solar energy prediction [28] and sea breeze prediction [31], their
use in hail event simulations remains relatively unexplored.

This paper is organized as follows. In Section 2, the models and observational
data used are described; Section 3 exposes the methodology for calibrating the
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physics parametrizations of WRF model applying the Genetic Algorithm; Sec-
tion 4 discusses the results, and Section 5 summarizes the main conclusions and
future work.

2 Models and Data

2.1 Observational Data and Study Case

In this study, we have used the European Severe Weather Database (ESWD),
operated by the European Severe Storms Laboratory (ESSL) [11]. This database
provides detailed information on severe storm events in Europe, including thun-
derstorms, hail, and tornadoes. The major hailstorms of 2022 in Europe were
marked by several record-breaking events, including an overall total of 8,224 large
hail reports: 1,334 very large hail reports (≥ 5 cm), and 18 giant hail reports (≥
10 cm) [12]. These storms caused significant damage and economic losses. The
storms from 3 June to 5 June affected France, Germany, Belgium and parts of
Italy, with hailstones up to 11 cm in diameter [12]. In particular, on June 4th,
it caused widespread hail damage across central France. The estimated insured
losses from these storms in France reached EUR 650-850 million, mainly due to
hail, although flooding and wind also contributed [13]. This work is focused on
this particular extreme event, so, the area of interest is Central Europe. Since
the WRF model is a regional model, it is essential to define the simulation area,
which is known as the domain. To achieve high-resolution outputs, a nesting pro-
cess is required, where a high-resolution inner domain is placed within a lower-
resolution outer domain. Figure 1 shows the two domains used for the studied
area, where D01 corresponds to domain 1 with a 9 km low-resolution domain,
whereas D02 (domain 2) is an inner-nested domain with a 3 km resolution.

2.2 The WRF-HAILCAST Model

The Weather Research and Forecasting (WRF) model is a state of the art
mesoscale numerical weather prediction system. In this work, we have used the
WRF-HAILCAST model, which couples WRF with the HAILCAST module [27,
1] providing a framework to simulate hailstone growth and trajectory within real-
istic three-dimensional atmospheric conditions rather than idealized profiles [20].
For simplicity, we will refer to it as the WRF model throughout the rest of this
paper. Weather prediction involves physical processes such as evaporation, con-
densation, friction, radiation, and turbulent transfers of moisture, which cannot
be directly resolved numerically. To emulate these processes, numerical weather
prediction models like WRF use parametrizations that interact during simula-
tions to represent atmospheric dynamics and thermodynamics. These physics
schemes included in the model are summarized in Table 1.
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Fig. 1. WRF model domains. D01 9 km at resolution and D02 at 3 km resolution.
Shading indicates topography height.

Table 1. Physics schemes included in the WRF model [21]

Physic schemes WRF
Parameterization

Description

Microphysics (MP) mp_physics Models cloud and precipitation processes,
including rain, snow, ice, and graupel for-
mation.

Cumulus (CU) cu_physics Represents the effects of convective clouds
that are too small to be resolved by the
model grid.

Longwave radiation
(LW)

ra_lw_physics Models the radiation emissions from atmo-
spheric layers and surface emissivity.

Shortwave radiation
(SW)

ra_sw_physics Models solar radiation fluxes for both clear
and cloudy conditions.

Planetary Boundary
Layer (PBL)

bl_pbl_physics Handles surface fluxes distribution and
vertical mixing caused by boundary layer
turbulence.

Surface layer (SL) sf_sfclay_physics Describes the exchange of energy and mois-
ture between the surface and the atmo-
sphere.

Land Surface Model
(LSM)

sf_surface_physics Models soil temperature, moisture, and
snow water equivalent, influencing surface
energy, and water fluxes.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97629-2_8

https://dx.doi.org/10.1007/978-3-031-97629-2_8
https://dx.doi.org/10.1007/978-3-031-97629-2_8


Assessing Physics Parameterizations using Evolutionary Computation 5

For this study, we have selected a subset of the available schemes based on
documented incompatibilities in the WRF User’s Guide [21]. These schemes
include: 27 microphysics schemes, 12 cumulus schemes, 6 longwave radiation
schemes, 7 shortwave radiation schemes, 10 boundary layer schemes, 3 surface
layer schemes, and 6 land surface model schemes, resulting in a total of 2,449,440
possible combinations. Although the User’s Guide provides detailed information
about many known incompatibilities, some scheme combinations may still be
incompatible but are not documented. Known incompatibilities are excluded
from the initial population, as some of them are only suited for idealized tests
or specific WRF compilation settings.

3 Methodology

Our methodology utilizes a GA to select a WRF model configuration, focusing
on the physics schemes, to effectively simulate hail events. A Genetic Algorithm
(GA) is a metaheuristic optimization method inspired by the principles of nat-
ural evolution [8]. This kind of optimization algorithm is well-suited for solving
complex problems with large solution spaces by iteratively refining candidate
solutions based on their performance. In this study, a GA is used to search for
the WRF parameterization configuration that best reproduces the hail events in
the study case. Each candidate solution, called individual, represents a unique
combination of the seven WRF physics schemes listed in Table 1, which act as
the genes of the individual (Figure 2).

Fig. 2. Schematic representation of an individual, where each physics scheme act as
“gene”. Here MP, CU, LW, SW, PBL, LS, and LSM refer to microphysics, cumulus, long-
wave radiation, shortwave radiation, Planetary Boundary Layer, Land Surface Model,
and Surface physics schemes, respectively

A set of individuals (candidate solution) defines a population. The GA evolves an
initial population through genetic operators (selection, crossover and mutation)
to identify the individual that most accurately simulates the hail events, based
on a fitness score. More precisely, the GA starts by generating a random initial
population of individuals. For each individual, the underlying WRF model is
executed and the resulting output is compared to the observed data by evaluating
a certain fitness function, which quantifies how well each individual’s simulation
matches the observed event. Based on these fitness scores, the next generation
of individuals is created using the following operators:

– Elitism: The best-performing individuals from the current generation are
carried over directly to the next generation without any changes. This helps
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preserve the most successful solutions. Elitism is implemented by ranking
individuals based on their fitness scores and retaining a fixed percentage of
the top performers, determined by the elitism rate. In this work, 6% of the
individuals have been retained as elite.

– Selection: Individuals are chosen for reproduction (mating population) using
a linear ranking selection method. First, the population is ranked by fitness,
and selection probabilities are assigned according to each individual’s rank.
High-ranked individuals have a greater probability of being selected for re-
production.

– Crossover : New individuals (offspring) are generated by mixing the genes of
selected parents. Each gene of the offspring is randomly inherited from one
of the parents. The crossover process is governed by a predefined crossover
rate. The crossover probability in this work is set to 0.75.

– Mutation: Mutation adds randomness by changing some of the genes in an
individual. According to the mutation rate, a subset of genes is randomly
selected, and each chosen gene is replaced with a new value. In this work we
have set up the mutation probability for each gene at 0.1.

These steps are iterated over n generations. After each iteration, the pop-
ulation is evaluated and the best individuals are carried forward. The process
continues until either convergence is achieved or a maximum number of gener-
ations is reached. Convergence is determined by analyzing the fitness scores of
previous generations. If the difference between the maximum fitness scores of
consecutive generations is less than a specified threshold (0.001 in this case), it
indicates that the algorithm is no longer making significant improvements. When
this occurs on a set number of past generations, the algorithm is considered to
have converged. If convergence does not occur before reaching the maximum
number of generations, the process will stop regardless. Table 2 summarizes the
GA configuration parameters and Figure 3 illustrates this entire GA process.

Table 2. Parameters used for the Genetic Algorithm

Parameter

Maximum No of generations 35
Population size 100
Elite percentage 6%
Crossover probability 0.75
Mutation probability 0.1
Convergence threshold 0.001

3.1 Fitness Evaluation
Validating hail predictions is challenging because hail events are highly localized
events, and there is a limited availability of observational data. While observa-
tional networks are essential for validation, they often fail to capture localized
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Fig. 3. Schematic illustration of the GA framework steps

hail occurrences, resulting in an over-representation of non-events. This sam-
pling bias creates a significant class imbalance, with non-hail cases dominat-
ing the dataset. Furthermore, the rarity of hail and positional uncertainties in
both forecasts and observations further complicate the validation, making tra-
ditional methods less effective. The choice of a fitness function is particularly
important, as different functions can yield significantly different results, which
directly influences the evaluation of hail prediction performance [7]. To evaluate
each individual, the hail map is analyzed at grid cell level, where the WRF model
indicates the presence or absence of hail. This assessment is a true-false event
and is typically represented in a contingency table (see Table 3).

Table 3. Binary contingency table for whether or not hail is predicted.

Observed

Yes No

P
re

d
ic

te
d Yes Hits False Alarms

No Missed Correct Negatives

The comparison between the simulated and the real hail event presents four
possible situations:

– Hits (H): hail both observed and predicted.
– False Alarms (FA): hail predicted but not observed.
– Missed (M): hail observed but not predicted.
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– Correct Negatives (CN): hail neither observed nor predicted.

As previously mentioned, the class imbalance in this problem poses a chal-
lenge for standard evaluation metrics, such as POD and FAR [4], which can be
dominated by correct negatives. When a metric is influenced by non-hail events,
it may produce misleadingly high scores even if it fails to detect hail. To mitigate
this issue, we use the F2 score, a member of the F-beta family, which ignores
correct negatives and emphasizes the detection of both observed and simulated
hail events (Equation 1).

F2 =
(1 + 22) · H

(1 + 22) · H + 4 · M + FA
(1)

This metric gives more weight to recall, making the metric more sensitive to false
negatives, that is, we prioritize the identification of hail events, even if it leads
to an increase in false alarms. This aligns with our main objective of minimizing
missed detection, that is, missing actual hail events. Missing a hail event can
have serious consequences, including missed warnings, insufficient preparation,
and potential damage. Therefore, we prioritize ensuring that the model identifies
as many hail events as possible, even if it occasionally predicts hail where it did
not occur.

High-resolution weather forecasts often struggle to precisely match observed
small-scale events in space, time, or intensity. These discrepancies arise due to
the natural variability of the phenomena and differences between model predic-
tions and observational data. For example, small differences in storm location
may not indicate a significant forecast error but can lead to poor performance
metrics when comparing the model output directly with observations at individ-
ual grid points. To address this issue, we have applied a convolutional filter that
smooths the comparison between forecasts and observations, preventing small
spatial misalignment from overly penalizing the model’s performance. To do
that, first, we upscale the point-based observational data to match the model’s
3 km grid resolution, ensuring that both datasets are comparable. Once we have
both maps, the observations and the predictions, at the same resolution (3 km)
we overlap them to obtain the cells corresponding to hits, misses, and false
alarms. These cells will be assigned a weight of 1 when considered to evaluate
the F2 score (Equation 1). Figure 4 illustrates this using a 6 × 6 grid map, where
blue cells represent predicted hail events (False Alarms), yellow cells represent
observations (Misses), and green cells highlight exact matches (Hits). The map
on the left depicts this direct overlapped map. In this map, there is only one
green cell corresponding to an exact hit, then, this hit will be weighted by 1 as
well as the yellow and blue cells, which correspond to misses and false alarms,
respectively.

Furthermore, to mitigate the impact of small spatial mismatches, the near-
hit concept is introduced. Then, for each cell corresponding to a false alarm or
a miss, the Moore neighborhood is considered (purple squares in Figure 4). The
Moore neighborhood is the set of cells orthogonally or diagonally adjacent to a
given cell map [32].
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To account for spatial mismatches, we classify a false alarm (FA) or miss
(M) as a near-hit if its Moore neighborhood contains: (1) if the FAs Moore
neighbourhood contains any observed event (Figure 4(d)), or if the Ms Moore
neighbourhood contains any predicted event (Figure 4(c)). Such cases are treated
as near-hits and assigned a reduced weight of 0.5 in the F2-score calculation
(Equation 1). Cases without neighbouring real events or predicted ones maintain
their original classification as FAs or Ms with full weight (1.0), as illustrated in
Figures 4(a-b).

Fig. 4. Fitness evaluation using a 6 × 6 grid at 3 km resolution. Green cells are exact
hits, blue cells represent WRF-predicted hail events (false alarms) and yellow cells
correspond to observations (misses). Vertically striped cells are near-hits.

This approach mitigates the impact of small spatial mismatches, ensuring that
they are not overly penalized as false alarms or misses. By incorporating near-
hits, the validation process emphasizes the model’s ability to capture the event’s
general location. This reduces false alarms and ensures that the model accurately
predicts both the occurrence and the general location of events, even with minor
spatial deviations. By accounting for spatial uncertainty, this validation method
offers a fairer and more robust evaluation of high-resolution forecasts, improving
their reliability in assessing hail prediction performance.

4 Experimental Results

All WRF simulations described in this section were executed on the MareNos-
trum 5 General Purpose Partition (GPP) supercomputer [3]. MareNostrum 5
GPP consists of 6,408 nodes powered by Intel Sapphire Rapids processors, each
configured with two 8480+ CPUs running at 2GHz, providing 112 cores per node.
Each standard node includes 256GB of DDR5 memory, with 216 nodes upgraded
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to 1TB of memory and 960GB of NVMe storage for high-speed data access. The
system features NDR200 interconnects, with each link shared between two nodes,
delivering 100Gb/s bandwidth per node. Additionally, 72 high-bandwidth mem-
ory (HBM) nodes use Intel Sapphire Rapids 03H-LC processors, each with 112
cores at 1.9GHz and 128GB of HBM memory, offering an impressive 2TB/s
memory bandwidth per node. The entire machine achieves a peak performance
of 45.9 PFlops and operates on a fat-tree network topology, ensuring high-speed
communication and scalability.

Our executions have been carried out on 100 nodes per generation, and a
runtime limit of three hours per individual is enforced. This setup allows for
the simultaneous execution of multiple WRF configurations within a generation,
ensuring efficient use of resources. If a job exceeds the three-hour runtime limit,
it is flagged for review. This computational setup not only enables the execution
of thousands of WRF simulations within a reasonable time frame (hours), but
also guarantees the reproducibility and scalability of the simulations. Using the
power of MareNostrum 5’s advanced infrastructure, the GA is able to thoroughly
explore the complex configuration space of the WRF physics options.

The setup of the WRF model consisted of two one-way nested domains: the
outer domain with a horizontal grid resolution of 9 km (260 × 190 grid points)
and the inner domain with a resolution of 3 km (361 × 340 grid points) (Figure 1).
Vertical resolution was maintained at 50 levels, with the model top set at 50 hPa.
Boundary conditions were updated hourly using ERA5 reanalysis data with a
horizontal resolution of 0.25◦, 38 levels, and 1 hour temporal resolution [15]. All
simulations were initialized at 05 UTC, with 6-hour spin-up, and run for a total
of 40 hours to better capture the hail events and cover the development and
decay of storms. Model outputs were generated hourly for both domains, with
HAILCAST module activated only in the inner domain at a 60-second interval.
The physics schemes changed between simulations, but certain aspects remained
fixed as, for instance, the cumulus parameterization was only applied in the outer
domain.

As it has been previously mentioned, although certain physics scheme com-
binations are known to be incompatible, there exist others that may still be
incompatible but are not documented. In order not to prevent GA of exploring
as much searching space as possible, when an individual is executed and it re-
turns an incompatibility error, the fitness score assigned to the corresponding
individual will be a low value (this point is explained later in this section). This
way, they are considered for generating the next population but with a very low
probability of being used in any genetic operator.

A total of 35 generations were run with a population size of 100 individu-
als, resulting in 3500 simulations. From these, 1873 unique WRF configurations
were created, reflecting the extensive search space explored by the GA. This
extensive search allowed the GA to identify combinations of physics parame-
terizations that might not have been considered through traditional sensitivity
analysis methods. Although the 3500 simulations represent only a fraction of
the space, they provide valuable insights into the algorithm’s ability to iden-
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tify optimal configurations and demonstrate its utility for practical applications.
The best-performing configuration was identified in generation 25. The detailed
breakdown of this configuration is shown in Table 4. We chose to stop at gen-
eration 35 because it allowed us to verify the stability and to ensure that the
best-performing configuration remained across multiple generations.

Table 4. Best-performing WRF configuration identified by the genetic algorithm

WRF Parameteri-
zation

Option Description

cu_physics 14 KIAPS SAS (KSAS) [14, 18]
mp_physics 14 WRF Double-Moment 5-class

(WDM5) [19]
ra_lw_physics 5 New Goddard [10, 9]
ra_sw_physics 4 RRTMG [16]
bl_pbl_physics 9 UW [6]
sf_sfclay_physics 1 Revised MM5 [17]
sf_surface_physics 4 Noah-MP [22, 30]

Figure 5 shows the results of the best-performing configuration, comparing
observed hail events (red dots) and WRF-simulated hail occurrences (purple)
within the 3 km domain. While some discrepancies are present due to model
uncertainty and observational limitations, the overall consistency reinforces the
GA’s ability to optimize model performance effectively. The alignment of storm
clusters highlights the effectiveness of the optimized configuration, although dis-
crepancies arise from model uncertainty and observational limitations.

The progression of the fitness score across generations is shown in Figure 6.
Initially, the population consisted of random configurations, with fitness scores
relatively low. The first notable improvement occurred in generation 3, where the
fitness score reached 0.2273. This was followed by another increased to 0.2626 in
generation 6. By generation 10 the fitness score stabilized at 0.2629. At genera-
tion 20 the fitness score improved slightly reaching 0.2635 and up to 0.2639 in
generation 24. But the most significant jump occurred at generation 25, when
the score reached 0.2915. This score remained steady through generation 35.

While the final fitness score of 0.2915 is not very high, it is important to
consider the uncertainty of the model and the scarcity of the observational data
available for validation. The observed jumps in the fitness score can be due to
the chosen population size. Given the size of the search space – approximately
2.4 million possible combinations – and a relatively small population of 100
individuals, only a small fraction of the configurations is explored.

Despite these challenges, the algorithm’s performance is still promising. The
results from the spatial analysis (Figure 5) further support the GA’s effective-
ness, as the final configuration was able to capture most of the storm clusters.
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Fig. 5. Spatial comparison of observed hail events (red dots) and simulated hail oc-
currences (purple) using the best-performing WRF configuration. The map focuses on
the inner domain, showcasing the alignment of storm clusters and the ability of the
configuration to reproduce hail events.

Fig. 6. Evolution of the best fitness scores across generations. Significant improvements
were observed in generations 3, 6, and 25, with the score stabilizing at 0.2915 from
generation 25 to 35

5 Conclusions and Further work

In this study, a Genetic Algorithm was used to assess the physics parameteriza-
tions of the WRF model for hailstorm forecasting. Despite challenges like limited
observational data, model uncertainty, and the use of fixed discrete parameter
choices, which limits the fine-tuning of settings, the algorithm showed promis-
ing results in identifying effective WRF configurations for hail predictions. The
proposed approach has been applied in a severe hail event that took place in
Central Europe on June of 2022. The results captured the majority of the ex-
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treme storm clusters proving the ability of the system to assess discrete model
configurations. Typically, there are small spatial mismatches when predicting
the location of a hailstorm, thus, to mitigate this issue, the concept of near-hit
has been introduced. The original 3 km map has been upscaled to a 9 km Moore
neighborhood map, this way, the fitness score used in the GA process does not
completely dismiss certain false alarms and misses when they are close to a exact
hit but giving them partial weight in the fitness score.

Future work should consider expanding this flexibility to a larger radius, such
as 25 km, to better account for the spatial characteristics of hailstorms, which
often extend over 10 km-25 km due to storm motion and hailstone advection.
This change would align with the needs of operational users, such as emergency
managers and agricultural decision-makers, who require broader regional risk
awareness for effective response. To assess the robustness of the methodology,
future research should involve running the GA on multiple dates to evaluate
its performance across diverse meteorological conditions. This would provide a
broader understanding of the model’s capabilities and its adaptability to different
weather scenarios.
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