
NotiCorr: Exposing Social Relationships via
Notification Traffic of Instant Messaging

Applications

Jiangchao Chen1,2, Zhuojun Jiang1,2(�), Jiangyi Yin1,2, Dongfang Hao1,2,
Zhao Li1,2, Meijie Du1,2, and Qingyun Liu1,2

1 Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
{chenjiangchao, jiangzhuojun, yinjiangyi, haodongfang, lizhao, dumeijie,

liuqingyun}@iie.ac.cn
2 School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China

Abstract. Instant Messaging (IM) applications, such as Telegram and
WeChat, have become indispensable tools for individuals. To protect
users’ privacy, popular IM applications employ advanced encryption mech-
anisms. However, we demonstrate that the encrypted traffic of popular
IM applications can still leak information about users’ social relation-
ships. In this paper, we reveal that the message notification traffic in
IM application is exploitable and propose a novel privacy attack called
NotiCorr, which allows an adversary to infer the users in the same group
based on flow correlation. Specifically, even if the IM application is not
running, the client will still instantly receive group message notifications.
To this end, we extract robust fingerprints from both message notifica-
tion and message transmission traffic to enable attacks in more realistic
usage scenarios. To the best of our knowledge, this is the first study to
highlight the privacy risks posed by message notification traffic in IM
applications. Through extensive experiments, we demonstrate that Noti-
Corr significantly outperforms related methods. Finally, we discuss the
mitigation strategies.

Keywords: Social relationships · Privacy · Instant messaging applica-
tions · Flow correlation.

1 Introduction

Instant Messaging (IM) applications have become essential tools for daily com-
munication, with over 3 billion people use mobile IM applications worldwide [15].
Due to various factors, IM applications are subject to monitoring by governments
and corporations. To protect users’ privacy, popular IM applications have im-
plemented encryption technologies to secure user communications.

Despite the use of encryption mechanisms, there remain risks of privacy leak-
age. Some studies have employed flow correlation techniques to reveal users’ pri-
vacy [5, 13, 12, 2, 3]. For example, [5, 13, 12] utilized flow correlation to perform

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97629-2_6

https://dx.doi.org/10.1007/978-3-031-97629-2_6
https://dx.doi.org/10.1007/978-3-031-97629-2_6

2 J. Chen et al.

Group Member
(Sender) Communication Server Push Server Group Member

(Receiver)

Group Member
(Receiver)

Group Member
(Receiver)

Send push notification

Adversary Watching

message transmission flow
message notification flow

IM app is not running

Fig. 1: The adversary correlates message notification flows and message trans-
mission flows to identify users in the same group.

deanonymization on the Tor network. However, these methods fail to extract ef-
fective fingerprints for associating group members in IM applications. Bahramali
et al. [2] and Bozorgi et al. [3] analyse the MTU-sized packets of message trans-
mission traffic to extract fingerprints from IM application. Then, they identify
users within the same group through flow correlation. However, these attacks
have some limitations. When users receive messages from multiple groups simul-
taneously or within a short period, the correlation of message transmission flows
become ineffective as the overlapping traffic disrupts the fingerprints. Addition-
ally, these attacks are only effective when the IM application is active, as no
message transmission traffic occurs when the application is not running.

To address these limitations, we find that the Push Notification Service in
IM applications enables apps to deliver messages to users without requiring
the app to be active. Therefore, users can receive message notifications from
groups instantly even when the IM application is not running, as shown in Fig-
ure 1. Besides, the interaction patterns of the message notification flows from
users within the same group exhibit notable similarities, and the fingerprints
extracted from these flows are highly robust. Leveraging these insights, we pro-
pose a flow correlation based privacy attack called NotiCorr, which combines
message notification flows and message transmission flows to identify users in
the same group.

To the best of our knowledge, we are the first to leverage message notification
flows and message transmission flows to carry out a privacy attack. Initially,
NotiCorr pre-classifies each user’s flows into potential message notification and
transmission flows based on the packet size distribution characteristics. Sub-
sequently, we propose a PING-PONG based fingerprint extraction algorithm
to obtain the message notification sequence and a Packet Inter-Arrival-Time
(IAT) based fingerprint extraction algorithm for the message transmission se-
quence. Then, we apply a Spatial-Temporal based Longest Common Subse-
quence (LCS) algorithm to extract the common message notification sequence
(denoted as cN -FP) between clients. Additionally, we utilize merge-Dynamic
Time Warping (merge-DTW) algorithm to extract the common message trans-
mission sequence (denoted as cD-FP) between clients. Ultimately, NotiCorr

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97629-2_6

https://dx.doi.org/10.1007/978-3-031-97629-2_6
https://dx.doi.org/10.1007/978-3-031-97629-2_6

Exopsing Social Relationships via Notification Traffic of IM Apps 3

extracts features from the cN -FP and cD-FP between clients and inputs these
features into a well-trained classifier model to obtain the final correlation result.

Extensive experiments are conducted to evaluate our method’s performance.
Comparisons with related flow correlation attacks demonstrate that NotiCorr
achieves a higher True Positive Rate (TPR) and a lower False Positive Rate
(FPR), maintaining robust performance across varying positive and negative
sample ratios. Additionally, NotiCorr is deployed on an enterprise gateway and
the experimental results demonstrate its real-world practicality. Ultimately, we
propose mitigation strategies to address that privacy risk.

In summary, the contributions of this paper are as follows:

– This paper is the first study to reveal that the message notification traffic
flow of IM application can be used to infer users’ social relationships.

– We propose a flow correlation based privacy attack called NotiCorr to cor-
relate users in the same group. By leveraging the immediacy of message
notifications, our attack remains effective even when the IM application is
not running.

– We perform extensive experiments to demonstrate that NotiCorr3 outper-
forms related methods. We also deploy our method at an enterprise gateway,
and real-world results show its practicality, achieving a TPR greater than
0.9 and a FPR lower than 3.5× 10−5.

Ethics. Our analysis focuses solely on traffic from our own IM application
clients, without capturing or analyzing data from others. All attacks are con-
ducted exclusively on our own clients. In real-world experiments, we neither save
raw network traffic nor analyze packet payloads. Instead, our method processes
gateway traffic in real time to extract features, which are not stored afterward.
Thus, our experiments do not compromise the privacy of real-world IM applica-
tion clients.

2 Background & Related Work

This section first introduces the Push Notification Service, followed by a sum-
mary of current research on privacy attacks leveraging encrypted traffic analysis.

2.1 Push Notification Service

The Push Notification Service (PNS) is a widely adopted mechanism in modern
IM applications, enabling the timely delivery of messages and updates to users.
It comprises a cloud of push-based messaging servers that are responsible for
relaying messages from application servers to clients [24]. This allows servers to
send notifications directly to users’ devices, ensuring that messages and updates
are received instantly, even when the application is not launched.
3 We release its source code and the datasets at https://anonymous.4open.science/r/

NotiCorr-784A

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97629-2_6

https://dx.doi.org/10.1007/978-3-031-97629-2_6
https://dx.doi.org/10.1007/978-3-031-97629-2_6

4 J. Chen et al.

2.2 Privacy Attacks Through Network Traffic Analysis

Numerous technologies have been proposed to protect user privacy, such as
SSL/TLS protocols, SSH, and anonymous communication systems like Tor. De-
spite the increasing use of encryption, attackers can still exploit encrypted net-
work traffic to conduct privacy attacks. Some researchers [17, 11, 13] have focused
on website fingerprinting attacks, which can infer the websites a user visits. Other
studies [9, 21, 7] demonstrate that attackers can identify the applications a user
is using based on encrypted traffic. Moreover, some researchers [8, 14, 6] have
advanced further, being able to recognize specific user activities within appli-
cations. In addition, progress has been made in content identification [19, 18, 1,
10], enabling the detection of videos users are watching or the specific webpages
they are accessing.

Recently, researchers have attempted to conduct privacy attacks on users’
social relationships based on analysis of the encrypted traffic of IM application.
Bahramali et al. [2] and Bozorgi et al. [3] utilize burst patterns in message trans-
mission flow of IM application to extract the fingerprints, identifying users in
the same group through flow correlation. These attacks are ineffective in real-
world usage scenarios, such as when users receive messages from multiple group
or when the application is not running. In this paper, we extract the finger-
prints from the message notification flow of the IM application, which can leak
more information. By combining these fingerprints with message transmission
fingerprints, we implement a practical and effective privacy attack.

3 Analysing IM application message notification &
message transmission traffic

In this section, we analyse the message notification traffic and the corresponding
message transmission traffic in IM applications. Among various IM applications,
we select Telegram for our traffic analysis due to two primary reasons. Firstly,
Telegram has over 700 million monthly active users [16], making the analysis of
privacy risks in its traffic broadly impactful. Secondly, the Telegram API provides
detailed information on group messages, including sending times, message types,
and message sizes. Furthermore, programmable bots in Telegram allow us to
customize message content, facilitating the analysis.

Initially, we create a group and add two Android clients, running Telegram
in the background with message notification enabled. And a bot sends messages
of varying sizes, types, and sending intervals within the group. We utilize tcp-
dump to capture the traffic and export notification logs from phones via Android
Debug Bridge (ADB). Ultimately, we collect message notification and transmis-
sion traffic for 500 messages. After that, we use the Telegram API to retrieve
message timestamps and analyze logs to extract notification timestamps, which
help identify message transmission and notification traffic.

After analysing the traffic of IM application, we identify three key insights
that guide the development of NotiCorr.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97629-2_6

https://dx.doi.org/10.1007/978-3-031-97629-2_6
https://dx.doi.org/10.1007/978-3-031-97629-2_6

Exopsing Social Relationships via Notification Traffic of IM Apps 5

client server

Data, length=722

ACK

Data, length=270
ACK

Data, length=706

ACK
Data, length=255

Data, length=610

ACK
Data, length=255

...

...

ACK

(a) message notification flow

client server
...

Data*4, length=MTU

ACK*3

Data*5, length=MTU

ACK*4
Data, length=399

Data, length=MTU
Data, length=MTU

ACK...

(b) message transmission flow

Fig. 2: Interaction patterns of message notification flow and message transmission
flow.

(i): The message notification flow exhibits a distinct interaction pattern de-
noted as PING-PONG. Additionally, the downstream MTU-sized packets of the
message transmission flow exhibit a distinct pattern denoted as burst.

Our analysis reveals that message notifications are transmitted in a flow4

with a distinct interaction pattern, as illustrated in Figure 2a. Specifically, when
a message notification is generated, the server encapsulates its content in a packet
payload and transmits it to the client (PING). Upon receiving the packet, the
client responds with an acknowledgment packet (PONG). We refer to this packet
as a message notification packet and this interaction pattern as PING-PONG.
For the message transmission flows, we find that they exhibit burst patterns, as
shown in Figure 2b. Specifically, the server transmits a message to the client by
sending multiple MTU-sized packets within a short period. This burst pattern is
consistent with findings from studies of Bahramali et al. [2] and Bozorgi et al [3].
Within each burst, packets have short inter-arrival times (e.g., t < 0.5 seconds),
whereas the intervals between bursts are longer (e.g., τ ≥ 0.5 seconds).

(ii): Message notification packets from different users in the same group dis-
play highly consistent temporal (timing) and spatial (size) characteristics.

We calculate the time and size differences of the message notification packets
containing the same content between the two clients, plotting the cumulative
distribution functions (CDF) in Figure 3a and Figure 3b. Figure 3a illustrates
that nearly 100% of message notifications are received with a time difference
of less than 1000 milliseconds, while over 80% arriving within 200 milliseconds.
Figure 3b shows that almost 100% of message notification packets have a size
difference of less than 100 bytes, with approximately 85% having identical sizes.

(iii): There is a strong temporal correlation between a client’s message notifi-
cation packets and their corresponding message transmission packets. Exploiting
this relationship enables the extraction of more robust fingerprints.

We analyse the time distribution between a message notification packet and
the corresponding message transmission on a single client. We calculate the time

4 We define a flow as a sequence of packets composed of identical five-
tuple(source/destination IP, source/destination port, transport layer protocol).

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97629-2_6

https://dx.doi.org/10.1007/978-3-031-97629-2_6
https://dx.doi.org/10.1007/978-3-031-97629-2_6

6 J. Chen et al.

0
20

0
40

0
60

0
80

0
10

00

Time difference (ms)

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

(a)

0 20 40 60 80 10
0

Packets Size difference (byte)

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

(b)

0
25

0
50

0
75

0
10

00
12

50
15

00
17

50
20

00

Time difference (ms)

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

(c)

Fig. 3: Characterization of message notification and message transmission from
two clients in the same group. 3a shows the CDF of arrival intervals of message
notification packets between two clients; 3b presents the CDF of size differences
of message notification packets between two clients; 3c illustrates the CDF of
time intervals between message notifications and their corresponding message
transmissions.

difference between the message notification packet and the corresponding mes-
sage transmission, and plot the CDF, as shown in Figure 3c. Figure 3c demon-
strates that approximately 80% of message notifications and their correspond-
ing message transmissions occur within 500 milliseconds, and nearly 100% occur
within 2000 milliseconds.

We also analyse other popular IM applications, like Wechat, Whatsapp and
QQ, whose message notification and transmission flows exhibit similar charac-
teristics as described above.

4 Threat Model

We assume that all traffic between IM application clients and servers is encrypted
and that the message notification function within IM application is enabled. Ad-
versaries need to monitor users’ encrypted network traffic. Leveraging NotiCorr,
attackers can achieve their goals without collaborating with IM providers or
exploiting vulnerabilities within the application.

The attacker aims to identify the IP addresses of IM application users within
the same group. By using NotiCorr, the attacker can detect IP pairs belonging
to the same group and construct a social graph, revealing the social relationships
of users associated with these IPs. Associating IP addresses with specific users
is beyond the scope of this study and has been addressed in prior work [4].

5 Approach

In this section, we describe the methodology of this paper, referred to as Noti-
Corr. As shown in Figure 4, NotiCorr consists of four primary steps: (i) Pre-
processing network traffic and pre-categorizing flows. (ii) Fingerprint extraction.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97629-2_6

https://dx.doi.org/10.1007/978-3-031-97629-2_6
https://dx.doi.org/10.1007/978-3-031-97629-2_6

Exopsing Social Relationships via Notification Traffic of IM Apps 7

4. Identification3. Fingerprint Comparison2. Fingerprint Extraction1. Preprocessing & Pre-categorization

...

...

Message Transmission Fingerprint Extraction

Spatial-Temporal
based LCS Algorithm

Comparison Matirx

IP pair common N-FP
(cN-FP)

N-FP Comparison

Selecting D-FP items by cN-FP

merge-DTW Algorithm

Comparison Matrix

Comparison Feature

D-FP Comparison

...

Flow Pre-
categorization

Network Traffic Flows

Potential message
notification flows

Potential message
transmission flows

IP1
flows

PING-PONG based
FP extraction

Notify_FP1-1

Notify_FP1-2

Notify_FP1-3
... ...

IP1 N-FP

IP2
flows

PING-PONG based
FP extraction

Notify_FP2-1

Notify_FP2-2

Notify_FP2-3
... ...

IP2 N-FP

IP1 N-FP IP2 N-FP

IP1
flows

Packet IAT based
burst extraction

Data_FP1-1

Data_FP1-2

Data_FP1-3
... ...

IP1 D-FP

IP2
flows

Packet IAT based
burst extraction

Data_FP2-1

Data_FP2-2

Data_FP2-3
... ...

IP2 D-FP

IP1 D-FP IP2 D-FP

N-FP Comparison Feature

D-FP Comparison Feature

IP1 and IP2 are in
the same group!

Random Forest

Message Notification Fingerprint Extraction

Fig. 4: The framework of NotiCorr.

(iii) Fingerprint comparison. Then, we extract the comparison features from
these sequences. (iv) Identification.

5.1 Network Preprocessing and Flow Pre-categorization

In this step, network traffic is initially divided into flows. We then classify these
flows into either potential message notification flows or potential message trans-
mission flows based on the proportion of MTU-sized packets in the downstream
of each flow. A detailed analysis of the packet size distribution for message no-
tification flows and other flows is provided in Section 6.

5.2 Fingerprint Extraction

Based on the analysis in Section 3, we develop distinct fingerprint extraction
algorithms for message notification and transmission flows.

PING-PONG based fingerprint extraction. For a given flow j of a client IP
i, the objective of this algorithm is to extract the message notification sequence as
a fingerprint Notify_FPi-j = [(NTi-j1 , NSi-j1), (NTi-j2 , NSi-j2), ..., (NTi-jn , NSi-jn)],
where NTi-jn represents the timestamp of the n-th message notification and
NSi-jn denotes its size. As detailed in Section 3, each message notification packet
sent from the server to the client is typically followed by an ACK packet from
the client to the server. Consequently, we identify message notification packets
by locating downstream packets that arrive between two consecutive upstream
packets in the potential message notification flow. We denote the downstream
packet time as the message notification time and packet size as the message no-
tification size. If there are multiple downstream packets between two consecutive

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97629-2_6

https://dx.doi.org/10.1007/978-3-031-97629-2_6
https://dx.doi.org/10.1007/978-3-031-97629-2_6

8 J. Chen et al.

upstream packets, the message notification size is determined by summing the
sizes of these downstream packets, and the message notification time is marked
by the arrival time of the first downstream packet. This method allows an ad-
versary to extract potential message notification sequences from the observed
message notification flows associated with a given client IP.

Packets IAT based fingerprint extraction. When an IM client receives a
message (e.g., text, picture, video, audio, etc.), the downstream packets of mes-
sage transmission flow exhibit burst pattern. This feature has also been analyzed
in previous studies [3, 2]. In this paper, the burst sequence extracted from the
message transmission flow as message transmission fingerprint is an auxiliary
feature to reduce the false positive rate. We extract burst sequence from the
MTU-sized packets of message transmission downstream based on packets IAT.
After extracting fingerprint based on packets IAT, we get the burst sequence
Data_FPi-j = [(DTi-j1 , DSi-j1), (DTi-j2 , DSi-j2), ..., (DTi-jn , DSi-jn)] from mes-
sage transmission flow j of client IP i, where DTi-jn represents the timestamp
of the first packet in the n-th burst and DSi-jn denotes the cumulative packet
size in that burst.

After fingerprint extraction, each flow of one client is extracted either a no-
tification fingerprint or a message transmission fingerprint. Ultimately, we con-
struct a list of notification fingerprints (denoted as N -FP) and a list of message
transmission fingerprints (denoted as D-FP) for all flows of each client.

5.3 Fingerprint Comparison

This step aims to derive message notification comparison features denoted as
FN-FP , and message transmission comparison features denoted as FD-FP , by
comparing the message notification fingerprint lists and message transmission
fingerprint lists between each client IP pair.

Message Notification Fingerprint Comparison. According to Section 3,
message notification packets of clients from the same group exhibit temporal and
spatial similarities. Therefore, given two message notification fingerprint items
(NTp-jm , NSp-jm) and (NTq-kn , NSq-kn), we consider these items to be similar if
|NTp-jm−NTq-kn

| < α and |NSp-jm−NSq-kn
| < β, where α and β are the thresh-

olds of time and size. Based on this logic, we design a Spatial-Temporal based
LCS algorithm to identify the common message notification sequence between
IP pair, as shown in our source code. By comparing the message notification
fingerprints between a client IP pair using this algorithm, we finally obtain a
comparison matrix and we denote the element in the k-th row and j-th column
of this matrix as cN -FPk-j = (cN -FPk-jp , cN -FPk-jq), where cN -FPk-jp is the
common message notification sequence of flow j from client IP p and cN -FPk-jq
is the common message notification sequence of flow k from client IP q. We sort
all message notification sequence items of each IP in the comparison matrix by
time to derive the common message notification sequence denoted as cN -FP .

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97629-2_6

https://dx.doi.org/10.1007/978-3-031-97629-2_6
https://dx.doi.org/10.1007/978-3-031-97629-2_6

Exopsing Social Relationships via Notification Traffic of IM Apps 9

Subsequently, we calculate statistical features from cN -FP to form the FN-FP .
These features include the length of cN -FP and the mean, minimum, and max-
imum values of mean(cN -FP). The mean(cN -FP) is defined as follows:

mean(cN -FP) = [
Sp1 + Sq1

2
,
Sp2 + Sq2

2
, ...,

Spn + Sqn

2
]

where Spn and Sqn are the sizes of the n-th item in cN -FP for client IPs p and
q, respectively.

Message Transmission Fingerprint Comparison. Figure 3c demonstrates
that message notification packets and corresponding message transmissions ex-
hibit a strong temporal correlation. Consequently, we select the burst from mes-
sage transmission fingerprint based on the time of the item in cN -FP . Specif-
ically, given a message transmission fingerprint item (DTp-jm , DSp-jm), and an
item (Tpn, Spn) in cN -FP of client IP p, if Tpn − τ− < DTp-jm < Tpn − τ+,
we consider that there is a temporal correlation between (DTp-jm , DSp-jm) and
(Tpn, Spn), where Tpn is time of the n-th item in cN -FP , τ− and τ+ are pre-
determined thresholds. After that, we obtain the selected message transmission
fingerprint list ˜D-FPp and ˜D-FPq for a client IP pair p and q, respectively.
We then apply our merge-DTW algorithm to identify the most similar burst
sequence and calculate the corresponding distance between ˜D-FPp and ˜D-FPq.
By comparing the message transmission fingerprints between a client IP pair, we
construct a comparison matrix and denote the element in the k-th row and j-
th column of this matrix as cD-FPk-j = (disk-j , cN -FPk-jp , cN -FPk-jq), where
cN -FPk-jp and cN -FPk-jq are the common burst sequences of the client IP
pair p and q, disk-j is the distance between cN -FPk-jp and cN -FPk-jq . Subse-
quently, we identify a matrix element with the minimum distance dis denoted
as min(cD-FP). We then calculate the total length, maximum value, and mean
value of the two common burst sequences in min(cD-FP). These features serve
as the FD-FP .

Merge-DTW is an optimized version of the standard DTW algorithm that
we developed to account for the effects of network conditions such as network la-
tency, which may cause a single message to be split into two bursts in flow. Specif-
ically, when calculating the distance between two burst items (DTp-jm , DSp-jm)
and (DTq-kn , DSq-kn), merge-DTW computes the absolute difference between
DSp-jm and DSq-kn . Additionally, it calculates the absolute difference between
DSp-jm and the sum of DSq-kn

and DSq-kn-1 . The minimum value of these two
absolute difference values is then taken as the distance between two burst items.

5.4 Identification

In this step, we have derived the comparison features FD-FP and FN-FP for
a given client IP pair. These features are used as inputs to a classifier, which
outputs the probability that the IP pair belongs to the same group. We finally
select the Random Forest model as the classifier.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97629-2_6

https://dx.doi.org/10.1007/978-3-031-97629-2_6
https://dx.doi.org/10.1007/978-3-031-97629-2_6

10 J. Chen et al.

Table 1: Group relationships of Telegram clients.
Clients groupA groupB groupC groupD groupE
C1 yes yes no no no
C2 no yes yes yes no
C3 no no yes no yes

6 Evaluation

In this section, we evaluate the performance of NotiCorr under various configu-
rations and compare its effectiveness against related methods.

6.1 Experimental Setup

Dataset. We simulate group relationships using three Telegram clients, where
two client pairs share the same groups, and each client also participates in other
groups independently, as shown in Table 1. Each client remains active with mes-
sage notifications enabled. And Telegram bots send messages in these groups,
generating the traffic of message notification and message transmission. To simu-
late realistic group chat scenarios, we add 500 public groups and record message
features, including message time, type and size, using the Telegram API. Follow-
ing the method of Bahramali et al. [2], we generate message sequences for each
group, including sending intervals, message types and sizes. In each round, bots
send these messages and we capture traffic from each client using tcpdump until
all messages are sent, resulting in 8,000 rounds of traffic with 126,798 flows.

Since our evaluation requires ground truth labels, we export Telegram’s mes-
sage notification logs via ADB. We label the message notification flows in each
round of traffic using the log information. We divide the traffic corresponding to
8000 rounds into training, testing, and validation datasets using a 7:1:2 ratio.

Baseline. The most relevant methods to NotiCorr are traffic flow corre-
lation. Therefore, we compare NotiCorr with existing privacy attack methods
that utilize flow correlation, which either have open source code or provide the
source code through contact with the authors. These related methods include
DeepCorr [12], DeepCoffea [13], FlowTracker [5] and Bahramali [2].

Metrics. Similar to previous studies [2, 12, 13], True Positive Rate (TPR)
and False Positive Rate (FPR) are used to evaluate flow correlation performance
Due to the TPR and FPR of NotiCorr, DeepCorr, DeepCoffea and Bahramli vary
with changes in the threshold. Therefore, we also calculate the area under the
curve (AUC) based on their TPR and FPR at different thresholds to measure
their overall performance. The closer a method’s AUC value is to 1, the higher
its TPR and the lower its FPR at a given threshold.

6.2 NotiCorr Effectiveness

We evaluate the impact of the different settings and ideas behind NotiCorr on
the overall effectiveness of the attack.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97629-2_6

https://dx.doi.org/10.1007/978-3-031-97629-2_6
https://dx.doi.org/10.1007/978-3-031-97629-2_6

Exopsing Social Relationships via Notification Traffic of IM Apps 11

Table 2: Hyperparameters of NotiCorr. (Note: The bold numbers in the search
range represent the default values of the parameters)

threshold search range optimal value
ratioD−MTU 0.4
IATburst 0.5 seconds

α [1000, 2000, ..., 5000] 1000
β [0, 100, 200, ..., 400] 0
τ− [1000, 2000, ..., 5000] 2000
τ+ [1000, 2000, ..., 5000] 2000

0.0 0.2 0.4 0.6 0.8 1.0
ratio

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

message notification flow
other flow

Fig. 5: CDF graph of the proportion
of MTU size packets in the down-
stream of message notification flows
and other flows

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC Curve

NotiCorr AUC 0.9850
NotiCorr_only_notify AUC 0.9707
NotiCorr_DTW AUC 0.9796
NotiCorr_Cosine AUC 0.9734

Fig. 6: Comparison of the effective-
ness of using different algorithms for
D-FP comparison in NotiCorr.

Hyperparameter Selection. There are multiple thresholds in NotiCorr, in-
cluding the ratio of the number of MTU-size packets in downstream flow for
Flow Pre-categorization (denoted as ratioD-MTU), the IAT of packets in Sec-
tion 5.2 (denoted as IATburst), the time threshold α and size threshold β in
Section 5.3, the time range threshold τ− and τ+ in Section 5.3. For the threshold
ratioD-MTU , we conduct a statistical analysis on the proportion of MTU-sized
packets in the downstream of message notification flows and the other flows
in the training and testing datasets, as shown in Figure 5. The proportion of
MTU-sized packets shows distinct difference between message notification flows
and other flows. Therefore, we empirically select 0.4 as the value of threshold
ratioD-MTU . For threshold IATburst, we use the value of 0.5 seconds from the
work of Bahramali et al. [2] And for the remaining thresholds α, β, τ− and τ+,
we search within a certain range for each threshold in the training and testing
datasets to find the value that maximize the effectiveness of NotiCorr. Specif-
ically, we iterate through each parameter, change its value in the search space
each time, and train a random forest model in NotiCorr to obtain its best per-
formance in testing dataset. Table 2 shows the search range and optimal value
of each parameter in NotiCorr.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97629-2_6

https://dx.doi.org/10.1007/978-3-031-97629-2_6
https://dx.doi.org/10.1007/978-3-031-97629-2_6

12 J. Chen et al.

Table 3: The performance of NotiCorr and other four methods with different
positive and negative sample ratios. The values in brackets are the performance
of methods using our features

method metrics positive and negative sample ratio
1:9 1:49 1:99 1.149 1.199

NotiCorr

AUC

0.9822 0.9820 0.9820 0.9822 0.9822
DeepCorr 0.7321(0.9700) 0.6758(0.9668) 0.6363(0.9695) 0.5702(0.9690) 0.4894(0.9667)

DeepCoffea 0.6227(0.9507) 0.5979(0.9506) 0.5789(0.9504) 0.5327(0.9492) 0.5259(0.9438)
Bahramali 0.7685(0.9659) 0.6945(0.9599) 0.6689(0.9546) 0.5698(0.9539) 0.5064(0.9467)

FlowTracker TPR 0.5083(0.9698) 0.4368(0.9584) 0.4232(0.9509) 0.4209(0.9498) 0.4168(0.9550)
FPR 0.2991(0.0764) 0.2197(0.0662) 0.2099(0.0640) 0.2066(0.0635) 0.2050(0.0635)

The effectiveness of message transmission fingerprint and message no-
tification fingerprint. To evaluate the effectiveness of the two fingerprint types
in NotiCorr, we compare its performance with a version using only the message
notification fingerprint, denoted as NotiCorr_only_notify. As shown in Figure 6,
NotiCorr_only_notify achieves an AUC of 0.9707, demonstrating the effective-
ness of the message notification fingerprint. When the TPR is 0.9, the FPR of
NotiCorr_only_notify is higher than that of NotiCorr, indicating that message
transmission fingerprint can reduce the false positive rate.

The effectiveness of merge-DTW. To evaluate the effectiveness of merge-
DTW, we compare the performance of NotiCorr, NotiCorr using standard DTW
algorithm (denoted as NotiCorr_DTW), and NotiCorr using cosine similarity
(denoted as NotiCorr_Cosine). The results, shown in Figure 6, indicate that
NotiCorr using merge-DTW outperforms NotiCorr_DTW. This improvement
is due to merge-DTW accounting for scenarios where a message transmission
burst may split into two bursts due to network environment, such as network la-
tency. Additionally, NotiCorr using merge-DTW outperforms NotiCorr_Cosine,
as merge-DTW allows for non-linear alignment of two sequences, enabling the
optimal matching for sequences with unequal lengths or time axis offsets.

6.3 Comparison with related methods

In this section, we compare NotiCorr with four related methods on our dataset.
Table 3 shows the performance of NotiCorr and four other methods with different
positive and negative sample ratios. From the table, we can draw the following
conclusions:

NotiCorr achieves a greater TPR with a lower FPR. Across all posi-
tive and negative sample ratios, NotiCorr achieves a greater TPR with a lower
FPR compared to the four other methods. The success of NotiCorr in achiev-
ing such strong experimental results can be attributed to its effective utilization
of the PING-PONG interaction pattern in message notification traffic and the
burst characteristics of message transmission traffic during the fingerprint ex-
traction phase, enabling the accurate identification of both message notification
and message transmission packets.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97629-2_6

https://dx.doi.org/10.1007/978-3-031-97629-2_6
https://dx.doi.org/10.1007/978-3-031-97629-2_6

Exopsing Social Relationships via Notification Traffic of IM Apps 13

To further verify the effectiveness of the feature extracted in this paper, we
use the common message notification sequence cN -FP of each IP pair as the
input to baseline methods. We then train and evaluate these four methods, and
the results are shown in Table 3. According to the result, our features significantly
improve the performance of all four methods across different sample ratios. This
indicates that the original features used in these methods are not well-suited for
the attack scenario described in this paper.

NotiCorr exhibits robustness under different positive and negative
sample ratios. As shown in Table 3, even as the proportion of negative samples
increases, the AUC for NotiCorr remains consistently high (AUC ≥ 0.98). In
contrast, the AUC of the three other methods decreases as the proportion of
negative samples rises, and the effectiveness of FlowTracker decreases with the
increase in the proportion of negative samples.

6.4 Real-world Experiments

In this section, we evaluate the effectiveness of our method in a real-world net-
work environment. Specifically, we collaborate with an enterprise to deploy Noti-
Corr at the enterprise gateway and evaluate its effectiveness in a practical setting.

We monitor the traffic continuously, segmenting it into 30-second time win-
dows. Within each window, flows are preprocessed and pre-categorized, and fin-
gerprints are extracted. Next, NotiCorr’s Fingerprint Comparison and Identifica-
tion modules were employed to correlate potential notification flow pairs. Upon
correlation, NotiCorr provided the client IPs of the flow pair. Twenty enterprise
volunteers are recruited and permitted to freely form groups and join public
Telegram groups, with their usage information recorded.

Our method is deployed continuously at the enterprise gateway for 7 days,
during which we record the total time taken for correlation within a window.
NotiCorr takes less than 15 seconds to process each window, ensuring
that the current window could be processed before the next one is
generated. NotiCorr’s output for each window is then compared with volun-
teer usage data to evaluate its real-world performance. The results show that
NotiCorr achieves a TPR above 0.9 with a FPR below 3.5× 10−5.

7 Mitigation strategies

We propose two types of mitigation strategies for IM application users and
providers. For IM application providers, we recommend altering the interac-
tion pattern of the message notification traffic. One approach is to introduce
redundant packets into the notification flows, thereby making notification pack-
ets indistinguishable. For IM application users, we suggest using proxy or VPN
tools (such as V2Ray/V2Fly and shadowTLS) with obfuscation configurations
that include multiplexing and random padding. Multiplexing interleaves packets
from multiple flows, altering traffic patterns in terms of packet size, timing, and
direction [22]. By mixing multiple client flows, multiplexing makes it challenging

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97629-2_6

https://dx.doi.org/10.1007/978-3-031-97629-2_6
https://dx.doi.org/10.1007/978-3-031-97629-2_6

14 J. Chen et al.

for attackers to distinguish individual flows. Additionally, random padding in-
volves appending dummy data to payloads to obscure patterns of packet sizes [20,
23]. This technique alters the fingerprints that attackers can extract, thereby
complicating successful fingerprint comparison.

8 Conclusion

In this paper, we reveal the message notification traffic in IM applications is vul-
nerable, which can leak users’ privacy. Specifically, we design a privacy attack,
called NotiCorr, based on message notification fingerprints and message trans-
mission fingerprints, which allows attackers to identify users in the same group.
Through extensive experiments, we demonstrate that the fingerprints extracted
by NotiCorr are robust and our method outperforms related methods. We also
deploy NotiCorr at an enterprise gateway to evaluate its performance and the
results indicate that our method is practical and effective in the wild. Moreover,
we propose corresponding mitigation strategies to IM application providers and
users for this privacy attack.

Acknowledgments. This work is supported by the Scaling Program of Insti-
tute of Information Engineering, CAS (Grant No. E3Z0041101)

References

1. Bae, S., Son, M., Kim, D., Park, C., Lee, J., Son, S., Kim, Y.: Watching the
watchers: Practical video identification attack in LTE networks. In: 31st USENIX
Security Symposium, USENIX Security 2022. pp. 1307–1324 (2022)

2. Bahramali, A., Houmansadr, A., Soltani, R., Goeckel, D., Towsley, D.: Practical
traffic analysis attacks on secure messaging applications. In: 27th Annual Network
and Distributed System Security Symposium, NDSS 2020 (2020)

3. Bozorgi, A., Bahramali, A., Rezaei, F., Ghafari, A., Houmansadr, A., Soltani, R.,
Goeckel, D., Towsley, D.: I still know what you did last summer: Inferring sensitive
user activities on messaging applications through traffic analysis. IEEE Trans.
Dependable Secur. Comput. 20(5), 4135–4153 (2023)

4. Cui, T., Gou, G., Xiong, G., Li, Z., Cui, M., Liu, C.: SiamHAN: IPv6 address
correlation attacks on TLS encrypted traffic via siamese heterogeneous graph at-
tention network. In: 30th USENIX Security Symposium (USENIX Security 21).
pp. 4329–4346 (2021)

5. Guan, Z., Liu, C., Xiong, G., Li, Z., Gou, G.: Flowtracker: Improved flow correla-
tion attacks with denoising and contrastive learning. Comput. Secur. 125, 103018
(2023)

6. Hu, X., Shu, Z., Tong, Z., Cheng, G., Li, R., Wu, H.: Fine-grained ethereum behav-
ior identification via encrypted traffic analysis with serialized backward inference.
Comput. Networks 237, 110110 (2023)

7. Li, J., Wu, S., Zhou, H., Luo, X., Wang, T., Liu, Y., Ma, X.: Packet-level open-world
app fingerprinting on wireless traffic. In: 29th Annual Network and Distributed
System Security Symposium, NDSS 2022 (2022)

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97629-2_6

https://dx.doi.org/10.1007/978-3-031-97629-2_6
https://dx.doi.org/10.1007/978-3-031-97629-2_6

Exopsing Social Relationships via Notification Traffic of IM Apps 15

8. Li, J., Zhou, H., Wu, S., Luo, X., Wang, T., Zhan, X., Ma, X.: FOAP: fine-grained
open-world android app fingerprinting. In: Butler, K.R.B., Thomas, K. (eds.) 31st
USENIX Security Symposium, USENIX Security 2022. pp. 1579–1596 (2022)

9. Li, Z., Xu, X.: L2-bitcn-cnn: Spatio-temporal features fusion-based multi-
classification model for various internet applications identification. Comput. Net-
works 243, 110298 (2024)

10. Mitra, G., Vairam, P.K., Saha, S., Chandrachoodan, N., Kamakoti, V.: Snoopy: A
webpage fingerprinting framework with finite query model for mass-surveillance.
IEEE Trans. Dependable Secur. Comput. 20(5), 3734–3752 (2023)

11. Mitseva, A., Panchenko, A.: Stop, don’t click here anymore: Boosting website fin-
gerprinting by considering sets of subpages. In: 33rd USENIX Security Symposium
(USENIX Security 24). pp. 4139–4156. Philadelphia, PA (Aug 2024)

12. Nasr, M., Bahramali, A., Houmansadr, A.: Deepcorr: Strong flow correlation at-
tacks on tor using deep learning. In: Proceedings of the 2018 ACM SIGSAC Con-
ference on Computer and Communications Security, CCS 2018. pp. 1962–1976.
ACM (2018)

13. Oh, S.E., Yang, T., Mathews, N., Holland, J.K., Rahman, M.S., Hopper, N.,
Wright, M.: Deepcoffea: Improved flow correlation attacks on tor via metric learn-
ing and amplification. In: 43rd IEEE Symposium on Security and Privacy, SP 2022.
pp. 1915–1932. IEEE (2022)

14. Shan, Y., Cheng, G., Chen, Z.: Identifying fine-grained douyin user behaviors via
analyzing encrypted network traffic. In: 19th International Conference on Mobility,
Sensing and Networking, MSN 2023, December 14-16. pp. 868–875. IEEE (2023)

15. Statista: Number of mobile messaging users worldwide. https://www.statista.com/
statistics/483255/number-of-mobile-messaging-users-worldwide/ (2023), accessed:
2024-08-31

16. Telegram: 700 million users and telegram premium. https://telegram.org/blog/
700-million-and-premium (2022), accessed: 2024-08-31

17. Wang, T.: High precision open-world website fingerprinting. In: 2020 IEEE Sym-
posium on Security and Privacy, SP 2020. pp. 152–167. IEEE (2020)

18. Wu, H., Li, X., Cheng, G., Hu, X.: Monitoring video resolution of adaptive
encrypted video traffic based on HTTP/2 features. In: 2021 IEEE Conference
on Computer Communications Workshops, INFOCOM Workshops 2021. pp. 1–
6 (2021)

19. Wu, H., Yu, Z., Cheng, G., Guo, S.: Identification of encrypted video streaming
based on differential fingerprints. In: 39th IEEE Conference on Computer Com-
munications, INFOCOM Workshops 2020. pp. 74–79 (2020)

20. XTLS: Xtls vision, fixes tls in tls, to the star and beyond · xtls/xray-core · dis-
cussion 1295. https://github.com/XTLS/Xray-core/discussions/1295 (2023), ac-
cessed: 2024-08-31

21. Xu, H., Li, S., Cheng, Z., Qin, R., Xie, J., Sun, P.: Trafficgcn: Mobile application
encrypted traffic classification based on GCN. In: IEEE Global Communications
Conference, GLOBECOM 2022. pp. 891–896. IEEE (2022)

22. Xue, D., Kallitsis, M., Houmansadr, A., Ensafi, R.: Fingerprinting obfuscated proxy
traffic with encapsulated TLS handshakes. In: 33rd USENIX Security Symposium,
USENIX Security 2024 (2024)

23. Yawning: obfs4. https://gitlab.com/yawning/obfs4 (2023), accessed: 2024-08-31
24. Zhao, S., Lee, P.P.C., Lui, J.C.S., Guan, X., Ma, X., Tao, J.: Cloud-based push-

styled mobile botnets: a case study of exploiting the cloud to device messaging ser-
vice. In: 28th Annual Computer Security Applications Conference, ACSAC 2012.
pp. 119–128 (2012)

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97629-2_6

https://dx.doi.org/10.1007/978-3-031-97629-2_6
https://dx.doi.org/10.1007/978-3-031-97629-2_6

