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Abstract. Urban mobility plays a crucial role in the functioning of
cities, influencing economic activity, accessibility, and quality of life.
However, the effectiveness of analytical models in understanding urban
mobility patterns can be significantly affected by the spatial scales em-
ployed in the analysis. This paper explores the impact of spatial scales
on the performance of the gravity model in explaining urban mobility
patterns using public transport flow data in Singapore. The model is
evaluated across multiple spatial scales of origin and destination loca-
tions, ranging from individual bus stops and train stations to broader
regional aggregations. Results indicate the existence of an optimal inter-
mediate spatial scale at which the gravity model performs best. At the
finest scale, where individual transport nodes are considered, the model
exhibits poor performance due to noisy and highly variable travel pat-
terns. Conversely, at larger scales, model performance also suffers as over-
aggregation of transport nodes results in excessive generalisation which
obscures the underlying mobility dynamics. Furthermore, distance-based
spatial aggregation of transport nodes proves to outperform administra-
tive boundary-based aggregation, suggesting that actual urban organisa-
tion and movement patterns may not necessarily align with imposed ad-
ministrative divisions. These insights highlight the importance of select-
ing appropriate spatial scales in mobility analysis and urban modelling
in general, offering valuable guidance for urban and transport planning
efforts aimed at enhancing mobility in complex urban environments.

Keywords: Gravity model · Public transport flow · Spatial scales · Ur-
ban mobility pattern · Urban modelling.

1 Introduction

Urban mobility plays a crucial role in shaping the functionality and efficiency of
cities, influencing economic activity, social interactions, and quality of life. An
effective transportation system supports accessibility, reduces congestion, and
enhances urban sustainability [4]. Public transport, in particular, serves as a
backbone of mobility in dense urban environments like Singapore, where land
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constraints necessitate efficient transport planning. Understanding travel pat-
terns within the public transport network is essential for optimising infrastruc-
ture, improving service provision, and informing urban development policies [27].
Analysing these patterns requires robust models that can capture the complex
dynamics of urban mobility and provide insights into how people move across
different spatial scales [23, 25].

A variety of models have been developed to study urban mobility, ranging
from agent-based simulations to network-based approaches [2, 3]. Among them,
the gravity model has been widely used due to its simplicity and effectiveness in
capturing aggregate travel flows [15]. Inspired by Newton’s law of gravity, it as-
sumes that the interaction between locations is proportional to their population
or activity levels and inversely related to the distance between them [5]. The
gravity model has been successfully applied in various urban contexts to esti-
mate mobility patterns and forecast transport demand [18]. However, while the
model provides a useful approximation of mobility flows, its accuracy is arguably
influenced by the spatial scale at which it is applied.

Spatial aggregation has been shown to play a critical role in urban mobility
modelling, affecting both data representation and model performance [6, 9, 20].
At fine spatial scales, such as individual bus stops or train stations, the models
may struggle to capture meaningful patterns due to high variability and noise
in travel behaviour, leading to overfitting or poor generalisability. Conversely, at
very coarse spatial scales, over-aggregation may lead to a loss of critical mobility
details, obscuring important underlying dynamics and interaction patterns, and
resulting in model underperformance. These challenges reflect the Modifiable
Areal Unit Problem (MAUP), a well-known issue in spatial analysis where dif-
ferent zoning schemes or levels of aggregation can lead to significantly different
analytical results (sometimes referred to as “Openshaw effect” [10]). In mobility
research, this means that both the resolution and method of spatial aggregation
must be carefully chosen to ensure accurate model interpretation and policy
relevance.

Recent studies have sought to quantify and mitigate the effects of spatial
scale in mobility modelling. For instance, it has been showed that while some
mobility metrics (e.g. radius of gyration and entropy) remain relatively stable
across scales, others vary significantly depending on the spatial resolution, influ-
encing how individual activity spaces are characterised [7, 26]. Similarly, spatial
boundaries can be argued to critically affect the predictive power of mobility
models [22, 23], which means that spatial scale may not be merely a techni-
cal detail but a foundational element of mobility theory. However, while it has
been acknowledged that model performance can vary significantly depending on
the chosen spatial resolution, there is limited consensus on the optimal level
of aggregation [8, 12]. Furthermore, spatial aggregation based on administrative
boundaries may not necessarily align with actual urban movement patterns, po-
tentially introducing biases in mobility analysis.

Despite extensive research on urban mobility modelling, several gaps remain
in understanding the interaction between spatial scale and model performance
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using public transport flow data. First, the impact of spatial scale on grav-
ity model performance has not been systematically explored in the context of
public transport networks, particularly in highly urbanised environments like
Singapore. Second, while administrative boundaries are often used for spatial
aggregation, their effectiveness compared to alternative aggregation methods
like distance-based clustering remains unclear. Moreover, most of these studies
have focused on either individual-level GPS [1], mobile phone records [16] or
social media data [7], rather than formal public transport usage data, which
reflects structured and policy-relevant travel behaviour. This study addresses
these gaps by examining how spatial aggregation affects gravity model perfor-
mance using public transport flow data in Singapore. Specifically, the influence
of different spatial scales on model accuracy is investigated, and comparison be-
tween administrative boundary-based aggregation and distance-based methods
is made to evaluate which better captures urban mobility patterns. The findings
from this study can provide insights into optimal spatial resolutions for mobility
analysis and inform urban and transport planning strategies.

The remainder of this paper is organised as follows. Section 2 describes the
data and methods used in the study, including details on public transport flow
data, spatial aggregation approaches, and gravity model fitting procedures. Sec-
tion 3 presents the results and discussion, focusing on model performance across
different spatial scales and aggregation methods, as well as comparison of mobil-
ity pattern between time windows. Finally, Section 4 concludes with key findings,
implications for urban planning, and potential directions for future research.

2 Data and methods

2.1 Data

The datasets used in this study were obtained from relevant authorities in Singa-
pore, and can be categorised by public transport and administrative boundaries.

The public transport related data was obtained from the Land Transport
Authority (LTA) of Singapore, which provides comprehensive data on public
transportation infrastructure and usage across the city-state [14]. The data con-
tains the location of bus stops and train stations and the amount of traffic flow
between them. As this study focuses on mobility pattern within Singapore, the
bus stops in Johor (Malaysia) that are parts of the cross-border services between
Singapore and Malaysia are excluded. The traffic flow data contains information
on the number of trips made between a pair of origin and destination transport
nodes during hourly time windows (from HH:00 to HH:59) that will be merged
to obtain the daily flow on a typical day of a month, for both weekdays and
weekends. The public transport flow data used in this study is for October 2024,
which was chosen to reflects recent typical mobility patterns without the anoma-
lies and seasonal variations in travel behaviours during major holiday periods in
Singapore.

In addition to transport flow data, administrative boundaries delineated in
the Master Plan 2019 [24] by the Urban Redevelopment Authority (URA) are
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Fig. 1. Construction of network of transport nodes in which links and corresponding
weights w are determined by the overlap area (hatched) of buffer circles of radius ρ
centred at the nodes (right panel). The threshold distance for a pair of nodes to be
considered in the same cluster is dthr = 2ρ, beyond which the buffer circles do not
overlap (left panel).

also used to compute different levels of spatial aggregation of transport nodes.
These boundaries include three hierarchical levels: subzone, planning area, and
region. Subzones represent the most granular administrative divisions in Singa-
pore, while planning areas and regions provide broader spatial groupings.

2.2 Spatial clustering of nodes

Apart from the spatial aggregation by administrative boundaries, the transport
nodes can also be clustered by spatial proximity. In this study, a procedure is
devised to identify the clusters of transport nodes given a distance parameter.
First, a network is contructed for all public transport nodes in Singapore with
links added between pairs of nodes whose Euclidean distance is smaller than a
given threshold dthr. The weight of such links is calculated as the ratio between
the overlap area of the buffer circles of radius ρ = dthr/2 centred at the nodes and
their union area (see Fig. 1). This area ratio reflects the strength of relationship
between two nodes in terms of how close they are to one another. The network
will then be divided into clusters using a procedure of community detection based
on modularity (similar to previously employed in [11]). The clustering procedure
is described in details in [13], involving multiple runs of the Louvain method for
community detection and effective average of clustering patterns to identify the
converged clusters of nodes.

Different levels of spatial clustering are obtained by varying the distance
threshold parameter dthr from 0 to 6, 000 m in steps of 100 m. For every value of
dthr, the Louvain community detection algorithm is applied 100 times to yield
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the clusters of nodes. These distance-based clusters together with administrative
boundaries (subzone, planning area and region) will serve as different kinds of
spatial aggregation to assess the performance of the urban mobility flow model
described in the next section.

2.3 Modelling the urban mobility flow

The gravity model has been widely used in transportation and urban studies to
predict mobility flows between locations [18]. It is based on the analogy of New-
ton’s law of gravity, where the interaction between two places is proportional to
their population (or activity level) and inversely related to the distance between
them. In the context of urban mobility, the model estimates the volume of trips
between origin and destination locations and can be expressed as

Fij = G
Mα

i M
β
j

Dγ
ij

(1)

in which Fij denotes the traffic volume from location i to j, G is some scaling
constant, Mi and Mj denote the corresponding activity level at these locations,
and Dij the distance between them, whereas α, β, and γ are associated parame-
ters to be fitted using the mobility data. In this study, the total outflow traffic at
location i and inflow traffic at location j are used as proxy for their activity level.
The distance between the locations is taken as the Euclidean distance between
the centroid of the cluster of transport nodes. It should be noted that in the case
of administrative boundaries, the centroid is not the centroid of the polygon but
the centroid of the cluster of transport nodes contained within the polygon.

The gravity model is then fitted using linear regression, where the logarithm
of observed mobility flows is modelled as a function of explanatory variables
including the activity level at origin and destination locations and the distance
between them. This is achieved by employing the logarithmic form of Eq. 1

logFij = ω + α logMi + β logMj − γ logDij (2)

in which the model parameters α, β, and γ are estimated using ordinary least
squares (OLS) regression. Goodness-of-fit is evaluated using the coefficient of
determination R2 to assess how well the model explains variations in urban
mobility flows between locations.

As the number of data points varies with different levels of spatial aggre-
gation, the adjusted R2 [21] is used to characterise the quality of model fitting
instead of the usual R2 to account for the data size and the complexity of the
model (i.e. the number of independent variables). The formula for adjusted R2

is given by R2
adj = 1 − (1 − R2)(n − 1)/(n − p − 1) in which n is the number

of data points and p the number of parameters. Given the gravity model has
been shown to work very well with urban mobility pattern, aggressive test of the
model in this study will be performed by using only 50% of the data for training
and the model is tested on the remaining 50%.
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3 Results and discussion

3.1 Patterns of different levels of spatial aggregation

As the value of the distance threshold dthr varies, different clustering patterns
of transport nodes are observed. At dthr = 0, every node forms its own cluster,
whereas the nodes are grouped into 6 clusters at dthr = 6, 000 m. The clustering
patterns of nodes at different values of dthr are shown in Fig. 2. These patterns
are also compared with clustering of nodes by subzones, planning areas and
regions to assess their alignment with administrative boundaries. It could be
observed that the distance-based aggregation does not necessarily align with
imposed administrative boundaries, suggesting nuanced differences in patterns
of spatial organisation across scales. The selected distance threshold values of 300
m, 600 m, and 4, 400 m in Fig. 2 show the clustering patterns that most closely
match the clustering by administrative boundaries, as quantified by the mutual
information score, which is commonly used to compare sets of different subset
structures [19]. The identified clusters at different spatial aggregration levels will
be used to assess the impact of spatial scale on the performance of the gravity
model, providing insights into the relationship between spatial aggregation and
urban mobility dynamics.

3.2 Performance of gravity model across spatial scales

For every clustering structure of the transport nodes, the gravity model is fitted
to the corresponding aggregated traffic flow pattern to assess its performance
across spatial scales. In order to obtain a reliable measure of the performance,
the model fitting is run 100 times with randomisation of 50:50 train-test split.
Equation 2 is fitted using 50% of the data to estimate the parameters α, β,
and γ, and the model performance is assessed based on its prediction of the
remaining 50% of the data. The results for weekday mobility pattern (see Fig.
3, top panel) show that the fitting at the least aggregate level, the transport
node, is the worst with R2

adj being only around 0.35, meaning that less than
40% of variance in the traffic flow can be explained by the combination of total
outflow at origin, total inflow at destination and the distance between them. The
model performance quickly improves as the nodes become spatially aggregated.
The same argument as in [12] could be made that the aggregation of nodes
better reflects the underlying dynamics of traffic flows where commuters from a
particular location may use multiple transport nodes within the vicinity.

As the spatial aggregation increases, the average quality of fitting reaches
the peak value at dthr = 1, 500 m and starts to decline afterwards. This decline
signals that the transport nodes may be over-aggregated and that further con-
gregating nodes may indeed “dilute” the dynamics of traffic flows whereby the
true pattern is not captured as well as by a smaller mass of nodes, i.e. the flows
are aggregated more than necessary. It is worth pointing out that the quality of
fitting at large spatial scales fluctuates significantly compared to smaller ones,
indicating low reliability of the fitting. Apart from diluting dynamics, the fact
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Fig. 3. Quality of fitting the gravity model to weekday mobility flows at different
levels of spatial aggregation by distance threshold (top) and administrative boundaries
(bottom). At each spatial aggregation, the average R2

adj value and its error bar are
computed over 100 runs with randomisation of 50:50 train-test split of the data.

that the number of data points decreases with higher level of spatial aggregation
may also contribute to a poorer fitting of the model when its complexity is not
justified by the amount of data available.

3.3 Comparison of mobility pattern across temporal windows

To further examine the temporal consistency of the gravity model performance,
a stratified analysis is conducted based on time of day and weekday versus week-
end travel patterns. The model is separately fitted to public transport mobility
data from three distinct weekday periods, namely AM peak (6:00 AM to before
10:00 AM), PM peak (4:00 PM to before 8:00 PM), and off-peak hours (10:00
AM to before 4:00 PM), as well as to aggregated flows over the entire day on
weekends. Across all time windows, the gravity model consistently shows the
best performance when spatial aggregation is applied at 1,500 m (see Fig. 4, top
panel). This suggests a robust spatial scale at which urban mobility dynamics
in Singapore are optimally captured, regardless of temporal variation in travel
behaviour. While minor fluctuations in model fitting are observed between time
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Fig. 4. Comparison of gravity model fitting by diffent periods: weekday AM peak,
weekday PM peak, weekday off-peak, and weekend. Quality of fitting the gravity model
at different levels of spatial aggregation by distance threshold (top) and administrative
boundaries (bottom).

periods (likely due to differing trip purposes and passenger profiles), the spatial
scale of 1,500 m provides a stable balance between granularity and aggregation.
These findings reinforce the notion that intermediate spatial scales can effec-
tively reduce noise in fine-grained data without oversimplifying travel patterns,
making them suitable for both weekday commuting and weekend leisure mobility
analysis.

3.4 Effect of different spatial aggregation methods

A similar trend in the quality of fitting the model is also observed using the ad-
ministrative boundaries as the method of spatial aggregation (see Fig. 3, bottom
panel). At the first level of subzone, the fitting shows some improvement with
R2

adj rising above 0.4. The improvement continues at planning area level when
the average quality of fitting reaches 0.7. However the trend does not hold beyond
planning area when the model performs poorer at region level, indicating over-
aggregation of transport nodes. Recalling the corresponding patterns of clusters
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based on distance threshold and administrative boundaries in Sec. 3.1, grouping
of transport nodes at subzone level is closest to the pattern of clusters at 300 m,
at planning area level the distance is 600 m, and region level maps best to 4, 400
m (see Fig. 2). The corresponding quality of fitting at these distance also shows
comparable values with similar trend as the spatial aggregation level increases.
It should be noted that all of these administrative boundary-based clusterings
perform worse than the spatial aggregation at 1, 500 m. The poorer performance
of spatial aggregation based on administrative boundaries compared to distance-
based aggregation indicates that these boundaries may not accurately reflect the
true patterns of movement and interaction among transport nodes.

These results are also consistent across temporal windows when fitting mobil-
ity data from different periods of weekdays (AM peak, PM peak, and off-peak)
as well as on weekends (see Fig. 4, bottom panel). Similar to the results for week-
day mobility data, the gravity model exhibits the best performance at planning
area level among the administrative boundaries when fitting stratified data from
these windows, with the average R2

adj value peaking around 0.7. Notably, while
the whole-day data on weekdays (Fig. 3, bottom panel) and weekends (green star
marker in Fig. 4, bottom panel) show similar peak R2

adj value of 0.7, the sub-
weekday periods all show slightly higher peak value. This hints at the variability
in mobility behaviour throughout the day affecting the model performance. In
the same vein, the noticeably worse performance of the gravity model at region
scale for off-peak period (blue triangle marker in Fig. 4, bottom panel) compared
to whole days or peak periods could be due to irregular large-scale movement
pattern when long-distance travel appears to be rare outside rush hours. Nev-
ertheless, these observations require further substantiation which is beyond the
scope of the current study.

3.5 Contribution to mobility research and future directions

This study employs the gravity model as a mean to illustrate the effect of spatial
scales and units in urban modelling. While the gravity model offers a simple and
intuitive framework for modelling urban mobility, it is not without limitations.
It assumes that flows between locations depend solely on size and distance, over-
looking other influential factors such as land use mix, transport connectivity, and
individual travel preferences, which may influence local variations and dynamic
behaviours inherent in real-world mobility. Despite these limitations, this study
contributes to the field by systematically evaluating how spatial scale affects
the model performance, offering practical guidance on appropriate aggregation
levels for transport analysis. Furthermore, it highlights the mismatch between
administrative boundaries and actual mobility patterns, suggesting that data-
driven, distance-based approaches may yield more accurate representations of
urban movement. Future research could build on these findings by incorporating
additional variables into the model, such as socio-demographic factors or trans-
port service attributes. The role of spatial scale can also be explored in other
modelling approaches like radiation [17] or machine learning-based models [25]
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to provide more comprehensive understanding of complex travel behaviours in
urban systems.

Moving toward practical applications of these findings, actionable insights
can be derived by combining mobility patterns with contextual knowledge of
the actual urban organisation. In the case of Singapore, the clustering pattern
observed at the 1,500-m aggregation level (see Fig. 2, bottom left panel) suggests
strong functional integration between areas such as Jurong East and Bukit Batok
(violet cluster around X=16,000 and Y=35,000). Similarly, northern neighbour-
hoods like Woodlands, Sembawang, and Yishun, or northeastern areas such as
Serangoon, Hougang, Sengkang, and Punggol, may benefit from being consid-
ered as cohesive planning units. These spatial patterns highlight the potential
for more integrated planning strategies that align with how residents actually
move through the city-state. Further analysis, such as incorporating the spatial
distribution of amenities, residential density, and public transport infrastructure
like bus routes and train stations, could provide deeper insights into mobility de-
mand and service accessibility. While such integration lies beyond the scope of
the current study, it represents a promising direction for future research. In other
urban contexts, similar approaches could offer powerful tools for urban planning
by combining mobility data with additional layers of urban organisation, such
as land use and the spatial distribution of services and infrastructure.

4 Conclusion

In this study, a computational method is developed to analyse the urban mobility
pattern in Singapore. The findings reveal that while the gravity model can gener-
ally capture the flow dynamics, its performance quality varies significantly when
different spatial units are used to calculate the amount of traffic between origin
and destination locations in the model. It is found that the model fits poorly at
the transport node level and performs best at some intermediate level of spatial
aggregation corresponding to a threshold distance of 1, 500 m between nodes.
Beyond that scale, the model performance decreases, signaling over-aggregation.
Similar pattern is observed if the administrative boundaries are used, where the
model fits poorly at the lowest level of subzone and improves at the intermediate
level of planning area before decreasing at the highest level of region. However,
the spatial aggregation at these administrative boundaries perform poorer than
the distance-based aggregation, indicating that the administrative boundaries
are artificial and not reflective of the actual organisation of mobility patterns on
the ground.

The findings here offer valuable insights into the spatial organisation of urban
areas in Singapore. The method developed in this study could be used to identify
functional urban areas at different scales when combined with other relevant
datasets. Additionally, this approach can help reveal latent mobility patterns and
interactions between different parts of a city, offering a data-driven lens through
which to interpret urban dynamics. Both the methodology and results can be
useful for relevant urban and transport planning authorities in understanding the
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impact of physical infrastructure on urban mobility behaviours so that future
land use and transport network can be effectively developed. Future research
could build on this work by incorporating additional layers of spatial information,
such as the distribution of amenities, residential densities, and the structure of
public transport network. This would allow for a more comprehensive analysis
of urban function and accessibility, ultimately contributing to the development
of more inclusive and efficient urban environments.
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