
Uncovering and Verifying Optimal Community
Structure in Complex Networks:

A MaxSAT Approach

Carlos Ansótegui1, Vaidyanathan Peruvemba Ramaswamy2, Stefan Szeider2,
and Hai Xia⋆2

1 Logic and Optimization Group, University of Lleida, Lleida, Spain
carlos.ansotegui@udl.cat

2 Algorithms and Complexity Group, TU Wien, Vienna, Austria
{vaidyanathan,sz,hxia}@ac.tuwien.ac.at

Abstract. Network modularity is central to understanding phenomena
in diverse domains, from biology and social science to engineering and
computational physics. However, computing the optimal modularity—an
NP-hard measure quantifying community strength—has remained com-
putationally intractable at large scales. Most approaches resort to heuris-
tics without formal optimality guarantees.
This paper contributes to the computational science of complex systems
by introducing a novel MaxSAT-based framework that can compute opti-
mal network modularity values for larger networks than previously pos-
sible. Leveraging this new capability, we extensively evaluate heuristic
solutions and, for the first time, include the state-of-the-art memetic
graph clustering heuristic VieClus. Remarkably, VieClus identifies opti-
mal modularity values for all tested networks, ranging from 103 previ-
ously studied instances to 52 new, larger ones, and does so in seconds.
This result contrasts with earlier conclusions that heuristics frequently
fail to find the optimal modularity.
By combining a powerful MaxSAT encoding, which supports proof log-
ging for verification, with a fast and effective heuristic, we demonstrate
that even intricate network structures can be tackled efficiently. This
synergy brings us closer to making complex network analysis and com-
munity detection tractable, robust, and verifiable—a goal firmly aligned
with the core mission of computational science.

Keywords: Complex Networks · Modularity Optimization · Maximum
Satisfiability · Graph Clustering Heuristics · Computational Verification

1 Introduction

In network science, the concept of modularity has emerged as a cornerstone for
understanding the intricate structure of complex networks. This foundational
measure was introduced by Newman and Girvan [25], building on earlier work
⋆ Corresponding author

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97629-2_3

https://dx.doi.org/10.1007/978-3-031-97629-2_3
https://dx.doi.org/10.1007/978-3-031-97629-2_3

by Freeman [15] (for a more in-depth discussion, we refer to Newman’s book [26]).
Modularity provides a quantitative lens through which the subtle yet significant
patterns of interaction within networks can be discerned, revealing insights piv-
otal for theoretical exploration and practical application. At its core, modularity
measures the strength of division within a network, distinguishing the dense in-
terconnections within communities from the sparser connections between them.
This metric has helped to significantly enlarge our understanding of network
topology, offering a robust framework to unravel the community structure in-
herent in various types of networks arising in physics, sociology, biology, telecom-
munications, and other areas. In propositional satisfiability (SAT), modularity
has been used to link the performance of CDCL-based SAT solvers with the
structure in industrial instances [1]. MaxSAT is an optimization version of SAT,
finding an assignment that maximizes the number of satisfied clauses, and the
clauses can be weighted, with a natural extensibility to solving network modu-
larity optimization.

Computing modularity is NP-hard [10], even for trees [12]. As a result, most
research focuses on developing heuristics [7–9,11,22,30,31,34], while exact ILP-
based methods have been proposed but do not scale to large networks [10, 12,
32]. Recent studies by Aref et al. [4, 5] found that near-optimal partitions from
heuristics are often disproportionately dissimilar to optimal partitions.

Contributions We challenge these findings through two main contributions.
Firstly, we develop an efficient MaxSAT-based approach for computing opti-
mal modularity values, scaling to larger networks than previous exact meth-
ods. Our approach provides mathematical guarantees of optimality through its
MaxSAT foundation, and additionally enables independent verification of these
guarantees through recent advances in proof logging techniques implemented in
the Pacose solver. This is in contrast to heuristic algorithms [21, 24] that can-
not provide optimality guarantees. Secondly, we analyze the memetic network
clustering heuristic VieClus [6], overlooked by previous surveys [4, 5, 21, 24]. We
surprisingly found that VieClus finds optimal modularity values for all test net-
works within seconds—both the 103 networks from their study and 52 additional
larger networks.

Our findings have significant implications for computational science: applica-
tions in physics, biology, social sciences, and other domains can use VieClus for
rapid optimal clustering. When additional verification is needed, our MaxSAT
approach provides guaranteed optimality at the cost of longer computation
times. For the highest level of trust—crucial for validating scientific results—
the proof logging implementation generates independently verifiable certificates
for optimality. This portfolio of methods, with increasing levels of verification
at corresponding computational cost, makes complex network analysis tractable
and trustworthy. Our MaxSAT approach also provides the means for analyzing
whether optimal clusterings are unique.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97629-2_3

https://dx.doi.org/10.1007/978-3-031-97629-2_3
https://dx.doi.org/10.1007/978-3-031-97629-2_3

2 Preliminaries

2.1 Graphs and Networks

We use the terms graph and network synonymously. All graphs considered are
finite, undirected, and simple (i.e., without parallel edges or self-loops). We de-
note the set of vertices of a graph G by V (G) and the set of edges by E(G).
Further, we denote an edge between vertices u and v by uv or, equivalently, vu.
We denote the degree of a vertex u by d(u). For subsets C,C ′ ⊆ V (G), e(C,C ′)
denotes the number of edges uv of G with u ∈ C and v ∈ C ′; we use e(C) as a
shorthand for e(C,C).

2.2 Modularity

A clustering P of a graph G is a partition of V (G) into nonempty, mutually
disjoint sets, called clusters. We will write u ≡P v if the vertices u and v belong
to the same cluster of P. Following Newman and Girvan [25], the modularity
Q(P) of a clustering of a graph G with m edges is given by

Q(P) :=
∑
C∈P

[
e(C)

m
−
(
e(C) +

∑
C′∈P e(C,C ′)

2m

)2
]
. (1)

A clustering P is optimal if Q(P) is maximal. The value Q(P) for an optimal
clustering P of G is called the modularity of G. Finding an optimal clustering is
an NP-hard optimization problem [10].

2.3 MaxSAT

A (weighted partial) MaxSAT instance is a propositional formula Φ in conjunc-
tive normal form (CNF), whose clauses are partitioned into hard and soft clauses.
Each soft clause has a non-negative integer weight. A solution τ of a MaxSAT
instance Φ is a total truth assignment to Φ that satisfies all the hard clauses.
The weight w(τ) of a solution τ is the sum of weights of all the soft clauses τ
satisfies. A solution of maximal weight is optimal.

2.4 Graphs with multiple optimal clusterings

It has been empirically observed that most real-world graphs have a unique op-
timal clustering [5]. However, some graphs do have multiple optimal clusterings.
We distinguish between optimal clusterings that are essentially the same and
those that are essentially different. If they are essentially the same, one optimal
clustering can be transformed into the other by a symmetry of the graph To
define these terms, we need some additional graph-theoretic notions. An iso-
morphism from a graph G to a graph G′ is a bijective mapping φ : V (G) →
V (H) such that for all pairs u, v ∈ V (G) we have uv ∈ E(G) if and only if
φ(u)φ(v) ∈ E(H). G and H are isomorphic if there exists an isomorphism from

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97629-2_3

https://dx.doi.org/10.1007/978-3-031-97629-2_3
https://dx.doi.org/10.1007/978-3-031-97629-2_3

(a) Essentially same optimal clusterings
for the dom network, with modularity
value 0.017. In this case, the vertices
which switch clusters happen to be so-
called twin vertices.

(b) Essentially different optimal cluster-
ings for the ambassador network, with
modularity value 0.231. In this special
case, even the number of clusters is dif-
ferent.

Fig. 1: Two examples of networks with multiple optimal solutions. Nodes which
have the same color belong to the same cluster.

G to H. An automorphism of a graph G is an isomorphism from G to itself. An
automorphism is non-trivial if it is not the identity mapping.

We say that two clusterings P and P ′ of a graph G are essentially the same
if there exists an automorphism φ of G such that P = { {φ(v) | v ∈ C } | C ∈
P ′ }; otherwise P and P ′ are essentially different. Clearly, if |P| ̸= |P ′| then
P and P ′ must be essentially different; however, |P| = |P ′| does not imply
that they are essentially the same. We also note that even if a graph has a
non-trivial automorphism, it might have a unique optimal clustering since the
automorphism might map vertices to vertices of the same cluster.

We can check whether two clusterings P = {C1, . . . , Ck} and P ′ =
{C ′

1, . . . , C
′
k} of a graph G are essentially different by using a standard graph

isomorphism check. From G, we obtain a graph G(P) by adding k new vertices
v1, . . . , vk and all the edges uvi for u ∈ Ci, 1 ≤ i ≤ k. If P and P ′ are essentially
the same, then G(P) and G(P ′) must be isomorphic. Conversely, if we have
found an isomorphism φ from G(P) to G(P ′) which induces bijection between
V (G(P)) \ V (G) and V (G(P ′)) \ V (G), then P and P ′ are essentially the same.

3 MaxSAT Encoding of Modularity

We now reformulate the definition of modularity as given in (1) so that it can
easily be turned into a MaxSAT encoding. Again, let G be the input graph and
m = |E(G)|. We define the gain of a pair u, v ∈ V (G) as

g(u, v) =

2m− d(u)d(v) if uv ∈ E(G);

− d(u)d(v) otherwise.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97629-2_3

https://dx.doi.org/10.1007/978-3-031-97629-2_3
https://dx.doi.org/10.1007/978-3-031-97629-2_3

For a clustering P of G and a pair u, v ∈ V (G), we define the offset gain of
u, v relative to P as

g+P (u, v) =

g(u, v) if g(u, v) ≥ 0 and u ≡P v;
|g(u, v)| if g(u, v) < 0 and u ̸≡P v;

0 otherwise,
(2)

and
Q+(P) =

∑
u<v∈V (G)

g+P (u, v). (3)

Theorem 1. For every graph G, there are integers r and s such that for every
clustering P of G, we have Q(P) = rQ+(P) + s. Consequently, P maximizes
Q+(P) if and only if P is optimal.

Proof. Let Ω be the sum of |w(u, v)| over all pairs u < v ∈ V (G) with w(u, v) < 0
and Au,v ∈ {0, 1} such that Au,v = 1 if and only if uv ∈ E(G). Then, we can
rewrite (3) as

Q+(P) = Ω +
∑
C∈P

∑
u<v∈C

g(u, v)

= Ω +
∑
C∈P

∑
u<v∈C

(
2mAu,v − d(u)d(v)

)
= Ω +

∑
C∈P

(
2m · e(C)−

∑
u<v∈C

d(u)d(v)

)
.

We have

∑
u<v∈C

d(u)d(v) =
1

2

 ∑
u,v∈C

d(u)d(v)−
∑
u∈C

d(u)2

=

1

2

(∑
u∈C

d(u)
∑
v∈C

d(v)−
∑
u∈C

d(u)2

)

=
1

2

(∑
u∈C

d(u)

)2

− 1

2

∑
u∈C

d(u)2.

Setting Ω′ = Ω+ 1
2

∑
u∈V (G) d(u)

2 and observing that e(C)+
∑

C′∈P e(C,C ′) =∑
v∈C d(v), we can further rewrite (3) as

Q+(P)= Ω′ +
∑
C∈P

2m · e(C)− 1

2

(∑
u∈C

d(u)

)2

= Ω′ + 2m2
∑
C∈P

[
e(C)

m
−
(∑

u∈C d(u)

2m

)2
]

= Ω′ + 2m2Q(P).

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97629-2_3

https://dx.doi.org/10.1007/978-3-031-97629-2_3
https://dx.doi.org/10.1007/978-3-031-97629-2_3

Hence, the claim of the theorem holds for r = 1/2m2 and s = Ω′. ⊓⊔

This theorem gives rise to a MaxSAT encoding. First, we introduce variables
and hard clauses that represent a clustering P of G. Then, we introduce weighted
soft unit clauses to maximize modularity.

Let G be the given graph and V (G) linearly ordered by <. For any pair
u, v ∈ V (G) with u < v, we introduce a variable cu,v, indicating whether u and v
are in the same cluster (i.e., u ≡P v); cv,u denotes the same variable as cu,v.

To achieve this, we only need to add clauses that enforce the transitivity
of ≡P , i.e., u ≡P v and v ≡P w implies u ≡P w. We thus add the following
clause for all triples of distinct vertices u, v, w ∈ V (G)

¬cu,v ∨ ¬cv,w ∨ cu,w. (4)

We call u, v and v, w the premise pairs, u,w the forced pair, and u and w the
end vertices of the above transitivity clause.

For each pair u, v ∈ V (G) with u < v and g(u, v) > 0 we introduce a
soft clause cu,v with weight g(u, v); for each pair u, v ∈ V (G) with u < v and
g(u, v) < 0 we introduce a soft clause ¬cu,v with weight |g(u, v)|; we do not need
to consider pairs with g(u, v) = 0.

This concludes the definition of the MaxSAT instance Φ(G) representing the
modularity of G.

Theorem 2. A solution τ to Φ(G) is optimal if and only if τ corresponds to an
optimal clustering C of G.

Proof. By construction of Φ(G), the weight of an optimal solution τ to Φ(G)
equals Q+(G), and by Theorem 1, the clustering corresponding to τ is optimal.

⊓⊔

A drawback of the MaxSAT encoding defined above is that it introduces a
cubic number of clauses for enforcing transitivity. Adapting ideas from Din and
Thai [12] to our MaxSAT setting, we can omit a large fraction of the transitivity
clauses without affecting optimal solutions, thus scaling the MaxSAT encoding
to larger graphs. For a graph G and vertices u, v ∈ V (G) with u ̸= v, let KG(u, v)
be the smallest set of vertices such that u and v belong to different connected
components of the graph Gu,v obtained by (i) removing all vertices that belong to
KG(u, v) from G and (ii) removing the edge uv in case uv ∈ E(G). We will later
explain how to efficiently compute the sets KG(u, v) for all pairs u, v ∈ V (G).

The Sparse MaxSAT encoding Φ∗(G) for modularity is now obtained from
Φ(G) by limiting the transitivity clauses to a subset; namely, we add the
clause (4) only if v ∈ KG(u,w).

Theorem 3. Φ(G) and Φ∗(G) have the same optimal solutions.

Proof. We observe that any optimal solution of Φ(G) is a solution of Φ∗(G) of
the same weight. We will show that also the converse holds, i.e., any optimal
solution of Φ∗(G) is a solution of Φ(G) of the same weight, which, together with

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97629-2_3

https://dx.doi.org/10.1007/978-3-031-97629-2_3
https://dx.doi.org/10.1007/978-3-031-97629-2_3

the previous statement, establishes the theorem. Let τ be an optimal solution
of Φ∗(G) and let Gτ be the graph with V (Gτ) = V (G) =: V and E(Gτ) =
{uv | τ(cu,v) = 1 }. We say that a vertex v ∈ V is τ -reachable from u if Gτ

contains a path between u and v, and we say v is τ +G-reachable from u if Gτ

and G contain the same path between u and v; we call such a path a τ +G-path.
Claim 1: For any u, v ∈ V , if v is τ -reachable from u then v is also τ +

G-reachable from u. To show the claim, suppose to the contrary that there are
u, v ∈ V such that v is τ -reachable from u but not τ+G-reachable. Let X ⊆ V be
the set of all vertices that are τ +G-reachable from u, and let Y ⊆ V be the set
of all vertices that are τ -reachable from u. Clearly X ⊆ Y , and by assumption
v ∈ Y \ X. Since v is τ -reachable from u, there must be at least one edge
xy ∈ E(Gτ) with x ∈ X and y ∈ Y \X. We obtain a new assignment τ ′ from τ
by setting τ ′(cx,y) = 0 for all x ∈ X and y ∈ Y \X. Note also that no transitivity
clause forces such cx,y to true since for any such transitivity clause where x, y
is the forced pair, at least one of its premise pairs x′, y′ would have x′ ∈ X and
y′ ∈ Y \X and cx′,y′ set to true. However, since xy /∈ E(G), g(x, y) < 0, and so
the encoding contains the soft clause ¬cx,y of weight |g(x, y)|; hence switching
the truth value of cx,y from false to true increases the overall weight of the
assignment, i.e., w(τ ′) > w(τ), contradicting our assumption that τ is optimal.
Hence, the claim is shown to be true.

Claim 2: Any v ∈ V that is τ -reachable from some u ∈ V is a neighbor of
u in Gτ . Consider pairs u, v ∈ V such that v is τ -reachable from u. Let d(u, v)
denote the length of a shortest τ +G-path between u and v (such a path exists
by Claim 1). We show Claim 2 by induction on d(u, v). If d(u, v) = 1, then u, v
are adjacent in Gτ , and we are done. Now assume Claim 2 holds for all pairs
of distance d − 1 ≥ 0 and consider a τ -connected pair u, v with d(u, v) = d.
Consider a shortest τ +G path P of length d between u and v. P runs through a
vertex x ∈ KG(u, v). We have d(u, x), d(x, v) ≤ d(u, v)−1, hence ux, xv ∈ E(Gτ)
by the induction hypothesis, i.e., τ(cu,x) = τ(cx,v) = 1. By construction, Φ∗(G)
contains the transitivity clause ¬cu,x ∨ ¬cx,v ∨ cu,v, consequently τ(cu,v) = 1,
and so uv ∈ E(Gτ) as required. Hence Claim 2 holds.

By Claim 2, Gτ is a disjoint collection of cliques. Consider any transitivity
clause ¬cu,v ∨¬cv,w ∨ cu,w of Φ(G), with end vertices u,w, and v not necessarily
from KG(u,w). If u,w belong to the same clique of Gτ , then τ(cu,w) = 1 and
the clause is satisfied. If u,w belong to different cliques of Gτ , v cannot be in
the same clique with u and in the same clique with w, hence τ(cu,v) = 0 or
τ(cv,w) = 0, and the clause is satisfied. We conclude that τ is indeed a solution
of Φ(G). This concludes the proof of the theorem. ⊓⊔

4 Accuracy of heuristically computed modularity

As mentioned above, it is NP-hard to determine the modularity of a network
exactly [10], even for tree-structured networks [12]. Since exact methods for
computing modularity do not scale to large networks, scientists rely on heuristic
methods to compute modularity and associated clusterings.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97629-2_3

https://dx.doi.org/10.1007/978-3-031-97629-2_3
https://dx.doi.org/10.1007/978-3-031-97629-2_3

Aref et al. [4, 5] presented a systematic analysis of heuristic methods
for modularity computation. In particular, they considered Clauset-Newman-
Moore (CNM) [11], Louvain [7], Reichardt-Bornholdt with the configuration
model as the null model (LN) [20], Combo [30], Belief [34], Paris [8], Leiden [31],
EdMot-Louvain [22], recurrent graph neural network (GNN) [29], and Bayan [2].
They tested all these approaches on 104 networks (54 real-world and 50 syn-
thetic) and computed the exact modularity via an ILP encoding. Their key find-
ings were quite negative: Combo had the highest success rate among the eight
heuristics, returning an optimal partition for 90.4% of the networks; the average
success rate of all 8 heuristics combined was only 43.9%. On average, GNNs and
Bayan achieve optimality for 68.7% and 82.3% of networks, respectively. Aref et
al. [4, 5] used several partition similarity metrics (AMI, RMI, ECS) to quantify
differences between partitions and found that suboptimal clusterings tend to be
disproportionately dissimilar to the optimal clustering. In summary, their results
suggest significant limitations in commonly used heuristics for modularity.

However, Aref et al. did not consider the Vienna graph clustering framework
(VieClus) by Biedermann et al. [6], an omission that turns out to be significant.
VieClus provides a general memetic algorithm [23] for various graph cluster-
ing problems, including modularity computation. A key innovation in VieClus
is using recombine operators that leverage ensemble clusterings and multi-level
techniques. These operators create an overlay clustering from two input cluster-
ings, determining whether pairs of vertices should be in the same cluster based
on their groupings in the input clusterings. This recombination is then enhanced
with local search algorithms to improve the clustering quality further. The al-
gorithm also employs a multi-level approach to find even better clusterings.
VieClus emphasizes randomized tie-breaking throughout the process to diver-
sify the search and improve solutions. Additionally, the algorithm incorporates a
scalable communication protocol, enabling it to compute high-quality solutions
efficiently. This combination of techniques results in a powerful and versatile
clustering tool that can reproduce or improve upon previous benchmark results
for various graph clustering instances.

In the sequel, we extend the study by Aref et al. by comparing the modular-
ity computed by VieClus with the optimal modularity. Our powerful MaxSAT
approach for computing exact modularity allows us to extend the benchmark
set with significantly larger networks.

5 Checking optimality of VieClus

5.1 Benchmark Networks

Our benchmark set includes 103 networks3 that were considered in the previous
work [5]. 50 of these networks were synthetic LFR and ABCD graphs generated

3 Previous work [5] used a benchmark set consisting of 104 networks. However, MaxHS
cannot find an optimal solution for the network physician_trust within 48 hours,
so we exclude it from our experimental analysis.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97629-2_3

https://dx.doi.org/10.1007/978-3-031-97629-2_3
https://dx.doi.org/10.1007/978-3-031-97629-2_3

by Aref et al. [3], while the remaining 53 graphs are real-world benchmarks
drawn from the well-known Netzschleuder repository [28]. Aref et al. selected
these networks to be (optimally) solved within a reasonable time by their sparse
IP formulation and all the 8 heuristics considered. We denote this as the base
benchmark set. Further, we extend this set by adding another 52 networks from
the Netzschleuder repository [28], and solve the networks optimally with our
sparse MaxSAT formulation. We denote these 52 new networks as the extended
benchmark set. The networks in the extended benchmark set contain up to 1461
vertices and 2812 edges. We show the number of nodes and edges of the networks
as a scatter plot in 2, where the blue and orange dots represent the networks
from the base and extended benchmark sets, respectively.

The newly added networks in the extended set generally have a larger number
of nodes and edges compared to the previously used networks. We also provide
detailed information on each network in the supplementary material4.

0 200 400 600 800 1000 1200 1400
|V|

0

500

1000

1500

2000

2500

|E
|

Benchmark Set
base (103)
extended (52)

Fig. 2: Scatter plot of the number of
nodes (|V |) and edges (|E|) of the 155
benchmark networks

100 101 102 103 104 105

MaxHS running time

100

101

Vi
eC

lu
s r

un
ni

ng
 ti

m
e

base set
average virtual instance
extended set

Fig. 3: The running time of MaxHS
on sparse encoding vs VieClus

5.2 Experimental Setup

We perform all our experiments on a compute cluster with nodes equipped with
two AMD 7403 processors (24 cores at 2.8 GHz) and 32 GB of RAM per core.
We use a timeout of 10 hours while running VieClus and a timeout of 48 hours
while running the MaxSAT solver. We did preliminary testing with different
MaxSAT exact solvers participating in the MaxSAT Evaluation 20225, including
EvalMaxSAT, MaxCDCL, and MaxHS. Then, we identified MaxHS as the most
promising solver for our use case.

We generate the encodings using Python 3.10 along with the NetworkX 3.2
graph library [17] and the PySAT 0.1 library [18]. Recall that to construct the
4 https://figshare.com/s/caec9f3c34f5c31488c2
5 https://maxsat-evaluations.github.io/2022/descriptions.html

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97629-2_3

https://dx.doi.org/10.1007/978-3-031-97629-2_3
https://dx.doi.org/10.1007/978-3-031-97629-2_3

Instances
103

104

105

106

107

108

109

En
co

di
ng

 si
ze

 (i
n

by
te

s)

type
sparse
full

Fig. 4: Comparing the sizes of the sparse vs full encodings

Instances

100

101

102

103

104

105

So
lv

in
g

tim
e

(in
 s)

type
sparse
full

Fig. 5: Comparing the solving times of the sparse vs full encodings

sparse encodings, we need a separator set for each pair of vertices. We precom-
pute these separator sets for all networks by adapting the basic functions from
the NetworkX library (which compute a single s− t cut using flow-based meth-
ods [13, 14, 19]) to run in a parallel setting. The benchmark networks and the
scripts for generating the MaxSAT encodings for those networks are available in
the supplementary material.

5.3 Results

Sparse vs. Full Encodings We use MaxHS to find the optimal modularity of
the 103 networks of the base benchmark set with both the full and the sparse en-
codings. We then compare the file sizes of the two encodings and their respective
solving times. In Figs. 4 and 5, it should be noted that the axes are in logarith-
mic scale. In Fig. 4, we sort the networks according to the file size of their full
encodings. We can see that on the larger networks, the sparse encodings result
in a more than 10-fold reduction compared to the corresponding full encodings.

Further, we also compare the solving efficiency of MaxSAT with both the
full and the sparse encodings on the base benchmark set. From Fig. 5, sparse
encodings can speed up the solving time on many large networks by a factor
of 5 compared to the full encoding. For several networks, the full encoding is
quicker than the sparse encoding; however, most of these networks are too small

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97629-2_3

https://dx.doi.org/10.1007/978-3-031-97629-2_3
https://dx.doi.org/10.1007/978-3-031-97629-2_3

to take advantage of the sparse encoding. More specifically, all such networks
are solved within 20 seconds by MaxHS on both encodings. On average, the
MaxSAT sparse encoding can reduce the solving time by 57.59% among the 103
networks. Considering the space and time savings, our first argument is justified:
The sparse MaxSAT encoding provides a higher solving efficiency for computing
optimal modularity, especially on larger networks.

VieClus vs. MaxHS with Sparse Encoding We compute the optimal mod-
ularity values for all 155 networks in the base benchmark set and the extended
benchmark set using MaxHS to solve the sparse MaxSAT encodings. We then
compare the modularity values obtained by VieClus with the optimal values
obtained by MaxHS. Amazingly, we find that they match on all networks, i.e.,
VieClus obtains the optimal modularity for all the networks. Furthermore, re-
garding time consumption, VieClus requires a lot less time than MaxHS (roughly
an order of magnitude faster).

Fig. 3 compares the time consumption between MaxHS with the sparse en-
coding (y-axis) and VieClus (x-axis), where each dot represents a network. The
blue and green dots represent the networks from the base and extended sets,
respectively. We emphasize that this is for reference only, not a direct compari-
son between the two algorithms: MaxHS finds an optimal clustering and verifies
the optimality, whereas VieClus finds a clustering that happens to be optimal.
However, the plot indicates which instances are harder and which are easier for
the two approaches.

Regarding the average time consumption, as the orange virtual dot (average
solving time of the full and sparse encodings) shown in Fig. 3, the MaxHS takes
over 2000 seconds on average to get the optimal modularity values, but VieClus
achieves the same modularity values within only 2 seconds, although without
verifying their optimality.

In general, on all 155 networks from the base set and the extended set (which
were selected such that MaxHS can find an optimal solution within 48 hours),
VieClus always manages to match the optimal modularity value (and it does so
in under 25 seconds), even though it is only a heuristic algorithm. Our conclu-
sion significantly differs from recent claims [4,5] that heuristic methods perform
poorly and rarely return an optimal partition.

5.4 Analysis of Networks with Multiple Optimal Solutions

A vast majority of the considered networks, 137 out of 155, have a unique opti-
mal clustering; therefore, the optimal clusterings found by VieClus and MaxHS
are necessarily the same. As for the remaining 18 networks, we used the MaxSAT
encoding to enumerate all optimal clusterings. To this end, when MaxHS finds
an optimal clustering, the corresponding satisfying assignment is negated and
added to the encoding, thereby forbidding the same solution from being discov-
ered again. Now, if MaxHS finds a solution to this new encoding with the same
modularity value as before, we will have found another clustering with the opti-
mal modularity. The moment the modularity value drops, we know for certain

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97629-2_3

https://dx.doi.org/10.1007/978-3-031-97629-2_3
https://dx.doi.org/10.1007/978-3-031-97629-2_3

that all clusterings with the optimal modularity value have been enumerated.
Furthermore, by analyzing the isomorphisms between the optimal clusterings of
these networks, we found that for only 11 of them, the optimal clusterings are
essentially different (details are available in the supplementary material).

Due to its randomized nature, VieClus can find different optimal clusterings
when run with different random seeds. We verify this by running VieClus repeat-
edly on some of the networks that have multiple optimal clusterings. However,
in contrast to the MaxSAT approach, we cannot block previously found opti-
mal clusterings for VieClus. Hence, it is up to chance that repeated runs will
eventually find all optimal clusterings. In practice, we notice that VieClus has
a tendency to gravitate towards the same solution. For example, in several in-
stances, despite trying more than 1000 random seeds, VieClus always returns the
same optimal clustering. However, there were also a handful of instances where
repeated runs of VieClus were eventually able to discover all optimal clusterings.

6 Verifying Optimality Through Proof Logging

State-of-the-art MaxSAT solvers are complex algorithms with lots of moving
parts. If they claim a solution is optimal, we cannot always blindly trust this. This
limitation can be significant for computational science applications where the
high trustworthiness of results is crucial. We address this gap using proof logging
in MaxSAT solving, which provides machine-verifiable certificates of optimality.
Specifically, we use Pacose [27], a state-of-the-art MaxSAT solver that outputs
VeriPB [16] proofs—formal certificates that can be independently verified. These
proofs record every step in the solving process, from CNF encoding verification
to optimality confirmation, allowing third parties to validate results without
trusting the solver implementation. Since the proof logs output by Pacose by
default can get large, we modify Pacose to directly output compressed proof
logs. For instance, compressing a 65 GB proof log can reduce its size to 12 GB.
We include the modified version of Pacose along with some generated proof logs
in the supplementary material.

Instances

104

105

106

107

108

109

1010

1011

Pr
oo

f l
og

 si
ze

s (
in

 b
yt

es
)

sparse
full

(a) Proof log sizes (compressed)

Instances
100

101

102

103

104

105

So
lv

in
g

tim
es

 w
ith

 p
ro

of
 lo

gg
in

g
(in

 s) sparse
full

(b) Solving times with proof logging

Fig. 6: Comparing sparse vs full encoding when solving with proof logging

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97629-2_3

https://dx.doi.org/10.1007/978-3-031-97629-2_3
https://dx.doi.org/10.1007/978-3-031-97629-2_3

We run Pacose with proof logging enabled on both sparse and full encodings
with a 72-hour timeout. Of the 155 benchmark networks, we attempted proof
logging on 91 networks. Out of these, 36 networks were successfully solved with
verifiable proofs. Of these 36 networks, the network mu_0_01_LFR_0 was
solved only by the full encoding, and the network 7th_graders was solved only
by the sparse encoding. The largest number of nodes and edges in a network that
was solved with proof logging are 141 and 1017, respectively. Figs. 6a and 6b
compare the proof log sizes and solving times, respectively, of the sparse and full
encoding when proof logging is enabled.

Surprisingly, while sparse encodings are consistently faster for regular
MaxSAT solving, this advantage disappears with proof logging. For approxi-
mately half the instances, full encodings resulted in faster solving times. The
proof log sizes were also comparable between sparse and full encodings.

This illustrates the three levels of confidence and effort balance that one can
achieve with the different methods we consider. On one end, heuristic methods
like VieClus can quickly find optimal solutions but do not provide any guaran-
tees. On the other end, MaxSAT solving with proof logging offers the highest
level of rigor but requires significant computational overhead. Finally, MaxSAT
solving without proof logging is a good middle ground. It provides optimality
guarantees with a reasonable degree of confidence while maintaining scalability
to a decent extent.

7 Conclusion and Future Work

In our work, we introduce a novel MaxSAT-based approach for computing opti-
mal modularity and demonstrate that VieClus consistently finds optimal cluster-
ings orders of magnitude faster than exact methods, which challenges previous
findings about heuristic unreliability in modularity computations. Our findings
provide a variety of options for the modularity analysis:

1. VieClus offers lightning-fast optimal solutions, although without formal
guarantees.

2. Our MaxSAT encoding provides optimality guarantees at increased compu-
tational cost.

3. For requiring the highest trustworthiness, the proof logging implementation
generates independently verifiable certificates of optimality.

The high-efficiency VieClus suggests that network analysis based on optimal
modularity is more tractable than previously thought. Simultaneously, our ad-
vances in MaxSAT solving with proof logging provide a rigorous foundation when
verification is crucial. Future work should explore extending proof logging capa-
bilities to larger networks while maintaining reasonable computational overhead,
like integrating the tuning techniques into the (Max)SAT solving [33].

Acknowledgements

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97629-2_3

https://dx.doi.org/10.1007/978-3-031-97629-2_3
https://dx.doi.org/10.1007/978-3-031-97629-2_3

This work was funded by the European Union’s Horizon 2020 research
and innovation program under the Maria Skłodowska-Curie grant agree-

ment No. 101034440, project PID2022-138506NB-C21 (Ministerio de Ciencia e
Innovación), and project 10.55776/P36420 (Austrian Research Funds). The full
MaxSAT encoding is based on an encoding developed in Rupert Ettrich’s Bach-
elor’s Thesis, TU Wien, 2020. The authors also thank Jakob Nordström and
Andy Oertel for assisting with VeriPB proof logging.

References

1. Ansótegui, C., Levy, J.: On the modularity of industrial SAT instances. In: CCIA
2011. FAIA vol. 232, pp. 11–20. IOS Press (2011).

2. Aref, S., Chheda, H., Mostajabdaveh, M.: The Bayan algorithm: Detecting com-
munities in networks through exact and approximate optimization of modularity.
CoRR abs/2209.04562 (2022). https://doi.org/10.48550/ARXIV.2209.04562

3. Aref, S., Mostajabdaveh, M.: Dataset of synthetic modular graphs from LFR
and ABCD benchmark models for community detection. Figshare (2023).
https://doi.org/10.6084/m9.figshare.24257293.v1

4. Aref, S., Mostajabdaveh, M.: Analyzing modularity maximization in approxima-
tion, heuristic, and graph neural network algorithms for community detection. JCS
78, 102283 (2024). https://doi.org/10.1016/J.JOCS.2024.102283

5. Aref, S., Mostajabdaveh, M., Chheda, H.: Heuristic modularity maximization al-
gorithms for community detection rarely return an optimal partition or anything
similar. In: ICCS 2023. LNCS vol. 14076, pp. 612–626. Springer (2023).

6. Biedermann, S., Henzinger, M., Schulz, C., Schuster, B.: Memetic graph clustering.
In: SEA 2018. LIPIcs, vol. 103, pp. 3:1–3:15. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik (2018). https://doi.org/10.4230/LIPICS.SEA.2018.3

7. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfold-
ing of communities in large networks. JSTAT 2008(10), P10008 (2008).
https://doi.org/10.1088/1742-5468/2008/10/P10008

8. Bonald, T., Charpentier, B., Galland, A., Hollocou, A.: Hierarchical graph cluster-
ing using node pair sampling. In: MLG (2018).

9. Bouguessa, M., Missaoui, R., Talbi, M.: A novel approach for detecting
community structure in networks. In: ICTAI 2014. pp. 469–477 (2014).
https://doi.org/10.1109/ICTAI.2014.77

10. Brandes, U., Delling, D., Gaertler, M., Görke, R., Hoefer, M., Nikoloski, Z.,
Wagner, D.: On modularity clustering. IEEE TKDE 20(2), 172–188 (2008).
https://doi.org/10.1109/TKDE.2007.190689

11. Clauset, A., Newman, M.E.J., Moore, C.: Finding community struc-
ture in very large networks. Physical Review E 70, 066111 (2004).
https://doi.org/10.1103/PhysRevE.70.066111

12. Dinh, T.N., Thai, M.T.: Toward optimal community detection: From
trees to general weighted networks. Internet Math. 11(3), 181–200 (2015).
https://doi.org/10.1080/15427951.2014.950875

13. Esfahanian, A.H.: Connectivity algorithms. Topics in structural graph theory pp.
268–281 (2013)

14. Even, S.: Graph Algorithms. WH Freeman & Co. (1979)
15. Freeman, L.C.: A set of measures of centrality based on betweenness. Sociometry

40(1), 35–41 (1977). https://doi.org/10.2307/3033543

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97629-2_3

https://dx.doi.org/10.1007/978-3-031-97629-2_3
https://dx.doi.org/10.1007/978-3-031-97629-2_3

16. Gocht, S., McCreesh, C., Nordström, J.: Veripb: The easy way to make your com-
binatorial search algorithm trustworthy. In: CPTAI workshop at CP (2020).

17. Hagberg, A.A., Schult, D.A., Swart, P.J.: Exploring network structure, dynamics,
and function using NetworkX. In: SciPy 2008. pp. 11–15. (2008)

18. Ignatiev, A., Morgado, A., Marques-Silva, J.: PySAT: A Python toolkit
for prototyping with SAT oracles. In: SAT 2018. pp. 428–437 (2018).
https://doi.org/10.1007/978-3-319-94144-8_26

19. Kammer, F., Täubig, H.: Connectivity, pp. 143–177. Springer (2005).
https://doi.org/10.1007/978-3-540-31955-9_7

20. Leicht, E.A., Newman, M.E.J.: Community structure in directed networks. Phys.
Rev. Lett 100, 118703 (2008). https://doi.org/10.1103/PhysRevLett.100.118703

21. Li, J., Lai, S., Shuai, Z., Tan, Y., Jia, Y., Yu, M., Song, Z., Peng, X.,
Xu, Z., Ni, Y., Qiu, H., Yang, J., Liu, Y., Lu, Y.: A comprehensive re-
view of community detection in graphs. Neurocomputing 600, 128169 (2024).
https://doi.org/https://doi.org/10.1016/j.neucom.2024.128169

22. Li, P., Huang, L., Wang, C., Lai, J.: Edmot: An edge enhancement approach
for motif-aware community detection. In: KDD 2019. pp. 479–487. ACM (2019).
https://doi.org/10.1145/3292500.3330882

23. Moscato, P., Cotta, C.: A gentle introduction to memetic algorithms. In: Hand-
book of Metaheuristics, ISOR vol. 57, pp. 105–144. Kluwer / Springer (2003).
https://doi.org/10.1007/0-306-48056-5_5

24. Nascimento, M.C., de Carvalho, A.C.: Spectral methods for
graph clustering – A survey. EJOR 211(2), 221–231 (2011).
https://doi.org/https://doi.org/10.1016/j.ejor.2010.08.012

25. Newman, M.E.J., Girvan, M.: Finding and evaluating commu-
nity structure in networks. Physical Review E 69, 026113 (2004).
https://doi.org/10.1103/PhysRevE.69.026113

26. Newman, M.: Networks. Oxford University Press, 2nd edn. (2018)
27. Paxian, T., Reimer, S., Becker, B.: Pacose: An iterative SAT-based MaxSAT solver.

MaxSAT Evaluation 2018, 20 (2018)
28. Peixoto, T.P.: The Netzschleuder network catalogue and repository (2023).

https://doi.org/10.5281/zenodo.7839981
29. Sobolevsky, S., Belyi, A.: Graph neural network inspired algorithm for un-

supervised network community detection. Appl. Netw. Sci. 7(1), 63 (2022).
https://doi.org/10.1007/S41109-022-00500-Z

30. Sobolevsky, S., Campari, R., Belyi, A., Ratti, C.: General optimization technique
for high-quality community detection in complex networks. Physical Review E 90,
012811 (2014). https://doi.org/10.1103/PhysRevE.90.012811

31. Traag, V., Waltman, L., van Eck, N.J.: From Louvain to Leiden: guaran-
teeing well-connected communities. Nature Scientific Reports 9(5233) (2019).
https://doi.org/10.1038/s41598-019-41695-z

32. Vinh, N.X., Epps, J., Bailey, J.: Information theoretic measures for clusterings
comparison: Variants, properties, normalization and correction for chance. JMLR
11(95), 2837–2854 (2010).

33. Xia, H., Szeider, S.: SAT-Based tree decomposition with itera-
tive cascading policy selection. In: AAAI 38(8), 8191–8199 (2024).
https://doi.org/10.1609/aaai.v38i8.28659

34. Zhang, P., Moore, C.: Scalable detection of statistically significant communities
and hierarchies, using message passing for modularity. Proc. Natl. Acad. Sci. U.S.A
111(51), 18144–18149 (2014)

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97629-2_3

https://dx.doi.org/10.1007/978-3-031-97629-2_3
https://dx.doi.org/10.1007/978-3-031-97629-2_3

