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Abstract. Multiplexes (also termed Multilayer Networks or networks of
networks) are useful for modeling data sets with multiple entity types, and
relationships among them. The notion of a community is well-defined for
simple graphs (or a monoplex/network) and is widely used for aggregate
analysis on graphs. Several simple graph algorithms (e.g., Infomap, Lou-
vain) for computing a community and algorithms for computing other
metrics (e.g., centrality, substructure, etc.) exist as well. Although mul-
tilayer networks (MLNs) are used for modeling, the concept of a com-
munity and algorithms for its computation are lacking. Ideally, an MLN
community definition should be comparable to the simple graph def-
inition and be a generalization. As MLNs have structure in terms of
layers, including inter-layer edges, it is important to define a commu-
nity that includes its structure and semantics. The resulting community
should also be an MLN. The focus of this paper is on heterogeneous MLN
(or HeMLN), which is a type of MLN with explicitly defined inter-layer
edges.

In this paper, we introduce a community definition for HeMLNs that is
structure-preserving and is also consistent with the traditional definition.
Layer semantics are also preserved for drill-down and visualization. First,
we define a community for any k connected layers of a HeMLN (termed
k-community3) using binary composition. Then, we propose an algorithm
for its computation using the concept of bipartite graphs. Further, we
show how weight metrics can be customized to include the semantics
of participating community characteristics. Our definition: i) leverages
extant simple graph community computation algorithms, ii) composes
partial results from different layers for computing HeMLN communities
(i.e., uses the decoupling approach), iii) is customizable using weight
metrics based on participating communities, and iv) is computationally
efficient. We have experimentally validated the community concept (def-
inition and computation) on several real-world and synthetic data sets.

Keywords: Community Definition and Detection · Heterogeneous Mul-
tilayer Networks · Decoupling Approach · Structure and Semantic Preser-
vation

3 1-community is the same as the traditional community on a simple graph or a layer
of HeMLN.
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1 Motivation

As data sets become more complex in terms of the number and types of enti-
ties and relationships, approaches for their modeling and analysis also warrant
extensions or new alternatives to match the data set complexity. With the ad-
vent of social networks and large data sets, we have already seen a surge in the
use of graphs for modeling, along with a renewed interest in concepts, such as
community, substructures, and centrality (e.g., hubs) being used for analysis.

Fig. 1: Homogeneous and Heterogeneous MLNs

Informally, Multilayer Net-
works (or MLNs) are layers
of networks where each layer
is a simple graph capturing
the relationship semantics be-
tween two entity instances (ei-
ther of the same or differ-
ent type) using an edge. Enti-
ties from different layers can
also be connected. If each
MLN layer has a common
subset of entities of a single
type, it is termed a homoge-
neous MLN (or HoMLN.) For
HoMLN, intra-layer edges are
shown explicitly and inter-
layer edges are considered implicit (and hence not shown.) For example, US
cities are linked based on a direct flight between them operated by a specific
airline (Fig. 1 (a)). On the other hand, if the entity types are different for each
layer, then relationships between entities across layers are shown using explicit
inter-layer edges. This distinguishes a heterogeneous MLN (or HeMLN) from the

Fig. 2: Decoupling Approach: Compute 3-community
((G2 Θ2,1 G1) Θ2,3 G3) ωe

previous one. For ex-
ample, relationships
among actors (con-
nected based on co-
acting), directors (con-
nected if they direct
movies of similar gen-
res), and movies (re-
lated by pre-defined
average rating ranges)
are modeled through
a heterogeneous MLN
(Fig. 1 (b)). The
inter-layer edges represent the relationship across layers, such as directs-movie,
directs-actor, and acts-in-movie (not illustrated). Our focus, in this paper, is on
HeMLNs.
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For aggregate computations on MLNs, a novel decoupling approach has been
proposed in [23,18,22]. Figure 2 shows the decoupling approach. Three layers
and their inter-layer connections are shown. HeMLN community computation is
accomplished by combining communities from two layers of a HeMLN using a
binary composition function (Θ) and is extended to k layers by composing the
result with additional layers one at a time. Figure 2 also shows how a 3-layer
HeMLN community is expressed for computation. Composing partial results
from individual (or previously computed) layers is central to the efficiency of the
approach as elaborated in Section 7. This approach also preserves the structure
of the MLN and its semantics for drill-down and visualization.

The contributions of this paper are shown below with related work in Sec-
tion 2 and conclusions in Section 8.

– Definition and some properties of k-community for a HeMLN (Section 3),
– Composition function for k-community computation (Section 4),
– A new bipartite match algorithm for composition (Section 5),
– Experimental analysis to establish the validity of the proposed approach

along with performance analysis (Sections 6 and 7)

2 Related Work

As this paper focuses on the HeMLN community definition and its efficient detec-
tion, we present relevant work on simple graphs and HeMLNs. The advantages
of modeling using MLNs are discussed in [4,23,15,14,20].

Community detection on a simple graph involves identifying groups of ver-
tices that are more connected to each other than to other vertices in the net-
work. Most of the work in the literature considers single networks or simple
graphs where this objective is translated to optimizing network measures such
as modularity [3], conductance [16] or map equation [6]. As the combinatorial
optimization of community detection is NP-complete [7], many competitive ap-
proximation algorithms and deep learning based methods have been developed
(see reviews in [11,25,13].) Algorithms for community detection have been devel-
oped for different types of input graphs, including directed, edge-weighted, and
dynamic networks. However, to the best of our knowledge, there is no commu-
nity definition for HeMLNs, let alone its computation that preserves structure
along with node and edge labels for drill-down (semantics).

The majority of the work on analyzing HeMLN (reviewed in [24,26,5]) focuses
on developing meta-path based techniques for determining clustering, similarity
of objects, classification of objects, predicting the missing links, ranking/co-
ranking, and recommendations.

The type-independent [8] and projection-based [2] approaches used for ground
truth (GT) for HeMLNs use the existing community definition and do not pre-
serve the structure or semantics of the community. Both approaches, in slightly
different ways, conflate layers into a simple graph keeping all nodes and edges
(including inter-layer edges) sans their types and labels. This has been shown
to result in information loss [15]. Most of the community detection work in
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MLNs has focused on homogeneous MLNs, where the common set of nodes is
present in each layer ([14,12,21]). However, the presence of different sets of en-
tities in each layer and the presence of intra- and inter-layer edges make the
structure-preserving definition more challenging for HeMLNs and also warrants
an alternate technique (the decoupling approach.) A few existing works have
proposed techniques for generating clusters of entities [17,10], but they have
only considered the inter-layer links and not the networks themselves.

This paper fills the gap by providing a clear new formal definition of commu-
nity for HeMLNs that is structure- and semantics-preserving. This definition can
be shown to be similar to the traditional modularity definition for communities.
A distinct advantage of the definition and the use of the decoupling approach is
that it leverages existing community detection algorithms (and several of them
are currently available.) Infomap and Louvain are more popular than others.
This paper also established the efficiency of the decoupling approach for HeMLN
community detection.

3 Community Definition for a HeMLN

3.1 Multilayer Networks: Notations used in the paper

We start with a formal multilayer network definition that covers both homoge-
neous and heterogeneous networks.

Gi(Vi, Ei) Simple Graph for layer i
Xi,j(Vi, Vj , Li,j) Bipartite graph of layers i and j

MLN(G,X) Multilayer Network of layer graphs (set G)
and Bipartite graphs (set X )

Ψ Analysis function for Gi (community)
Θi,j Proposed Maximum Weighted Bipartite

Coupling (MWBC) function
CBGi,j Community Bipartite Graph for Gi and Gj

Ui Meta nodes of layer i 1-community
L′

i,j Meta edges between Ui and Uj

cmi mth community of Gi

vcm

i , ec
m

i Vertices and Edges in community cmi

Hm
i Hubs in cmi

Hm,n
i,j Hubs in cmi connected to cnj

xi,j {Expanded (meta edge < cmi , cnj >)}
0 and ϕ null community id and empty xi,j

ωe, ωd, ωh Weight metrics for meta edges (see Section 5)

Table 1: Notations used in this paper

Formally, a multilayer
network, MLN(G,X), is
defined by two sets of
graphs: (i). The set G =
{G1, G2, . . . , GN} contains
graphs of N individual lay-
ers L = {L1, L2, . . . , LN}
each of which is a simple
graph, where Gi(Vi, Ei) is
defined by a set of ver-
tices, Vi and a set of edges,
Ei. An edge e(v, u) ∈
Ei, connects vertices v
and u, where v, u ∈ Vi

and (ii). A set X =
{X1,2, X1,3, . . . , XM−1,M} of
bipartite graphs. Each bi-
partite graph Xi,j(Vi, Vj , Li,j)

is defined by two sets of vertices Vi and Vj , and a set of edges (also called links or
inter-layer edges) Li,j , such that for every link l(a, b) ∈ Li,j , a ∈ Vi and b ∈ Vj ,
where Vi (Vj) is the vertex set of graph Gi (Gj .) For a HeMLN (the focus of this
paper), X is explicitly specified. Without loss of generality, we assume unique
numbers for nodes across layers and disjoint sets of nodes across layers.
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Our definition of community for a HeMLN uses communities from each layer
and inter-layer edge connection strength between communities across layers ex-
pressed as a weight. One of the weights (number of inter-layer edges) is com-
patible with the simple graph definition of a community. In addition, coupling
alternatives can be formulated for the same Θ to provide multiple (or a family
of ) community definitions that can be used for different analysis objectives as
needed. Finally, the framework is extensible in that it allows one to propose
additional parameters (or weights) to customize for a specific data set or a set
of analysis objectives. Furthermore, it also preserves the structure and seman-
tics due to composition using the decoupling approach which is also shown to
be computationally efficient (see Section 7). Table 1 lists notations used in the
paper for quick reference.

3.2 Definition of HeMLN Community

A Community Bipartite Graph or CBGi,j(Ui, Uj, L′i,j) is defined between
two disjoint and independent communities Ui and Uj . Each element of Ui (Uj)
is a community from Gi (Gj) that is represented as a single meta node. L′i,j is
the set of meta edges between the nodes of Ui and Uj (or bipartite graph edges.)
For any two meta nodes, a single edge is used for L′i,j , if there is at least one
inter-layer edge between any pair of nodes from the corresponding communities
(acting as meta nodes in CBG) in layers Gi and Gj . The strength (or weight)
component of the meta edges is elaborated in Section 5.

For a layer graph, a 1-community is the same as the traditional commu-
nities identified using any of the community detection algorithms. A HeMLN
community for 2 layers (termed 2-community) is formally defined using the
community bipartite graph CBGi,j(Ui, Uj, L′i,j) corresponding to layers Gi and
Gj . A 2-community is a set of tuples each with a pair of elements < cmi , cnj >,
where cmi ∈ Ui and cnj ∈ Uj , that satisfy the Maximum Weighted Bipartite Cou-
pling (MWBC) (composition function Θ) for the bipartite graph of Ui and Uj ,
along with the set of inter-layer edges between them (denoted by xi,j .) The idea
is to obtain the group(s) of nodes that are tightly coupled within and across
layers. The pairing is done from left-to-right (as it is not commutative) and a
single community from the left layer can pair with zero or more communities
from the right layer. That is, one-to-many or many-to-one pairings are possible,
unlike traditional bipartite matching.

A HeMLN community of k connected layers, termed k- community
is defined as the application of 2-community definition recursively to compute
k-community. The 2-community definition can be applied to t1-community and
t2-community to generate a (t1+t2)-community. The base case corresponds to
applying the definition of 2-community for 2 layers t1 and t2. This applies to
any expression with precedence. For sinplicity, we discuss the left-to-right com-
putation of k-community.

For a left-to-right computation, the base case is applied to the first 2 layers.
For each recursive step, there are two cases for the 2-community under consider-
ation: i) the Ui is from a layer Gi already in the t-community and the Uj is from
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a new layer Gj . This bipartite graph match is said to extend a t-community
(t < k) to a (t+1)-community, or ii) both Ui and Uj from layers Gi and Gj ,
respectively are already in the t-community. This bipartite graph match is said
to update a t-community (t < k), not extend it.

(Gleft, Gright) outcome Effect on tuple t
case (i) - one processed and one new layer

a) consistent match Copy & Extend t with paired
community id and xi,j

b) no match Copy & Extend t with 0 and ϕ

case (ii) - both are processed layers
a) consistent match Copy & Update t only with x
b) no match Copy & Update t only with ϕ
c) inconsistent match Copy & Update t only with ϕ

Table 2: Cases and outcomes for MWBC (Algo. 1)

For both cases i) and
ii) above, two outcomes are
possible. A meta node from
Ui either, a) matches one
or more meta nodes in Uj

resulting in one (or many)
consistent match, or b)
does not match a meta
node in Uj resulting in a no
match. However, for case
ii) a third possibility exists which can be characterized as c) matches a node in
Uj that is not consistent with a previous match, termed inconsistent match.
Since both communities have already been matched, a previous match exists
(either consistent or no match). If the current match is not the same, then it is
an inconsistent match.

Structure preservation is accomplished by retaining, for each tuple of t-
community, either a matching community id (or 0 if no match) and xi,j (or
ϕ for the empty set) representing inter-layer edges corresponding to the meta
edge between the meta nodes (termed expanded(meta edge).) The extend
and update carried out for each of the outcomes on the representation is listed
in Table 2. Note that due to multiple pairing of nodes during any composition,
the number of tuples (or t-communities) may increase. Copying is used to deal
with multiple pairings. In general, each element of a k-community can be total or
partial. A partial k-community element has at least one ϕ or 0 as part of
the tuple. Otherwise, it is a total k-community element. Any k-community
that is total reflects a stronger coupling as it includes all inter-layer edges for
those communities (as is the case of M-A-D-M in Figure 6 (b) in Section 7.)

3.3 Characteristics of k-community

To clearly understand, a HeMLN can be viewed as a simple graph (termed
HeMLN-graph) with each HeMLN layer being a node and the inter-layer edges
between layers denoted by a weighted edge between corresponding nodes. Then,
a k-community can be specified over any connected subgraph of this HeMLN-
graph. Case i) above corresponds to a k-community of an acyclic subgraph, and
case ii) to a k-community of a cyclic subgraph of the HeMLN-graph. For both,
the number of compositions will be determined by the number of edges in the
connected subgraph and can be more than the number of layers (or nodes). Also,
for both cases, MWBC results in one of the 3 outcomes: a consistent match, no
match, or an inconsistent match (only for case (ii)) as shown in Table 2.

The above definition when applied to a specification (such as the one shown
in Figure 3 generates progressively strong coupling of communities between layers
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Fig. 3: Illustration of order dependence on a k-community

(due to left-to-right precedence of Θ) using MWBC. Thus, our definition of a
k-community is characterized by dense connectivity within the layer (community
definition) and strong coupling across layers (comparable to community defini-
tion captured by MWBC semantics.) Hence, we believe, that this definition of
k-community matches or comes close to the original modularity intuition [19]
of a community4 for a simple graph (see Table 3). By refining the edge weight
using participating community characteristics, a family of community definitions
is supported that can be customized.

HeMLN Type-Independent Decoupling
IMDb 0.77696 0.643508
DBLP 0.694208 0.694208

Table 3: Community modularity comparison:
Type-independent vs. Proposed definitions

For the evaluation purpose,
we used the IMDb (layer details
are shown in Table 4 of section 7)
and DBLP HeMLNs. For IMDb,
we have used the Actor and Director layers with their inter-layer edges. For
DBLP, we have used the Author and Paper layers with their inter-layer edges.
For composition, we have used the metric ωe that takes into account the num-
ber of inter-layer edges between the layer-wise communities while performing the
matching. This metric is closest to the traditional definition as type-independent
aggregation does not consider any other layer-wise community characteristics.

4 Modularity is a measure of the structure of a network or a graph which measures
the strength of division of a network into modules (also called groups, clusters or
communities). Networks with high modularity have dense connections between the
nodes within modules but sparse connections between nodes in different modules.
Similarly, in our definition, we pair the communities between two layers based on the
inter-layer edge strength connected to that pair (of all pairs), and hence the pairs
produced have dense connections within and across two layers. Here the modularity
of the HeMLN is based on the dense coupling between the dense communities of
layers as compared to all possible inter-layer couplings.
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Table 3 shows the modularity values5 for the decoupling approach and the type-
independent approach. As can be seen they are identical for DBLP and very close
for IMDb. Hence, our community definition, apart from preserving the structure
and semantics, generates communities whose quality, based on modularity is
comparable to the type-independent communities.

Need for a new pairing algorithm. In a traditional bipartite graph (used
for dating, hiring, etc.), each node is atomic. The goal is to find the maximum
number of matches (bipartite edges) such that no two matches share the same
node. Hence, a node from one set is paired with at most one node from the other
set. To accommodate multiple edges, weights are needed without changing the
pairing semantics [9].

In contrast, each node of our bipartite graph is a meta node (non-atomic and
corresponds to a community) and the bipartite edge is also a meta edge (set of
edges between two communities). Each meta node, in our case, is a community
representing a group of entities (layer nodes) with additional characteristics.
Each meta edge needs to, at the least, capture the number of edges in that meta
edge (i.e., inter-layer edges.) The number of edges between the meta nodes is one
of the edge weights (ωe) proposed, which corresponds to the traditional intuition
behind a community.

Since edge weights play a significant role in the matching and are also used as
a mechanism for determining the strength of the coupling of communities across
layers, edge weights can be leveraged to include participating community char-
acteristics. In addition to ωe, it is possible to bring in participating community
characteristics to capture additional aspects of coupling. This can be done by
defining different edge weights to capture different characteristics of the partici-
pating communities. We have used hub participation from communities and the
density of participating communities as weight alternatives.

Fig. 4: Illustration of Traditional and
Relaxed Pairings on a weighted bipar-
tite graph

For pairing nodes of the bipartite
graph, since traditional approaches
are not suited for our coupling, we
propose an edge weight-based cou-
pling that reflects the semantics of
the community. Each node from the
first set is paired with zero or more
nodes from the second set solely based
on the outgoing edge weights of that
node. This is repeated for each node

from the first set. Most importantly, unlike current alternatives in the MLN com-
munity literature, there is no information loss or distortion or hiding the effect
of different entity types or relationships in our definition.

Figure 4 provides an example of a bipartite graph to illustrate multiple types
of pairings appropriate for MLN communities. MWM (Maximum Weight Match-

5 A modularity value greater than 0.5 is considered acceptable. Modularity value close
to 1 indicates strong community structure, whereas a value close to 0 indicates that
the community structure is not better than random.
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ing); MWMT (MWM with Ties); MWPM (Maximum Weight Perfect Match);
MWRM (Maximum Weight with Relaxed Matching).

4 HeMLN k-Community Computation

Algorithm 1 accepts a linearized specification of a k-community and computes
the result as described earlier. The output is a set whose elements are tuples cor-
responding to distinct, single HeMLN k-community for that specification. Fig-
ure 3 shows 2- and 3-community example results computed using this algorithm.

Algorithm 1 HeMLN k-community Detection Algorithm
Require: -

INPUT: HeMLN, (Gn1 Θn1,n2 Gn2 ... Θni,nk Gnk), and a weight metric (ω).
OUTPUT: Set of distinct k-community tuples

1: Initialize: k=2, Ui = ϕ, Uj = ϕ, result′ = ∅
result ← MWBC(Gn1,Gn2, HeMLN, ω)
left, right ← left and right subscripts of second Θ

2: while left ̸= null && right ̸= null do
3: Ui ← subset of 1-community(Gleft, result)
4: Uj ← subset of 1-community(Gright, result)
5: MP ← MWBC(Ui, Uj , HeMLN, ω) //a set of comm pairs < cpleft,c

q
right >

6: for each tuple t ∈ result do
7: kflag = false
8: if both cxleft and cyright are part of t and ∈ MP [case ii (processed layer): consistent

match] then
9: Update a copy of t with (xleft, right) and append to result′
10: else if cxleft is part of t and ∈ MP and Gright layer has been processed [case ii

(processed layer): no and inconsistent match] then
11: Update a copy of t with ϕ and append to result′
12: else if cxleft is part of t and for each cxleft ∈ MP [case i (new layer): consistent

match] then
13: copy and Extend t with paired cyright ∈ MP and xleft, right and append to result′;

kflag = true
14: else if cxleft is part of t and /∈ MP [case i (new layer): no match] then
15: copy and Extend t with 0 (community id) and ϕ and append to result′; kflag = true
16: end if
17: end for

left, right = next left, right subscripts of Θ or null
if kflag k = k + 1; result = result′; result′ = ∅

18: end while

The bipartite graph for the base case and each iteration is constructed for
the participating layers (either one is new or both are from the t-community for
some t) and MWBC algorithm is applied. The result obtained is used to either
extend or update the tuples of the t-community and add new tuples as well. All
cases are described in Table 2.

The algorithm iterates (lines 2 to 18) until there are no more compositions
to be applied. Line 5 computes the first 2-community. Lines 6 to 17 apply
the results of the MWBC (line 5) to generate tuples of the k-community using
the Table 2. Care is taken in the composition to make sure either the tuple is
updated or extended by keeping a flag and checking it after line 17. The order
of checking inside the for loop (lines 6 to 17) is important to generate the
correct k-community tuples.
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5 Customizing the Bipartite Graph

Without including the characteristics of meta nodes and edges for the match, we
cannot argue that the pairing obtained represents analysis based on participating
community characteristics. Hence, it is important to identify how qualitative
community characteristics can be mapped quantitatively to a weight metric (that
is, the weight of the meta edge in the community bipartite graph) to influence
the bipartite matching. Out of the three developed weight metrics based on
(number of inter-community edges (ωe), density (ωd), and hub participation
(ωh)), we detail only one weight metric due to space constraints below.

Hub Participation (ωh): For many analyses, we are interested in knowing
whether highly influential nodes within a community also interact across the
community. This can be translated to the participation of influential nodes within
and across each participating community for analysis. This is modeled by using
the notion of hub6 participation within a community and their interaction
across layers. In this paper, we have used degree centrality for this metric to
connote higher influence. The ratio of participating hubs from each community
and the edge fraction is multiplied to compute ωh. Formally,

For every (um
i , un

k ) ∈ L′i,k, where um
i and un

k are the meta nodes denoting the
communities, cmi and cnk in the CBG, respectively, the weight,

ωh(um
i , un

k) =
|Hm,n

i,k |
|Hm

i |
* |xi,k|
|vcm

i |∗|vcn

k |
*
|Hn,m

k,i |
|Hn

k |
,

where, xi,k = {(a, b) : a ∈ vc
m

i , b ∈ vc
n

k , and (a, b) ∈ Li,j}; Hm
i and Hn

k are set
of hubs in cmi and cnk , respectively; Hm,n

i,k is the set of hubs from cmi that are
connected to cnk ; Hn,m

k,i is the set of hubs from cnk that are connected to cmi .

6 Expressing Analysis Objectives on HeMLNs

We demonstrate how analysis objectives can be expressed as k-community com-
putations on HeMLNs. Also, depending on the analysis, appropriate weight met-
rics can be chosen. Due to space constraints, we are not discussing the results
for other real-world (like DBLP) and synthetic data sets.

IMDb data set [1]: The IMDb data set captures movies, TV episodes, actors,
directors, and other related information, such as rating. Some IMDb detailed
analysis objectives are listed below,

(A1) Based on the similarity of genres, for each director group which are the actor
groups whose majority of the most versatile members interact?
2-community: D ΘA,D A; ωh

6 High centrality nodes (or hubs) have been defined based on different metrics, such
as degree centrality (vertex degree), closeness centrality (mean distance of the ver-
tex from other vertices), betweenness centrality (fraction of shortest paths passing
through the vertex), and eigenvector centrality.
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(A2) For the most popular actor groups, for each movie rating class, find the
director groups with which they have maximum interaction and who also
direct movies with similar ratings.
Cyclic 3-community: M ΘM,A A ΘA,D D ΘD,M M; ωe

To address the IMDb analysis requirements, three layers for the IMDb data
set are generated. Layer A and Layer D connect actors and directors who act in
or direct similar genres frequently (intra-layer edges), respectively. Layer M con-
nects movies within the same rating range. The inter-layer edges depict acts-in-
a-movie (LA,M ), directs-movie (LD,M ) and directs-actor (LA,D) relationships.
There are multiple ways of quantifying the similarity of actors (directors) based
on the movie genres they have worked in. A vector was generated with the num-
ber of movies for each genre he/she has acted in (directed). To take into account
the frequency of genres in the similarity calculation, two actors (directors) are
connected if the Pearsons’ Correlation between their corresponding genre vec-
tors is ≥ 0.97. Moreover, 10 movie rating ranges are considered - [0-1), [1-2), ...,
[9-10].

For a specific analysis, the characteristics of the communities connected in
the bipartite graph need to be used as meta edge weight to get the desired
coupling.

For example, most popular in (A2) is interpreted as the higher number of
edges between the participating communities. In contrast, versatility is mapped
to the participation of hub nodes in each group as in (A1).

To compute a k-community, k needs to be identified. (A1) requires 2-community.
(A2) requires a cyclic 3-community using inter-layer relationships between all
layers in a particular order. Note that the analysis objectives have been cho-
sen carefully to cover the weights discussed in the paper. The limitation on the
number of analysis objectives is purely due to space constraints.

7 HeMLN Community Analysis on Real-World Data Sets

We would like to point out that the choice of data sets and sizes was mainly
to demonstrate the versatility of analysis using the k-community detection and
its efficiency as well as drill-down capability based on structure- and -semantics
preservation. We are not trying to demonstrate scalability in this paper. Also,
instead of presenting communities, we present a few important drill-down results
to showcase the structure and semantics preservation, and the general applica-
bility of our approach.

7.1 Experimental Setup and Data Sets

Due to the lack of real-world HeMLNs, we generated HeMLNs from data col-
lected/crawled from some well-known real-world domains. For IMDb HeMLN,
7 The choice of the coefficient is not arbitrary as it reflects relationship quality. The

choice of this value can be based on how actors (directors) are weighted against the
genres. We have chosen 0.9 for connecting actors (directors) in their top genres.
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we extracted, for the top 500 actors, the movies they have worked in (7500+
movies with 4500+ directors). The actor set was repopulated with the co-actors
from these movies, giving a total of 9000+ actors. For this set of actors, di-
rectors, and movies, the HeMLN with 3 layers described in Section 6 was built.
Widely used Louvain method ([3]) was used to detect layer-wise 1-communities8.
The k-community detection algorithm 1 was implemented in Python version 3.6
and was executed on a quad-core 8th generation Intel i5 processor Windows 10
machine with 8 GB RAM.

Actor Director Movie
#Nodes 9,485 4,510 7,951
#Edges 996,527 250,845 8,777,618
#Communities
(Size > 1)

63 61 9

Average Commu-
nity Size

148.5 73 883.4

#Inter-layer Edges
Actor-Director 32,033
Actor-Movie 31,422
Director-Movie 8,581

Table 4: IMDB HeMLN Statistics

Individual Layer Statistics: Table 4 shows the IMDb HeMLN statistics. 63
Actor (A) and 61 Director (D) communities based on similar genres are gener-
ated. Out of the 10 ranges (communities) in the movie (M) layer, most of the
movies were rated in the range [6-7), while the least popular rating was [1-2).
No movie had a rating in the range [0-1).

7.2 Analysis Results and Discussion

(A1) Analysis Results: 34 D-A (Director-Actor) similar genre-based com-
munity pairs were obtained, where the majority of the most versatile members
interact. Intuitively, a group of directors that prominently makes movies in some

Fig. 5: Sample (A1) Result for Romance, Comedy,
Drama

genre (say, Drama, Action,
Romance, ...) must pair up
with the group(s) of actors
who primarily act in similar
kinds of movies. Moreover,
a director group may work
with multiple actor groups
and vice-versa. For example,
in Figure 5, the sample re-
sult shows that the direc-
tor groups, D28 and D91,
with academy award win-
ners like Damien Chazelle
and Woody Allen, re-
spectively, pair up with

the actor group with members like Diane Keaton, Emma Stone, and
8 Louvain numbers all communities from 1 and we only consider communities having

at least two members for this paper. The numbering used in the paper has the layer
name followed by the Louvain-generated community ID (e.g. A91).
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Hugh Grant. Members from these groups are primarily known for movies from
the Romance, Comedy, and Drama genre.

Fig. 6: (A2) Result: 1 Total, 9 Partial Elements
(A2) Analysis Results: Here, the most popular actor groups for each movie
rating class are further coupled with directors. These director groups are coupled
again with movies to check whether the director groups also have similar rat-
ings. Results of each successive pairing (there are 3) are shown in Figure 6 (a)
using the same color notation. The coupling of movie and actor communities
(first composition) results in 10 consistent matches. When the base case is ex-
tended to the director layer (second composition) using all director communities
and the matched 4 actor communities, we get 4 consistent matches. The final
composition to complete the cycle uses 4 director communities and 9 movie com-
munities as left and right sets of community bipartite graph, respectively. Only
one consistent match is obtained to generate the total element (M3-
A144-D102-M3) for the cyclic 3-community (bold blue triangle.) The
resulting total element is from the Action, Drama genre as can be seen from
the sample members shown in Figure 6 (b). It is interesting to see 3 inconsistent
matches (red broken lines) between the communities, which clearly indicate that
all couplings are not satisfied by these pairs. These result in 9 partial elements.
The inconsistent matches also highlight the importance of mapping
an analysis objective to a k-community specification for computation.
If a different order had been chosen (viz., director and actor layer as the base
case), the result could have included the inconsistent matches.

7.3 Efficiency of Decoupling Approach

The goal of the decoupling approach was to preserve the structure as well as
improve the efficiency of k-community detection. We illustrate that with the
largest k-community we have computed which uses 3 iterations (including the
base case.) Fig. 7 shows the execution time for the one-time and iterative costs
discussed earlier for (A2). The difference in one-time 1-community cost for the
3 layers follows their density shown in Table 4. We can also see how the it-
erative cost is insignificant as compared to the one-time cost (by an order of
magnitude.) Iteration cost includes creating the bipartite graph, computing
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Fig. 7: Performance Results for cyclic 3-
community in (A2)

ωe for meta edges, and MWBC
cost. The cost of all itera-
tions together (0.515 sec)
is still almost an order
of magnitude less than
the largest one-time cost
(5.21 sec for Movie layer.)
We have used this case as
this subsumes all other cases.
The additional incremen-
tal cost for computing a
k-community is extremely
small validating the effi-
ciency of decoupled approach.

8 Conclusions

In this paper, we have provided a community definition for HeMLNs that is
consistent with the traditional definition and is structure preserving. This def-
inition can be applied to an arbitrary number of layers of a HeMLN. In fact,
with ω as a customizable parameter, this supports a family of definitions that
are customizable to analysis needs. We proposed a new bipartite match-based
composition function (MWBC algorithm) for the decoupling approach. We have
compared our results with the traditional ground truth using modularity to show
their compatibility. Finally, we used the proposed approach to demonstrate its
analysis versatility using the IMDb data set. In the future, we plan to extend
this work to weighted MLNs.
Acknowledgment: This work was supported by NSF awards CCF-1955798,
and CCF-1956373.
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