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Abstract. Advancing single-cell analysis requires tools that not only en-
able precise experimental measurements but also offer predictive capabil-
ities to guide device optimization and expand experimental possibilities.
This study addresses this need by developing a digital twin framework
for mechano-node-pore sensing (mechano-NPS), a high-throughput mi-
crofluidic platform for single-cell analysis. By creating a virtual replica
that integrates models of fluid dynamics and cellular behavior, the digital
twin serves as a critical tool for both device development and hypoth-
esis exploration. The foundation of the digital twin was established by
accurately modeling the fluid dynamics within the mechano-NPS device,
with simulations at various inlet pressures verified against analytical so-
lutions. To ensure biological relevance, cellular models were rigorously
tested to replicate key behaviors within the platform. The digital twin’s
performance was validated against experimental data, focusing on cell
velocity and whole cell deformation index (wCDI). While variances in
cell velocity highlighted systematic biases, the strong agreement of sim-
ulated wCDI with experimental results underscores the digital twin’s
reliability. This framework not only demonstrates the potential to en-
hance the mechano-NPS platform but also exemplifies how digital twins
can transform experimental approaches in cellular biology.
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1 Introduction

Microfluidic platforms have revolutionized cellular biology by enabling precise
single-cell analysis and integrating multiple processes within a single device,
paving the way for micro total analysis systems (µTAS) [1, 2]. However, the
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traditional strategy to developing these platforms is often highly involved, time-
intensive, and experimentally limiting, restricting their optimization and overall
impact [2, 3]. A digital twin framework for microfluidic devices addresses this
critical gap by creating a virtual replica that not only accelerates design and op-
timization but also provides detailed insights into physical phenomena that are
difficult or impossible to measure in conventional experimental setups. Compu-
tational modeling enables the exploration of key parameters such as velocity and
pressure fields, shear stresses and forces on the cell surface, and mass and heat
transfer [2]. For single-cell analysis, where microfluidic platforms currently offer
high throughput but limited measurable parameters, digital twins dramatically
expand the scope of accessible data. This integration enhances our understand-
ing of device functionality and the underlying pathophysiology, transforming
experimental microfluidic platforms into more versatile and informative tools
for cellular biology.

Optimizing device geometry and operating parameters is crucial for improv-
ing microfluidic platform performance. Digital twins facilitate rapid assessment
of numerous variables while ensuring efficient functionality. Computational stud-
ies have been utilized to identify optimal pillar spacings to improve device perfor-
mance [4], investigate the impact of pillar cross-sections and alignments on fluid
distribution in the device [5], and analyze the effect of inlet conditions for the
separation of circulating tumor cells (CTC) in a microfluidic chip [6]. In addition
to optimizing the operation parameters of a microfluidic device, computational
models are invaluable for investigating fluid flow properties that influence the
functionality of a microfluidic device, such as velocity distribution and fluid-
induced shear stress. These models have been used to replicate different shear
flow conditions in microfluidic devices [7] and to study the effects of shear stress
in cell cultures [8, 9].

Beyond fluid flow, computational models have played a significant role in
investigating cellular mechanics within microfluidic environments. For instance,
Esposito et al. employed three-dimensional (3D) numerical simulations to exam-
ine the influence of fluid inertia on cell softness in cylindrical and rectangular
microchannels, aiding in cell sorting based on mechanical characteristics [10]. Tan
et al. used immersed boundary methods to examine how cells squeeze through
micropores of varying sizes under different pressures, establishing cell deforma-
bility as a potential biomarker [11]. Similarly, Hynes et al. modeled CTCs as
rigid and deformable spheres within a bioprinted vascular chip to assess me-
chanical interactions [12]. Despite these advances, experimental limitations per-
sist in measuring critical cellular parameters such as stiffness and forces exerted
on the cells. Computational tools provide a crucial bridge, supplementing exper-
iments with in silico models to extract insights that would otherwise be inac-
cessible. For example, Deng et al. integrated computational modeling with an
inertial microfluidic cell stretcher (iMCS) to measure the isoshear modulus of cell
membranes, an elusive parameter in purely experimental setups [13]. Similarly,
Sadaat et al. combined microfluidic experiments with simulations to determine
the shear modulus of red blood cells (RBCs) [14]. However, these approaches
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Microfluidic Digital Twin for Enhanced Single-cell Analysis 3

often require high-speed imaging systems, making them costly and less accessi-
ble. The integration of digital twins with microfluidic devices presents a scalable
and cost-effective alternative, enhancing experimental capabilities while reducing
expensive hardware.
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Fig. 1. ((A) Fabricated microfluidic device for driving cells through a channel under
constant pressure. (B) Reconstructed geometry of the mechano-NPS platform with
segmented channels, DC voltage applied via outer electrodes, and current measured by
inner electrodes. (C) Digital twin simulating deformable cells and fluid flow using the
STL geometry and experimental pressure inputs.

This work establishes a digital twin framework for the microfluidic device
mechano-node-pore sensing (mechano-NPS), enhancing its single-cell analysis
capabilities while maintaining high fidelity. Mechano-NPS is a mechanopheno-
typing platform based on the Coulter-counter technique of particle counting
(Figure 1(A)) [15]. Unlike traditional high-speed optical techniques, mechano-
NPS achieves a remarkable throughput of 300-500 cells per minute without re-
lying on high-speed optical instruments or costly cameras [16]. Mechano-NPS
operates by measuring the modulated electrical currents across a microfluidic
channel segmented into nodes and pores (Figure 1(B)). The device includes a
narrow contraction region, forcing cells to squeeze through, allowing measure-
ment of key properties such as cell diameter, resistance to compressive defor-
mation, transverse deformation, and recovery time after deformation. A novel
whole cell deformability index (wCDI) quantifies cell stiffness, enabling differen-
tiation of cell lineage, chronological age, and stage of malignant progression in
human epithelial cells [16, 17]. Given its high throughput, cost-effectiveness, and
multiparametric capabilities, mechano-NPS is ideally suited for integration with
a digital twin to enhance its performance and expand its analytical capabilities.

To build the digital twin, we first verified the fluid flow within the device
by comparing simulation results with analytical solutions, ensuring accuracy in
modeling a fundamental aspect that directly influences cell behavior. This ro-
bust fluid flow model served as the foundation for further development. Next,
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we verified the computational representation of cellular behavior by comparing
simulated cell velocities against analytical solutions, demonstrating the model’s
ability to replicate experimental conditions and predict outcomes reliably. Fi-
nally, we validated the digital twin against experimental data comparing cell
velocity in different device segments and wCDI under various inlet conditions.

Through this work, we present a comprehensive digital twin framework for
mechano-NPS that extends its experimental reach and analytical power. By en-
abling measurement of additional parameters, rapid exploration of design mod-
ifications, and optimization of the device performance, this digital twin trans-
forms mechano-NPS into an even more powerful tool for single-cell analysis.
More broadly, this approach highlights the potential of digital twins in microflu-
idic research, paving the way for scalable, data-driven advancements in cellular
biomechanics.

2 Methods

2.1 Experimental Setup

The mechano-NPS platform is fabricated using soft lithographic techniques, as
previously published [16, 17]. Briefly, polydimethylsiloxane (PDMS) mold of the
mechano-NPS channel is cast from a silicon negative-relief master mold, the
height of which is approximately 20 µm. Once excised, the PDMS mold is bonded
to a glass substrate with pre-defined platinum electrodes and gold contact pads
that were fabricated using traditional lithography and electron-gun evaporation
(Figure 1(A)). As shown in the schematic of Figure 1(B), the mechano-NPS
channel is comprised of three regions: sizing, contraction, and recovery. The
sizing and the contraction segments are 800 µm in length, and the recovery
node-pores are each 285 µm in length. The nodes segment the overall channel to
provide spatio-temporal resolution and are 85 µm wide, and 50 µm long. Filters
are included at the inlet reservoir to exclude cell aggregates and cellular debris.
The dimensions of the channel were chosen to provide sufficient transit time
while maintaining a high signal-to-noise ratio (SNR).

Human promyelocytic (HL60) cells were introduced into the microfluidic
channel under two separate non-pulsatile pressures of 11 and 15 kPa. The modu-
lated current pulse produced by a cell transiting the mechano-NPS was measured
using a four-point probe. Current with respect to time was recorded, low-pass fil-
tered, and then processed with a custom-written code [18] to extract information
such as magnitude and duration for each pulse event for further analysis.

2.2 Computational Model

To develop a digital twin of mechano-NPS, we utilized the massively parallel
computational fluid dynamics solver HARVEY [19, 20] to simulate fluid dynam-
ics within a microfluidic device. Cells were explicitly modeled in the microfluidic
channel as shown in 1(C) to represent the HL60 cell line, incorporating five

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97626-1_20

https://dx.doi.org/10.1007/978-3-031-97626-1_20
https://dx.doi.org/10.1007/978-3-031-97626-1_20


Microfluidic Digital Twin for Enhanced Single-cell Analysis 5

different cell sizes to account for cellular heterogeneity. HARVEY implements
the lattice Boltzmann method (LBM) to solve the governing fluid equations,
whereas cells are modeled using the finite element method (FEM) and are cou-
pled to surrounding fluid using the immersed boundary method (IBM).

LBM for Fluid Flow LBM is a deterministic, mesoscopic approach that nu-
merically solves the Navier-Stokes equations by modeling fluid with a particle
distribution function. Fluid behavior is discretized using a fixed Cartesian lat-
tice, where the probability function fi(x, t) determines the probability of finding
a particle at lattice point x and time t with a discrete velocity ci [21]. The
evolution of the particles with an external force field is governed by [22]:

fi(x+ ci, t+ 1) =

(
1− 1

τ

)
fi(x, t) +

1

τ
feq
i (x, t) + Fi(x, t) (1)

where feq
i (x, t) is the Maxwell-Boltzmann equilibrium distribution and Fi is the

external force field. HARVEY employs a D3Q19 velocity discretization model
with the Bhatnagar–Gross–Krook (BGK) collision operator Ω = 1/τ , where τ is
the relaxation time which determines the relaxation of fi towards the equilibrium
distribution function feq

i . The kinematic viscosity, ν is linked to τ by ν = c2s(τ −
1/2) with a lattice speed of sound cs = 1/

√
3. The density ρ and the velocity

v are calculated respectively as the 0th and the 1st moment of the distribution
function, which are then used to calculate the equilibrium distribution function
feq
i (x, t). The external force Fi(x, t) that accounts for the body force imparted

by the cell on the fluid is calculated by applying Guo’s forcing scheme [23]. At
the walls, no-slip condition is enforced using the halfway bounce-back boundary
conditions whereas a constant density at the inlets and outlets is applied using
a Zou-He like algorithm adapted to the D3Q19 velocity discretization [24]. The
fluid is simulated with a density of 1000 kgm−3 and a viscosity of 0.89 mPa.s at
a lattice grid spacing of 0.125 µm.

FEM for Deformable Cells Deformable cells are modeled as fluid-filled cap-
sules with a triangulated membrane of zero thickness having an initial spherical
shape [25, 20] using FEM. For simplicity, the cytoplasm is considered an incom-
pressible Newtonian fluid having the same kinematic viscosity as the ambient
fluid representing the cytoskeleton while neglecting the nucleus. The cell mem-
brane is modeled to be isotropic and hyperelastic which follows the Skalak con-
stitutive law for resisting shear and area dilation [26]. The strain energy function
is given by:

Ws =
Gs

4
[(I21 + 2I1 − 2I2) + CI22 ] (2)

where Gs is the shear elastic modulus, I1 and I2 are the strain invariants of
the Green strain tensor, and C is the ratio of dilation to shear modulus. The
membrane’s resistance to bending is implemented using the Helfrich formulation
[27]. The HL60 cells were modeled with a shear elastic modulus, Gs, of 2.25 ×
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10−4 Nm−1 and a bending modulus, Eb, of 1 × 10−18 J to match the behavior
of the cell observed experimentally.

IBM for Coupling To account for the interaction of the cell with the ambient
fluid, the Lagrangian grid of the FEM cell model is coupled to the Eulerian grid
of LBM by applying IBM [28]. Here, three components of IBM are implemented
with the following sequence: interpolation, updating, and spreading. At first, to
determine the cell membrane deformation, Lagrangian membrane velocity V is
interpolated from the Eulerian velocity v with a three-dimensional Dirac delta
function δ having four-point support as follows:

V(X, t) =
∑
x

vδ(x−X(t)) (3)

where X is the vertex location of the Lagrangian grid and x is the fluid lattice
location in the Eulerian grid. Next, we update the position of the cell vertex with
a no-slip condition, assuming unit timesteps. Lastly, the forces calculated at each
Lagrangian vertex G are spread onto the surrounding Eulerian grid using the
same delta function:

g(x, t) =
∑
X

G(X, t)δ(x−X(t)) (4)

3 Results and Discussions

3.1 Verification of fluid flow in microfluidic digital twin against
analytical solution

Accurate fluid flow modeling within mechano-NPS is essential for ensuring the
validity of the digital twin, as fluid dynamics directly influence cell velocity and
deformation. As an initial verification step, we simulated fluid-only flow within
the microfluidic device using our LBM-based model, excluding device filters from
the simulation. As these filters do not induce a pressure drop and only serve to
prevent cell aggregates or debris from clogging the entrance of the sizing pore,
their omission does not affect the core flow dynamics. The fluid flow was ana-
lyzed at two different inlet pressures: 11 and 15 kPa. Upon convergence of the
flow, we assessed the magnitudes of pressure and velocity along the centerline
of the device, as shown in Figures 2(A) and ref fig:fluidprofile(B). The pres-
sure profiles demonstrated a steady decline from the inlet pressure to zero at
the outlet, with a consistent slope throughout each section. As expected, the
most significant pressure drop occurred within the contraction pore, where the
channel narrows, while the wider node sections exhibited minimal pressure vari-
ations. This behavior is characteristic of Poiseuille flow, confirming the expected
pressure distribution.

The velocity profile demonstrated a consistent magnitude within each section
of the device, aligning qualitatively with Poiseuille flow characteristics. At both
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Fig. 2. (A) Pressure and (B) Velocity profiles across the mechano-NPS platform mod-
eled with the digital twin at inlet pressures of 11 kPa and 15 kPa.

11 kPa and 15 kPa inlet pressures, the sizing and recovery pores exhibited similar
velocities due to their identical dimensions. In contrast, the contraction pore,
being the narrowest section, exhibited the highest velocities, while the nodes
showed minimal velocity, as illustrated in Figure 2(B). To quantitatively verify
the simulated fluid velocity, we compared our results to the analytical velocity
profile of Poiseuille flow. Our analysis concentrated on two critical segments: the
sizing pore, where cells move freely, and the contraction pore, where significant
cell deformations occur. Given that the recovery pores mirror the sizing pore
in design, they exhibit identical velocity characteristics, making the sizing pore
analysis representative of both regions. The longitudinal velocity profile for a
rectangular channel is given by [29]:

ux(y, z) =
16a2

µπ3

(
−dp

dx

) ∞∑
i=1,3,5,...

(−1)(i−1)/2

[
1− cosh(iπz/2a)

cosh(iπb/2a)

]
cos(iπy/2a)

i3
.

(5)
In Equation (5), a and b are the two widths of the rectangular cross-section,
with −a ≤ y ≤ a and −b ≤ z ≤ b, so the centerline velocity can be found
by setting y = z = 0. x is the flow direction, so −dp/dx is the pressure gradi-
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Fig. 3. Comparison of simulated velocities in (A) sizing and (B) contraction pores with
analytical results.

ent driving the flow. The above equation gives a relation between the pressure
gradient and the longitudinal velocity. Therefore, after obtaining the pressure
gradient from Figure 2(A), we could calculate the analytical centerline velocity
using Equation (5) for both the sizing and the contraction pores. The simulated
velocity profiles closely matched the analytical solutions, with a percentage error
of less than 4% at both 11 kPa and 15 kPa (Figure 3). This strong agreement
confirms the accuracy of our fluid flow model, establishing a robust foundation
for subsequent simulations involving cellular transport and deformation.

3.2 Verification of simulated cell velocity in a square channel and
the sizing pore

To verify the accuracy of the cell velocity modeling, we performed simulations of
cells moving through a fluid-filled square channel and compared the results with
analytical solutions from [30], which were previously validated against experi-
mental data. For this study, we constructed a square channel with a side length
of 20 µm and a longitudinal length of 350 µm, replicating the dimensions used in
the experimental validation.Three cell diameters: 10, 14, and 17 µm were studied
in the square channel. Given the fluid and cell parameters, the Reynolds number
and the size ratio between the cells and the channel closely resemble those within
the sizing pore of the microfluidic device. Therefore, simulations conducted in
the square channel serve as appropriate validation tests for assessing the digital
twin’s ability to accurately capture the physics within the sizing pore.

Figure 4 compares the simulated and analytical results for cell mobility. The
horizontal axis represents the cell-to-channel size ratio, while the vertical axis
shows the ratio of cell velocity to undisturbed centerline fluid velocity for each
cell size. The results demonstrate a strong agreement between the simulation and
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Fig. 4. Verification of cell model through comparison with analytical solutions in a
square channel.

the analytical solutions. Although the analytical solution is based on rigid beads,
it effectively captures the physics of cell mobility in both the simulated square
channel and the sizing pore. This agreement is due to the small cell-to-channel
size ratio (<0.9), where cell deformation (quantified by the non-dimensional
capillary number) is negligible. In particular, Ahmmed et al. [31] measured the
velocity of various cancer cells in a square microchannel and found that their
results also aligned with analytical solutions for rigid beads. Similarly, Kuriakose
et al. [32] reported that the capillary number—and thus cell deformation—had
minimal influence on cell mobility in their experiments.
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Fig. 5. Verification of cell model through comparison with analytical solutions in the
sizing pore.
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Building on these analytical solutions for square channels, we infer the ex-
pected analytical cell velocity within the sizing pore, which has a rectangular
cross-section. In Figure 5, the two lines in each subplot represent the analytical
cell velocity for square channels with widths of 17.87 and 16.0 µm, corresponding
to the two edges of the sizing pore cross-section. Since the dimensional differ-
ence between these edges is small, the actual analytical cell velocity is expected
to fall between these two bounds, aligning well with the simulated data points.
Thus, our simulations successfully validate cell velocity in the sizing pore, further
reinforcing the accuracy of the digital twin model.

3.3 Validation of the simulated cell velocities and wCDI against
experimental data

After successfully verifying our fluid and cell models, we proceeded to validate
the digital twin using experimental data from HL60 cell screening with mechano-
NPS. Given the substantial computational demands of simulating the cell tran-
siting throughout the entire device, we focused our analysis on a key region of
interest, depicted in Figure 1(C). This section consists of the sizing and contrac-
tion pores, where the cell first moves undeformed through the sizing pore before
undergoing significant deformation in the contraction pore. To ensure consis-
tency, input conditions were carefully tuned to match the flow characteristics
throughout the device. To account for cellular heterogeneity, we selected five
distinct cell sizes from the experimental data set, reflecting the natural size vari-
ation of HL60 cells. Validating the digital twin against experimental results is
essential for ensuring its reliability and accuracy in predicting real-life scenarios.
Our validation process focused on key performance metrics, that include cell ve-
locities within the sizing and contraction pores which are critical components of
the mechano-NPS platform. Additionally, we assessed the wCDI by comparing
simulation-derived values with experimental measurements across a range of cell
diameters, demonstrating the digital twin’s capability to replicate experimental
observations. The wCDI serves as an indicative measure of cell stiffness, which
can be assessed using the mechano-NPS device and is defined as:

wCDI = (
Vc

V0
)(
d0
h
) (6)

where Vc is the cell velocity in the contraction pore, V0 is the average cell velocity
for all the different cell sizes in the sizing pore, d0 is the cell’s initial diameter,
and h is the height of the channel. Cell velocities at an inlet pressure of 11
kPa were analyzed in both the sizing and contraction pores and compared with
experimental data, as illustrated in Figures 6(A) and 6(B), respectively. The
results revealed a consistent trend across both datasets: cell velocity decreased
as cell diameter increased in both the sizing and contraction pores, as expected.
However, a constant bias was observed between the simulation and experimental
data, with identical slopes but differing intercepts due to this bias. To investigate
the source of the discrepancy, we conducted an additional analysis at an input
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pressure of 15 kPa, as shown in Figure 7. The results reproduced the same
bias, again showing identical slopes across datasets. Given the prior validation
of the cell model and the consistency of this bias across inlet pressures, the
discrepancy likely stems from a systematic difference between the experimental
and simulation setups rather than an issue with the digital twin itself.
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Fig. 6. Comparison of experimental and simulated cell velocities at 11 kPa inlet pres-
sure in (A) sizing and (B) contraction pores.
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Fig. 7. Comparison of experimental and simulated cell velocities at 15 kPa inlet pres-
sure in (A) sizing and (B) contraction pores.
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In validating the digital twin, a key objective was to accurately replicate
the experimental wCDI, a novel parameter used by mechano-NPS to character-
ize cell stiffness. As wCDI is derived from the ratio of velocities in the sizing
and contraction pores (Equation 6), its validation required first confirming the
velocities in both regions. Despite the presence of a systematic bias in velocity
measurements, this bias was effectively neutralized in the wCDI calculations due
to the use of velocity ratios, leading to strong alignment between the experimen-
tal and simulated wCDI values. Figures 8(A) and 8(B) compare experimental
and simulated wCDI at inlet pressures of 11 kPa and 15 kPa, respectively. At 11
kPa, the experimental and simulated wCDI values agreed closely, with a percent
difference of less than 4% for all cell sizes except for the 8.5 µm cell, which showed
a slightly higher 7% difference. This deviation can be attributed to the presence
of outliers in cell velocity measurements at that size, as observed in Figure 6. For
an inlet pressure of 15 kPa, the percent difference between the experimental and
simulated wCDI values remained below 5%, further demonstrating strong agree-
ment between the two data sets. To further assess these differences and evaluate
the digital twin’s capability in capturing cell behavior within the mechano-NPS
device, a Bland-Altman analysis was conducted. The results revealed a bias close
to zero, indicating no systematic difference between the two measurement ap-
proaches. The 95% limits of the agreement confirmed that the simulated wCDI
values closely matched the experimental results. These findings underscore the
reliability of the digital twin in accurately replicating cell behavior across vary-
ing test conditions within the mechano-NPS device, reinforcing its potential as
a robust tool for in silico cell analysis and device optimization.
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Fig. 8. Comparison of experimental and simulated wCDI at (A) 11 kPa and (B) 15
kPa inlet pressures.
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4 Conclusion

Microfluidic devices have become indispensable in single-cell analysis, enabling
precise investigations into live-cell states, mechanical properties, and molecular
components. Integrating these platforms with digital twins presents a transfor-
mative opportunity to accelerate cost-effective device optimization, providing ac-
cess to otherwise unmeasurable parameters, and enhancing throughput without
compromising accuracy. Beyond improving efficiency, digital twins also deepen
our understanding of the fundamental physical principles governing microfluidic
devices and the complex biological phenomena they interrogate.

In this work, we introduce a digital twin framework for mechano-NPS, a high-
throughput microfluidic platform designed for single-cell mechanophenotyping.
The framework replicates the experimental setup by integrating fluid dynamics
and cellular behavior models to provide an accurate in silico representation of the
system. Development began with rigorous fluid flow modeling, ensuring that sim-
ulated pressure and velocity distributions closely matched analytical solutions,
thereby providing a robust foundation. Building on this, we developed and ver-
ified a cellular model that accurately represents the mechanical behavior of the
cell within the device, ensuring the reliability of the digital twin for future predic-
tions. Finally, the digital twin was validated against experimental data, focusing
on key performance metrics such as cell velocity and wCDI. Although minor dis-
crepancies in cell velocity were observed, the simulated wCDI closely matched
the experimental results, underscoring the accuracy and robustness of the digital
twin. While this study focuses on a specific platform, the proposed algorithm is
generalizable and can be adapted to simulate a wide range of microfluidic de-
vices in silico. A key challenge in implementing such digital twin models lies in
the significant computational cost. Finite element method (FEM)-based mod-
eling of cellular behavior demands high spatial resolution to capture accurate
physical interactions, particularly when simulations are customized for specific
experimental configurations. This requirement can lead to a trade-off between
model fidelity and computational efficiency. Nevertheless, this limitation can be
partially alleviated by leveraging scalable cloud computing resources, enabling
broader accessibility and faster turnaround for high-fidelity simulations.

This work highlights the transformative potential of digital twins in experi-
mental microfluidics, demonstrating their ability to extend capabilities, optimize
performance, and unlock new avenues of discovery. By bridging computational
modeling with experimental biology, digital twins redefine how microfluidic de-
vices are designed, tested, and utilized, paving the way for the next generation
of high-throughput, data-driven cellular analysis platforms.
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