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Abstract. Explicitly simulating the transport of circulating tumor cells
(CTCs) across anatomical scales with submicron precision—necessary
for capturing ligand-receptor interactions between CTCs and endothelial
walls—remains infeasible even on modern supercomputers. In this work,
we extend the hybrid CPU-GPU adaptive physics refinement (APR)
method to couple a moving finely resolved region capturing adhesive
dynamics between a cancer cell and nearby endothelium to a bulk fluid
domain. We present algorithmic advancements that: enable the window
to traverse vessel walls, resolve adhesive interactions within the moving
window, and accelerate adhesive computations with GPUs. We provide
an in-depth analysis of key implementation challenges, including trade-
offs in data movement, memory footprint, and algorithmic complexity.
Leveraging the advanced APR techniques introduced in this work, we
simulate adhesive cancer cell transport within a large microfluidic device
at a fraction of the computational cost of fully explicit models. This re-
sult highlights our method’s ability to significantly expand the accessible
problem sizes for adhesive transport simulations, enabling more complex
and computationally demanding studies.

Keywords: Adaptive physics refinement · Adhesive dynamics · Fluid-
structure interaction · Multiscale modeling · Heterogeneous computing.

1 Introduction

Understanding the mechanisms driving cancer cell transport through the blood-
stream requires models that can capture cellular behavior at the adhesion level
while spanning long anatomical length scales. Circulating tumor cells (CTCs)
interact with fluid forces and vascular walls through adhesive interactions, pro-
cesses that are central to cancer metastasis, but remain poorly understood due to
their complexity and multiscale nature. Computational modeling offers a unique
opportunity to explore these dynamics by integrating cellular adhesion mech-
anisms with fluid transport across physiologically relevant scales. However, ex-
isting in silico models are limited in scope and are constrained by the com-
putational cost of resolving submicrometer adhesive binding interactions over
meter-length CTC trajectories. Current approaches predominantly focus on ide-
alized microvessels [2, 3, 9, 16, 19], providing valuable but incomplete insights into
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the localized relationships between fluid flow, cell mechanics, and adhesion. A
critical need remains for a unified computational framework of cancer transport
capable of maintaining high fidelity at the adhesion scale while efficiently simu-
lating the transport of CTCs across anatomic scales. Addressing this challenge
could help uncover new insights into the biophysical mechanisms of cancer pro-
gression and inform therapeutic strategies targeting CTC adhesion and vascular
interactions. This study (Fig. 1) represents a critical step in this direction by
introducing an adaptive physics refinement-based adhesive dynamics (APR-AD)
model. The key contributions of this work include:

CPU

Multi-Resolution Window

3D Bulk Fluid Flow

GPU

Cancer cell Ligand Receptor

Coarse 3D Bulk Fluid Flow

Window

Fig. 1. Adaptive physics refinement-based adhesive dynamics (APR-AD) model
overview depicting a cancer cell (blue) coated in ligands (green) undergoing adhesive
interactions with wall receptors (yellow) within a finely resolved moving window that
is coupled to a coarse bulk fluid-only domain. The bulk fluid simulation is performed
on the CPUs, whereas the cellular calculations are done by GPUs.

1. Algorithmic advancements that extend APR to span vessel walls.
2. Integration of a detailed adhesive dynamics model, enabling high-

fidelity simulation of ligand-receptor binding events.
3. Optimization for GPU architectures, ensuring computational efficiency

for simulations across large-scale domains.

By enabling high-resolution simulations of adhesive transport at anatomic
scales, the APR-AD framework represents a significant step forward in multiscale
modeling. This approach not only bridges existing gaps in computational cancer
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research, but also provides a scalable platform for addressing critical questions
about the interplay between fluid mechanics, adhesion, and cancer cell transport
that can probe fundamental drives of metastasis across physiologically relevant
scales.

2 Application Overview

The present work employs HARVEY [13, 12], a massively parallel, multiphysics
code. The fluid flow is resolved by solving the Lattice Boltzmann Bhatnagar-
Gross-Krook (LBGK) equation on a standard D3Q19 lattice [11]. Fluid-structure
interactions between finite element (FEM) meshed cells and the background
fluid are computed using the Immersed Boundary method (IBM) [7, 1]. Adhesive
interactions between cell surface ligands and receptor-lined endothelial walls are
resolved using the stochastic adhesive dynamics (AD) model from [5, 4].

An adaptive physics refinement (APR) algorithm developed in [10, 14] is
used by HARVEY to resolve tumor cell transport over large spatial distances.
Other multiphysics approaches to modeling cancer transport processes include
nanoparticle-based simulations [15]. Within the context of APR, high-resolution
grids are used in the window to resolve fluid-structure interactions of the tracked
cancer cell, while a coarser grid is employed outside the window to resolve
the background fluid dynamics. The information exchange at the bulk-window
boundary is handled through a multi-block approach detailed in [10]. An im-
portant quantity in the APR scheme is the ratio between the coarse and fine
grid spacings, or the multi-resolution ratio n. Due to the cubic dependence of
the total number of lattice sites Ns on grid spacing ∆x (Ns ∼ 1

∆x3 , for three
spatial dimensions), significant memory savings can result from higher values of
n [6]. The APR method is optimized for heterogeneous workloads, with the bulk
computations performed by the CPUs, and the fine window calculations handled
by the GPUs (Fig. 1).

3 Algorithmic Advances to Capture Adhesive
Interactions with APR

In this section, we describe the methodology for extending APR to include AD.
Sections 3.1 and 3.2 detail the incorporation of walls and endothelial receptors,
respectively, in APR. An overview of the window move algorithm is provided in
Section 3.3. Finally, the development of a GPU-accelerated AD implementation
is documented in section 3.4.

3.1 Incorporation of Walls into APR

A major advancement made in the present work is the additional ability of the
moving window to traverse vessel walls. In previous versions of the APR algo-
rithm, the window was assumed to be entirely submerged in fluid [10]. Allowing
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the APR window to span vessel walls was a necessary prerequisite to accurately
resolving adhesive phenomena within the window. Several changes were made to
the existing framework to accommodate walls.

When the window is first created, the identities of the grid points (i.e., fluid
or wall) must be determined from the surrounding bulk. Previously, all window
interior points were assumed to be fluid. In the updated setup, bulk tasks clas-
sify grid points as either fluid or wall points and then communicate the subset of
points that intersect with the window (Fig. 2(A)). Within the window, catego-
rization of misaligned points into either fluid or wall type relies on interpolation
from nearby bulk points (Fig. 2(B)). Specifically, if a fine-scale point is com-
pletely surrounded by coarse fluid points, it is classified as fluid; otherwise, if
a single neighboring coarse point is a wall, the corresponding window point is
designated as a wall.

interpolating point

coarse fluid point

coarse wall point

coarse gridfine grid

fine fluid point
fine wall point

interpolation
support

misaligned along x-axis: 1D interpolation

misaligned along x- and y-axes: 2D interpolation

deep 
walls

window

A B

bulk

Fig. 2. Schematic illustration of the process for setting up the window points. (A): the
bulk tasks communicate the subset of points intersecting with the window box. (B):
the window tasks interpolate misaligned points from the bulk. For this example, the
multi-resolution ratio n = 2. Two fine points are denoted with the “x” mark with their
interpolation boxes shown in yellow to illustrate how their types are determined.

As a result, the fine-scale fluid point boundary remains aligned with the bulk
fluid boundary, while additional “deep” wall points fill the gap between the last
fine fluid point and neighboring coarse wall points. The thickness of this inner
layer of wall points will depend on the resolution ratio n, but does not exceed
one coarse lattice unit. These deep wall points are subsequently pruned from the
vessel geometry to ensure consistency in the final representation.
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A B

C
D

Fig. 3. Overview of different methods for placing wall receptors in the APR framework.
(A) Method 1: bulk-driven placement, with random selection of receptors. (B) Method
2: window placement, with random selection of receptors. (C) Method 3: window place-
ment with spatial patterning function Φ from Equation 1, and constant threshold Γ.
(D) Method 3, with variable threshold Γ from Equation 2. The black outline of the
APR window is depicted in each case, with the cancer cell in blue, and wall receptors
in green.

3.2 Wall Receptor Placement

The initialization of endothelial wall receptors within the APR window requires
careful consideration. To address this, we developed three distinct methods
(Fig. 3). The first method initializes wall receptors globally (Fig. 3(A)). Bulk
tasks generate receptor distributions over the full geometry and communicate
their positions to the window tasks. While this approach ensures precise map-
ping of wall receptor distributions (e.g., based on mesh coloring, as in [9]) to the
window, it comes with increased memory demands and communication overhead
due to a large number of receptors.

In contrast, the second method (Fig. 3(B)) localizes receptor initialization
to the window itself. During window creation, receptors are spawned randomly
by the window root rank and then broadcast to the rest of the window tasks.
By delegating receptor selection to a single root process, this approach guaran-
tees deterministic receptor placement irrespective of window process count. The
downside of this approach is that receptor spawning is serialized, causing other
window tasks to remain idle during initialization. Nevertheless, this approach
significantly reduces memory usage, as only the wall receptors that are needed
by the window tasks are stored at any given time. It is particularly well-suited
for scenarios where a relatively uniform wall receptor distribution is assumed.

The third method balances the flexibility of the first method with the memory
efficiency of the second. Here, window tasks independently generate receptors
in parallel using a spatial patterning function, Φ, which determines receptor
placement based on the global position of the wall point. A receptor is placed if
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the function output exceeds a threshold Γ. A spatial patterning function yielding
a checkerboard pattern is shown in Equation (1).

Φ(x, y, z) = sin(2πfx) sin(2πfy) sin(2πfz) (1)

The frequency f in Equation (1) is set according to the desired wall receptor
density. A simple stripe pattern (Fig. 3(D)) of wall receptors along the z direction
can be obtained through specifying Γ as in Equation (2).

Γ(z) =
erf(k1 sin(z) + k2) + 1

2
(2)

where erf is the error function, and k1 and k2 are constants selected to control
the stripe spacing.

Ultimately, the choice of receptor placement method depends on the applica-
tion. The first method offers maximal flexibility with arbitrary receptor distri-
butions based on colored meshes. The second method (Fig. 3(B)) serves as an
effective first pass approximation when uniform receptor distributions are suffi-
cient. When a specific pattern is required that can be described mathematically,
the third method (Fig. 3(C-D)) provides a flexible, function-driven approach.

3.3 Moving the Window

Window moved?

Receive new set of intersecting 
coarse points from bulk tasks

Reinterpolate window fluid and 
wall points

Halo exchange wall and fluid 
points

Compute new fluid IDs
Translocate fluid IDs within the 

moved window

Spatially interpolate distribution 
values of unset points

Transfer local data from device 
to host

Transfer updated local data 
from host to device

Serial operations MPI Communication Memory transfer

Routine categorization

Translocate active bonds within 
the moved window

Instantiate new wall receptors

Fig. 4. Overview of the window move algorithm with incorporation of walls, from the
window task perspective.
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When the tracked cell nears the edges of the APR region, a window move is
triggered, initiating a cascade of operations outlined in Fig. 4. Some steps mirror
those taken for updating a fully submerged window: data are transferred from
the device to the host, which then re-orients fluid points within the window
following the move and spatially interpolates distribution values for incoming
fluid points near the leading edge of the window [10]. However, to accommodate
vessel walls, several routines are significantly modified, and additional steps are
introduced. When the window relocates, new fluid and wall point positions are
determined through re-interpolation of intersecting bulk points (Fig. 2). This
operation is followed by a communication exchange to update wall and fluid
points at the window task boundaries. In the case of a fully submerged window,
this step is unnecessary, as the coordinates of halo fluid points remain unchanged,
preserving the communication structure. However, for a partially submerged
window, refreshing the fluid communication tables is essential, as the number of
fluid points can change due to the presence of passing wall points. Consequently,
the indices of fluid points, referred to as “fluid IDs”, must then be re-computed
causing the new fluid IDs to become out of sync with the original data. To
efficiently reconcile these discrepancies, a map data structure is used to translate
fluid IDs and ensure accurate data movement.

After a window move, newly uncovered window points are updated through
spatial interpolation from the surrounding bulk. In contrast to a stationary win-
dow, where interpolation occurs in two dimensions along interfacial planes, these
new points require full 3D interpolation. For a fully submerged window, tricubic
interpolation using the Catmull-Rom spline [17] is applied over a cubic support
region spanning four coarse points in each spatial dimension, with the interpolat-
ing point positioned near the center of the box. However, volumetric interpolation
becomes more complex in a partially submerged window, where the presence of
walls disrupts uniform support regions. In this case, identifying the appropriate
support points requires determining the largest rectangular subprism of coarse
fluid points that fully encloses the interpolating point. The algorithm we devised
for this task is illustrated in Fig. 5.

The procedure begins by constructing an auxiliary array that records the
maximum prism height values based on the point classifications. The algorithm
then identifies all possible subprisms that contain the interpolating point P .
Candidate subprism formation starts at an anchor column, extending downward
until the maximal height drops below the height at the anchor value. Once a
base face is established, the prism is extruded along the depth direction as far as
allowed by the height values. A final check ensures that the resulting subprism
contains the point P , and its volume VR is compared against the running max-
imum value. The resulting subprism becomes the 3D support used for spatial
interpolation.

Once the window moves to encompass new wall points, new wall receptors are
instantiated in accordance with the desired receptor placement scheme (Fig. 3).
The shuffling of wall receptor indices that the window move introduces requires
the re-mapping of preexisting ligand-receptor bonds to their new index locations.
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Fig. 5. Schematic illustration of subprism finder algorithm. The support matrix is
shown, with nonzero values denoting the maximal height values of coarse fluid points,
and zeros indicating the presence of coarse walls within the support. In this example,
the algorithm is evaluating subprisms from the upper right position of the box. Four
candidate rectangles are identified, with the interpolating location assumed to be near
the center of the cube. The algorithm extrudes each of the rectangles identified as far as
allowed based on the height values of deeper points to form a set of potential subprisms
that contain the interpolating point.

3.4 GPU Acceleration of Adhesive Dynamics Calculations

The AD routines, originally designed to execute on multi-core CPUs, were re-
designed as GPU kernels to be executed by the window tasks. Biological cells
can express multiple species of ligand, that we collectively refer to as ligand
sets. Each ligand set has a user-specified density that determines the number of
ligands of that set placed on the cell surface. To model microvilli, ligands are
permitted to interact with multiple wall receptors, though only one wall receptor
can be engaged in a bond at any given time. The GPU parallelization strategy
involves threading over ligands. To optimize memory access, data structures for
adhesive cells, such as wall receptor positions, were reformatted from an array-of-
structures layout to a structure-of-arrays format. At a high level, the AD process
consists of three main components: (1) random number generation (RNG), (2)
bond formation, and (3) bond rupture.

RNG is a prerequisite for both (2) and (3), as these routines rely on proba-
bilistic interactions. We implemented RNG directly on the GPU using software-
emulated linear feedback shift registers (LFSRs). An LFSR is a deterministic
shift register that generates new values based on a linear function of its previous
state. With an appropriate tap configuration, an LSFR of a given width can
produce uniformly distributed values over a predefined period. For this work, we
selected a 64-bit LFSR with the following feedback polynomial:

x63 + x61 + x60 + 1 (3)

where the exponent terms represent the tapped bits. This tap configuration en-
sures a maximal cycle length, as documented in [18]. The LFSR was chosen for
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its efficient representation on the GPU and low computational overhead. To in-
tegrate LFSRs into the AD process, we allocated an array of LFSRs to store
random values for each ligand. Each ligand set has what we denote as its “root”
LFSR, which is seeded based on a combination of parameters that uniquely
identify the cell and particular ligand set for the cell. The binary sequences
of subsequent LFSRs within the ligand set are derived by shifting the root a
number of times corresponding to the relative position of the ligand within the
set, guaranteeing that no two ligands draw identical values at any given time.
Beyond its simplicity, this approach also minimizes communication overhead.
When the CTC transfers ownership between window tasks, only the root LFSR
of each ligand set needs to be communicated. The receiving task can then lo-
cally reconstruct the full set of LFSR states, maintaining determinism in the
simulation. The LFSR kernel is written to leverage shared memory and gives an
approximate 20% time reduction over an RNG block-based approach.
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Fig. 6. Schematic representation of an octree in array form on the GPU. An octree
with a single refinement level is shown for clarity. The octant array stores the minimum
and maximum bounds of each octant box in an array-of-structures format.

Following the RNG phase, the bond formation step is executed. During each
time step, adhesive ligands must identify the subset of wall receptors within
range of bond formation. A naïve search through all wall receptors, for every cell
ligand, leads to O(N2) time, making it computationally infeasible. To accelerate
this process, we adopted an octree-based spatial partitioning scheme inspired
by the CPU implementation [8] and optimized it for GPU execution (Fig. 6).
For simplicity, a complete octree is used, ensuring a structured hierarchy. To
guarantee a one-to-one mapping between cell ligands and octant indices, octant
boxes are extended with a halo depth equal to the reactive distance, which is
an intrinsic property of the ligand type. During bond formation, each ligand
determines the index of its corresponding leaf node, which serves as a key to
efficiently look up the start and end locations defining the segment of the wall
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receptors that fall into the corresponding octant (the wall receptors are sorted
by octant index during tree creation, further improving lookup efficiency).

One of the challenges of parallelizing the adhesive bond formation step on
the GPU is the constraint that each wall receptor can only engage in a bond
with one ligand at a time. To resolve thread contention over shared receptors, a
simple arbitration mechanism is implemented: only the thread with the smallest
ID is permitted to form a bond with a given wall receptor, ensuring deterministic
and conflict-free assignments.

The final phase of AD involves evaluating whether bonds are broken. This
operation is the simplest to parallelize and is completed in a single kernel invo-
cation.

Fig. 7. APR walls validation in a stationary window. Left: region of the simulated
microfluidic device, with the window location denoted by the red box and window fluid
points indicated in dark blue. Right: Longitudinal velocity profiles for the bulk (green),
window (blue), and eFSI (dotted yellow).

4 Results

4.1 Validation of APR Walls

To validate the multi-block scheme with the addition of walls, we simulated a
stationary window placed within a complex vessel representing a microfluidic
device (Fig. 7). The bulk fluid resolution was set to 0.6 µm, while the window
resolution was refined to 0.15 µm (n = 4). As a reference, we used the flow
profile from an explicit fluid structure interaction (eFSI) model with a consistent
resolution across the entire domain that matched the finer resolution of the
window domain. The velocity profile error between the window and eFSI cases
remained within 5% with minor discrepancies attributed to interpolation errors
and fluid convergence effects.
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4.2 Timing Composition Analysis

To evaluate the performance of the APR scheme, a timing composition analysis
was conducted, as shown in Fig. 8. Conceptually, the simulation can be decom-
posed into two distinct phases, representing periods where the cell is advecting
through a stationary window, and when the window itself is being moved to
follow the cell. The timing diagram reflects this distinction by showing the total
simulation loop time in Fig. 8(A), and the portion of the loop time spent in mov-
ing the window (denoted by “Window Move” in grey) is depicted in Fig. 8(B).
Notably, the bulk spends a considerable amount of time in “Window Move.”
Fig. 8(B) indicates that the “Window Test” routine accounts for most of the win-
dow movement time. During the “Window Test”, the root window rank checks
whether the window needs to be moved, and broadcasts the Boolean result to
the remaining window tasks, as well as the bulk. Altogether, the results suggest
that the bulk tasks spend a significant portion of their time waiting on the win-
dow tasks. This result is expected since the bulk has less work assigned to it
than the window (bulk fluid compared with IBM+AD), coupled together with
the need for the window tasks to perform n window time steps’ worth of work
for each corresponding bulk time step.

A B

Bulk Window Bulk Window

Fig. 8. Timing composition of APR simulation from Fig. 10. A: Total runtime break-
down for bulk (left) and window (right). B: Window move breakdown for bulk (left)
and window (right). Subroutines with negligible runtime were excluded from the timing
diagram.

The dominant runtime factor in the APR window is MPI communication
(dark blue) (Fig. 8(A)). This result reflects a shift in the primary bottleneck
from computation to communication, as core computational kernels (LBM, IBM,
FEM) have been offloaded onto the GPU. Unlike the bulk, which only handles
fluid data exchange, the window tasks must also manage cellular data commu-
nication, further increasing overhead. A significant portion of simulation time is
spent in the “Coarse-to-Fine” routine, which involves receiving fluid data from
bulk tasks at the multi-resolution interface and performing spatial interpolation.
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Since this routine remains CPU-bound, it is considerably more time-consuming
than purely GPU-executed kernels such as IBM. The large “barrier” time indi-
cates the load imbalance within the window, a consequence of the naive domain
decomposition scheme used for window tasks. In contrast, the bulk benefits from
a bisection load balancer, resulting in more even workload distribution. As shown
in Fig. 8(B), window tasks spend most of their time performing the “Window
Test” routine, where the root process determines whether a window move is
required and broadcasts the result. This finding highlights the cost of global
communication in the window task workflow. Outside of “Window Test”, most
of the window movement time is spent in “Window Recreate”, which involves
interpolating new wall points and reconstructing window data, and “Window
Setup”, which updates bulk-window communication tables.

Fig. 9. Impact of GPU octree on adhesion time, during a 40,000 time step simulation in
the microfluidic device (Fig. 10) on Aurora. Left: Total adhesion time without octree.
Right: Total adhesion time with octree enabled.

4.3 Performance Optimizations

To better leverage the parallelism offered by the CPUs, a subset of bulk task
functions were re-written using SIMD-style programming (i.e., SYCL ND-range
kernels) analogous to the GPU. SIMD efficiency was enhanced by converting
bulk data structures to structure-of-arrays (SoA). These code changes resulted
in an approximate 25% reduction in overall runtime. Furthermore, implementing
the search for wall receptors based on octrees for bond formation kernels signif-
icantly accelerated adhesive bond formation, which was previously the primary
computational bottleneck in adhesive dynamics, as shown in Fig. 9. This opti-
mization greatly reduced the runtime of bond formation calculations, improving
overall simulation performance.
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4.4 APR-AD Simulation in Complex Microvessel

The capabilities of our APR-AD framework are demonstrated using the mi-
crofluidic vessel geometry shown in Fig. 10. In this simulation, the APR window
tracked an adhesive cancer cell as it flowed through the lower branch of the ge-
ometry. A bulk grid spacing of 0.6 µm was selected along with a resolution ratio
n = 4, yielding a window grid spacing of 0.15 µm. The simulation was performed
on three nodes of the Aurora supercomputer (Argonne National Laboratory),
yielding significant resource savings, as summarized in Table 1. To validate the
APR framework, we also conducted an explicit adhesive transport simulation
at the window resolution using 32 nodes of Aurora. A sinusoidal wall receptor
patterning function (Equation (1)) was used in both the eFSI and APR simula-
tions for consistency. Both qualitative (Fig. 10(A)) and quantitative (Fig. 10(B))
comparisons between the explicit (eFSI) and APR simulations indicate strong
agreement. Minor discrepancies observed in receptor-ligand binding stemmed
primarily from differences in the RNG schemes between the CPU and GPU.
Despite this, the overall cell trajectories (Fig. 10(B)) and CTC morphologies
(Fig. 10(A)) remained consistent across both cases.

Model ∆x (µm) fluid points wall receptors memory usage

APR-AD (window) 0.15 7.83× 105 1.41× 105 1.15 GB
APR-AD (bulk) 0.6 1.41× 106 0 0.59 GB

eFSI 0.15 1.09× 108 6.60× 105 42.6 GB
Table 1. Comparison of resource requirements between APR-AD and explicit FSI
(eFSI) simulations within the microfluidic device shown in Fig. 10.

5 Conclusion

In this work, we demonstrated the capability of our novel APR-AD framework
to resolve submicrometer ligand-receptor interactions of a cancer cell in a large
region of practical utility. The APR-AD scheme offers significant computational
savings compared to an explicit FSI approach (Table 1). By allowing the bulk to
be simulated at a coarser resolution than the window, the number of fluid points
and endothelial wall receptors are substantially reduced. In particular, the total
memory footprint is reduced by more than an order of magnitude (25X, greatly
expanding the feasible simulation volume for studies of adhesive dynamics.

The presented work provided a detailed examination of the underlying multi-
scale modeling techniques and key implementation considerations. The presented
study serves as a proof-of-concept for a novel approach to investigating the ad-
hesion cascade of circulating tumor cells at anatomical scales, paving the way
for experimental validation studies and future applications in physiological en-
vironments. Future efforts will seek to address the limitations of the presented
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Position A

Position B

Position A

APR EFSI

Position B

APR EFSI

A B

Fig. 10. APR simulation of a ligand-coated cancer cell (blue) traversing a microvessel
geometry. (A): The APR window (yellow) tracking the cancer cell is shown at differ-
ent time points during the simulation, with bonds formed between the cell and the
endothelial receptors shown in green. The overall trajectory taken by the cell is indi-
cated by its velocity pathline. The cell is shown at select positions for both the APR
and corresponding eFSI simulations. (B): Quantitative comparison of CTC trajectory
between eFSI (blue) and APR (magenta) in the left half of the geometry.

model by incorporating heterogeneous cell populations into the APR window
and modeling the stochasticity of the adhesive receptor parameters.

6 Acknowledgements

The authors thank Wentao Ma, Daniel Puleri, and Jorik Stoop for fruitful dis-
cussions. This work was supported by the NCI of the NIH under Award Number
5R01EB024989. Research reported in this publication was supported by the NIH
under Award Number T32GM144291. Computing support for this work came
from the Argonne National Laboratory (ANL) Aurora Early Science program.
An award of computer time was provided by the INCITE program. This research
used resources of the Argonne Leadership Computing Facility, which is a DOE
Office of Science User Facility supported under Contract DE-AC02-06CH11357.

References

1. Ames, J., Puleri, D.F., Balogh, P., Gounley, J., Draeger, E.W., Randles, A.: Multi-
gpu immersed boundary method hemodynamics simulations. Journal of computa-
tional science 44, 101153 (2020)

2. Cui, J., Liu, Y., Xiao, L., Chen, S., Fu, B.M.: Numerical study on the adhesion
of a circulating tumor cell in a curved microvessel. Biomechanics and Modeling in
Mechanobiology 20, 243–254 (2021)

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97626-1_19

https://dx.doi.org/10.1007/978-3-031-97626-1_19
https://dx.doi.org/10.1007/978-3-031-97626-1_19


Adaptive Physics Refinement for Anatomic Adhesive Dynamics Simulations 15

3. Dabagh, M., Gounley, J., Randles, A.: Localization of rolling and firm-adhesive
interactions between circulating tumor cells and the microvasculature wall. Cellular
and Molecular Bioengineering 13(2), 141–154 (2020)

4. Fedosov, D., Caswell, B., Suresh, S., Karniadakis, G.: Quantifying the biophysical
characteristics of plasmodium-falciparum-parasitized red blood cells in microcir-
culation. Proceedings of the National Academy of Sciences 108(1), 35–39 (2011)

5. Hammer, D.A., Apte, S.M.: Simulation of cell rolling and adhesion on surfaces in
shear flow: general results and analysis of selectin-mediated neutrophil adhesion.
Biophysical journal 63(1), 35–57 (1992)

6. Krüger, T., Kusumaatmaja, H., Kuzmin, A., Shardt, O., Silva, G., Viggen,
E.M.: The Lattice Boltzmann Method - Principles and Practice (10 2016).
https://doi.org/10.1007/978-3-319-44649-3

7. Peskin, C.S.: Numerical analysis of blood flow in the heart. Journal of Computa-
tional Physics 25(3), 220–252 (1977)

8. Puleri, D.F., Martin, A.X., Randles, A.: Distributed acceleration of adhesive dy-
namics simulations. In: Proceedings of the 29th European MPI Users’ Group Meet-
ing. pp. 37–45 (2022)

9. Puleri, D.F., Randles, A.: The role of adhesive receptor patterns on cell transport
in complex microvessels. Biomechanics and modeling in mechanobiology 21(4),
1079–1098 (2022)

10. Puleri, D.F., Roychowdhury, S., Balogh, P., Gounley, J., Draeger, E.W., Ames,
J., Adebiyi, A., Chidyagwai, S., Hernández, B., Lee, S., et al.: High performance
adaptive physics refinement to enable large-scale tracking of cancer cell trajectory.
In: 2022 IEEE International Conference on Cluster Computing (CLUSTER). pp.
230–242. IEEE (2022)

11. Qian, Y.H., d’Humières, D., Lallemand, P.: Lattice bgk models for navier-stokes
equation. Europhysics letters 17(6), 479 (1992)

12. Randles, A., Draeger, E.W., Bailey, P.E.: Massively parallel simulations of hemo-
dynamics in the primary large arteries of the human vasculature. Journal of Com-
putational Science 9, 70–75 (2015)

13. Randles, A.P., Kale, V., Hammond, J., Gropp, W., Kaxiras, E.: Performance anal-
ysis of the lattice boltzmann model beyond navier-stokes. In: 2013 IEEE 27th
International Symposium on Parallel and Distributed Processing. pp. 1063–1074.
IEEE (2013)

14. Roychowdhury, S., Mahmud, S.T., Martin, A., Balogh, P., Puleri, D.F., Gounley,
J., Draeger, E.W., Randles, A.: Enhancing adaptive physics refinement simulations
through the addition of realistic red blood cell counts. In: Proceedings of the Inter-
national Conference for High Performance Computing, Networking, Storage and
Analysis. pp. 1–13 (2023)

15. Shabbir, F., Mujeeb, A.A., Jawed, S.F., Khan, A.H., Shakeel, C.S.: Simulation
of transvascular transport of nanoparticles in tumor microenvironments for drug
delivery applications. Scientific Reports 14(1), 1764 (2024)

16. Takeishi, N., Imai, Y., Ishida, S., Omori, T., Kamm, R.D., Ishikawa, T.: Cell ad-
hesion during bullet motion in capillaries. American Journal of Physiology-Heart
and Circulatory Physiology 311(2), H395–H403 (2016)

17. Twigg, C.: Catmull-rom splines. Computer 41(6), 4–6 (2003)
18. Ward, R., Molteno, C.: Table of linear feedback shift

registers. Tech. Rep. 2012-1, University of Otago,
https://www.physics.otago.ac.nz/reports/electronics/ETR2012-1.pdf

19. Ye, H., Shen, Z., Li, Y.: Cell stiffness governs its adhesion dynamics on substrate
under shear flow. IEEE Transactions on Nanotechnology 17(3), 407–411 (2017)

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97626-1_19

https://dx.doi.org/10.1007/978-3-031-97626-1_19
https://dx.doi.org/10.1007/978-3-031-97626-1_19

