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Abstract. The emergence of coronavirus disease (COVID-19) in late
2019 sparked a global pandemic, profoundly impacting societies and
economies worldwide. To mitigate its spread, governments have imple-
mented various preventive measures, prompting extensive research into
transmission risk assessment. To evaluate the transmission risk system-
atically, we developed a framework integrating agent-based modeling
(ABM) and computational �uid dynamics (CFD), and applied the frame-
work to a preschool COVID-19 cluster in Singapore as a case study. In-
dividual movement and behaviors are simulated with ABM, and CFD
is employed to compute virus particle �ow which is critical for trans-
mission risk. In the case study, we categorized the infected individual's
movement into three types based on the initial destinations and evalu-
ated its impact on the transmission risk. Simulation results show that
the average risk level is nearly the same for all three movement types and
it changes across time depending on the degree of infected individual's
active movement.

Keywords: Computational Fluid Dynamics (CFD) · Agent-Based Mod-
eling (ABM) · Transmission Risk.

1 INTRODUCTION

For several decades, the study of human crowds has been crucial in real-world
applications, such as planning e�ective evacuation [4], studying disease trans-
mission [8], and simulating virtual crowds for computer graphics [24]. This is
especially relevant to the 2019 novel coronavirus disease (COVID-19) global pan-
demic that began in December 2019 [15]. As of January 2024, the pandemic has
led to 774 million infections and taken the lives of 7 million people, severely and
permanently a�ecting the livelihood and work of people across the world [19].

To curb the spread of the coronavirus, many nations have taken a variety
of preventive measures such as vaccination campaigns, enforcing mask-wearing,
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and practicing social distancing. Extensive research has been conducted to eval-
uate the e�ectiveness of such measures. One stream of research focuses on the
movement of individuals in line with agent-based model (ABM) and evaluating
the transmission risk based on the inter-personal distance [21]. A diverse range
of scenarios have been studied, such as supermarkets [27], train stations [13], and
university campuses [1]. This type of approach allows us to make a straightfor-
ward estimation, but air �ow is not considered although it is critical for airborne
disease transmissions.

Another stream of research is based on computational �uid dynamics (CFD)
simulations, which aim to compute the �ow of droplets and aerosols in the air
and the subsequent amount inhaled by individuals [18, 20, 29]. Although this
approach can re�ect details of virus particle dispersion in the air, most studies
assume that individuals are stationary.

A few studies have proposed integrating ABM approach with CFD simula-
tion. For instance, Vuorinen et al. [28] applied Monte-Carlo modeling for simulat-
ing the movement of susceptible and infected individuals, and CFD simulations
to estimate the spread of aerosols and droplets in built environment such as
a library and pub. In another study, Mendez et al. [16] simulated droplet tra-
jectories in line with CFD simulations, aggregated the viral concentration at
individual level, and then coupled the estimated concentration with pedestrian
trajectories collected from di�erent public places like train stations, markets,
and street cafés. Those studies focused on transport of aerosol and droplets, for
instance, aerodynamic e�ects like air �ow and human motion, and droplet and
aerosol dispersion and their behavior in indoor air�ow.

In this work, we present an extension of the integration of ABM and CFD for
the estimation of airborne transmission risk for indoor space. While the previous
work [16, 28] studied hypothetical scenarios, we applied our approach for various
individual movement patterns for a preschool COVID-19 cluster in Singapore
as a case study. Based on the available information of dimensions and air �ow
conditions of the study venue, we performed a series of crowd simulations to
generate possible trajectories of individuals, computed location-speci�c virus
particle concentration, and then integrated both components to systematically
evaluate the airborne disease transmission risk.

The remainder of this paper is organized as follows: Section 2 gives a lit-
erature review on related work. Section 3 presents the simulation layout and
the underlying models for individual movement and behaviors, and transmission
risk evaluation. Section 4 presents the numerical experiments and discusses the
results. We also have a discussion on the results as well as the limitations of
the case study. Section 5 summarizes our work and provides possible research
directions for the future.
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2 Related Work

2.1 Crowd Simulations

There are di�erences in granularity when it comes to choosing the appropri-
ate crowd simulation models. A few approaches including �ow-based model and
agent-based model have been developed to understand and replicate crowd be-
haviors [22]. In the �ow-based model, individuals are portrayed as part of ho-
mogeneous crowds sharing common behaviors and destinations. This model is
suitable for studying aggregate behavior in large gatherings showing homoge-
neous behaviors, for instance, walking toward the same destination [7]. On the
other hand, the agent-based model represents individuals as members of het-
erogeneous crowds, each possessing intellectual capacity, unique traits, and the
ability to react to others and their surroundings. This model is suitable for
simulating pedestrian �ow in a busy facility where we can see complex crowd
dynamics in terms of various walking directions and constantly changing pedes-
trian volumes [6].

In many human crowd studies, agent-based simulation has emerged as the
dominant approach for modeling crowds due to its ability to simulate detailed
and complex environments. This is achieved by representing individuals as in-
telligent agents, thereby allowing for a more accurate depiction of the diverse
aspects of human behaviors in the real world [14]. In a scoping review by Sun et

al. [23], agent-based model has gained popularity in studying the e�ectiveness
of policy intervention for COVID-19.

2.2 Infection Risk Models

With regards to the research into infection risk assessment of respiratory disease
transmission, two approaches have been widely applied: the Wells-Riley model
and dose-response model [25]. Wells-Riley is a simpler model predicting the risk
of infection based on the concentration of infectious particles in the air and the
duration of exposure. On the other hand, the dose-response model examines the
risk of a response such as infection and illness severity due to a quantity (dose)
of infectious particles.

In line with the dose-response model, Bale et al. [2] applied breathing zones
to quantify the amount of virus particles an individual is exposed to. A breathing
zone is de�ned to be a region of 3D space where particles are likely to be inhaled
by an agent. The shape and dimensions of this region is theoretically arbitrary,
but it is typically situated in front of an agent's nose and mouth. The authors
assumed breathing zone dimensions of 10×10×15 cm3 which was further divided
into 16 equally sized mesh blocks. Bale et al. [2] applied the concept of breathing
zone for the estimation of individuals' virus particle exposure level.
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3 Model

3.1 Scenario

For the case study, we modeled an outbreak at a preschool in Singapore, based
on information reported by local news outlets [17, 26]. One day, a sta� of the
preschool center was organizing a training session along with 30 sta� members
from other preschool centers. A few days later, it was found that the training
session organizer was infected with COVID-19 when she was leading the session.
According to the local news outlets, all the training session attendees had contact
with the infected person and at least 16 of them were infected.

As not many details of the outbreak are available to us, we have made several
assumptions on agent behaviors to develop the scenario. We �rst assumed a
15-minute break in the middle of the training session. Before the break, the
session organizer was standing in front of other attendees who were sitting at
the table. In addition, the session organizer was leading the session and giving a
presentation while other attendees were listening to her. Once the break began,
all the attendees were standing and walking around the preschool center. This
break time will subsequently be the focus of this study because the amount of
interaction among the attendees would be signi�cant in terms of investigating
the level of virus particle exposure.

Fig. 1. The sketch of preschool scenario. The green circles represent the attendees. The
contagious individual (session organizer) is indicated by a red dotted circle.

Figure 1 shows the sketch of preschool layout, which is created based on ex-
isting preschools in Singapore. As can be seen from Figure 1, the scenario can be
separated into three di�erent sections: table area, restroom area, and subgroup
areas. In the table area, all 30 attendees are seated around the rectangular ta-
ble during the training session. Speci�cally, 1 person each on the east and west
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side, 14 persons each on the north and south side. The session organizer, who
is the �rst infected person among the attendees, is indicated by a red dotted
circle in Figure 1. When the 15-minute break begins, everyone will leave their
seats to visit other areas. The restroom area is a unisex facility consisting of an
entrance, 4 cubicles, and 4 sinks. Before entering, people will form a queue at the
restroom entrance. Upon entering, they will enter one of the 4 available cubicles
with equal probability. After that, they will use the sink in front of the cubicle,
before exiting the restroom. There are 3 subgroup areas in the preschool where
individuals can gather and have casual conversations during the break.

3.2 Pedestrian Model

Our pedestrian movement model is implemented in MomenTUMv2 [10] based
on the concept of hierarchical behavior modeling which describes the pedestrian
behavior in terms of three interconnected layers: the strategic layer, the tactical
layer and the operational layer [3, 5].

The strategic layer is related to the destination choice. We used origin-
destination (OD) matrix, which speci�es the probability of a pedestrian visiting
one area from another area. When the break begins, the attendees can either
use the restroom, join a subgroup, or stay at their table seats. Additionally, the
attendees that have used the washroom will either return to the table or join a
subgroup. Over time, individuals will gradually leave the subgroups and return
to the table. Figure 2 summarizes the movement �ow of the pedestrians with a
�owchart and Figure 3 shows all the possible routes.

Fig. 2. Flowchart of attendee movement during the break

The tactical layer is about how pedestrians approach their destinations. As
the venue size of the preschool is small, we assume that the pedestrians have
complete knowledge of all destinations. Hence, we utilized models that are com-
putationally less intensive: Djikstra's algorithm to �nd the shortest route to
the destinations and shifted random participating model to simulate pedestrian
behavior of �nding a position in a subgroup [11].
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Fig. 3. All possible routes that an attendee can take

The operational layer is associated with step-by-step movements during walk-
ing, queuing, and standing. We applied the social force model to simulate the
walking behavior of pedestrians. As for the standing behavior, we utilized the
model developed by Johansson et al. [9], so that we can ensure that the pedestri-
ans in a queue stay responsive between standing and moving along the washroom
queue. For the standing behavior, we implemented the Fixed standing model
which prevents pedestrians in a subgroup from shu�ing excessively when they
are conversing at the spacious areas [12].

3.3 Exposure Level Estimation Model

We �rst computed the location-speci�c concentration of virus particles emitted
by the contagious individual by means of computational �uid dynamics (CFD)
simulations. Based on the work of Ooi et al. [18], we numerically solved the
Navier-Stokes equation for conservation of mass and momentum, and the en-
ergy equation using a computational �uid dynamics (CFD) software (ANSYS
FLUENT version 21.2). For simplicity, we assumed that the virus particle con-
centration level is in steady-state during the break in that the virus particles
concentration level increased during the training session before the break. The
virus particles concentration level does not change in the course of time during
the break, thus we mainly consider the position of the contagious individual and
other (i.e., susceptible) attendees, and the virus particle concentration around
the susceptible individuals re�ects the amount of inhaled virus particles. The
mesh resolution of CFD simulations is around 10 cm.

Based on the study of Bale et al. [2], we assumed a 50 × 50 × 50 cm3 cubic
region as the breathing zone. For the preschool scenario, the breathing zone was
further simpli�ed to be 50× 50 cm2 rectangular area from a top-down 2D view.
This simpli�cation was done because it was assumed that all attendees were
roughly the same height and standing during the 15-minute break, and hence
their breathing zones would be located on the same 2D plane. The breathing zone
was divided into a 10 × 10 cm2 grid in line with the spatial resolution of virus
particle concentration estimation. The coordinates of the 25 grid square centers
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Fig. 4. 2D view of an attendee's breathing zone (not drawn to scale). A breathing zone
contains 25 grid squares and the cross (×) symbols indicate the center of grid squares.
The breathing zone is attached to an attendee which is represented as a red circle.

were used to calculate the representative value of virus particle concentration for
a breathing zone. Additionally, the breathing zone is located in front of an agent,
where the midpoint of the breathing zone bottom side touches the attendee's
boundary. Figure 4 illustrates the setup of an attendee's breathing zone.

Using the pedestrian trajectory generated by MomenTUMv2 software, for
each time frame, we obtained the coordinates of the contagious and susceptible
individuals, and the headings of the susceptible individuals along with the co-
ordinates of the 25 grid points in their breathing zone (50× 50 cm2 rectangular
area in Figure 4). For each susceptible individual, we computed the represen-
tative particle concentration value of the breathing zone by taking average of
virus particle concentration at each grid point within the breathing zone. We
then estimated the exposure level for each individual by summing the represen-
tative value of virus particle concentration for all time frames. It is noted that
we computed the virus particle concentration as a proxy for an attendee's level
of exposure to virus particles. This measure is related to the infection risk in
that the larger the concentration, the higher the virus particle exposure level
and infection risk.

The code that we used in this paper are available on github: https://gith
ub.com/jaeyoung82/iccs2025-ABM-CFD.

4 Simulation Results

In this section, we utilize the presented framework to perform a series of numer-
ical experiments to evaluate how the initial destination of the sole contagious
individual can a�ect the virus particle exposure level of other individuals in the
scenario. In doing that, we performed three numerical experiments:

� Experiment R: The contagious individual goes to the restroom (R) �rst once
the break starts, optionally joins a subgroup to talk with others, and then
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goes back to the table before the break ends. Refer to routes 1 and 2 shown
in Figure 3.

� Experiment G: The contagious individual joins one of three subgroups (G)
to talk with others once the break starts, and then goes back to the table
before the break ends. Refer to route 3 shown in Figure 3.

� Experiment T: The contagious individual stays at the table (T) during the
break, not walking around in the room. Refer to route 4 shown in Figure 3.

For each experiment, we randomly assigned six individuals for each initial des-
tination: restroom, subgroups 1, 2, 3, and table. We conducted 30 runs for each
experiment (R, G, T) with random initial destinations of the susceptible individ-
uals. For experiment G, we performed 10 runs for each subgroup (subgroups 1,
2, and 3). It is noted that three most probable initial destinations of the infected
individual were selected as her actual movement trajectory is unknown.

Fig. 5. Boxplots of individual's virus particle exposure level for each experiment. Note
that the y-axis does not start at zero, focusing on the e�ective range between the
minimum and maximum values.

Figure 5 shows boxplots of individual's virus particle exposure level for each
experiment, re�ecting the distribution of estimated transmission level. The av-
erage value of the individual's exposure level is nearly the same for all three
experiments. This appears to be because the virus particle concentration level is
assumed to be in steady-state. In addition, it can be seen that experiments R and
T yield considerable variation, but the variation is less notable for experiment
G. One can also notice that the level of virus particle exposure is positive for ev-
ery susceptible individual regardless of the experiment type. This is because the
virus particles were spreading in the scenario during the training session before
the break, so the virus particle concentration level is considerable everywhere in
the scenario.
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Fig. 6. A sample screenshot showing spatial distribution of training session attendees.
The red dotted circle indicates the position of the contagious individual where she
would stay in experiment T.

This can be understood in terms of how much the contagious individual
moves actively. In experiment R, it is possible for the contagious individual to
walk the longest route by possibly visiting both the restroom and subgroup ar-
eas. In addition, attendees queuing at the restroom can encounter the contagious
individual when she enters and leaves the restroom. For experiment T, the con-
tagious individual stays at the table, but attendees in subgroups 1 and 2 need to
bypass her and attendees queuing at the restroom might be exposed to her, see
an example from Figure 6. In contrast, for experiment G, the contagious individ-
ual goes to a subgroup almost immediately and tends to meets less individuals
compared to other experiments.

The impact of distance between the contagious and susceptible individuals
on the virus particle exposure level can be inferred from Spearman's correlation
coe�cient. As can be seen from Table 1, experiment T has strong correlation
and experiment R has moderate correlation, while experiment G shows weak
correlation between the two variables. It can be suggested that only considering
the distance between contagious and susceptible individuals might not be enough
to estimate the transmission risk, thus the inclusion of CFD is substantial in the
risk estimation. In addition, for experiment G, susceptible individuals' virus
particle exposure level is seemingly attributed to the virus particles in the air
rather than the one emitted from the infected individual, thus the variation of
virus particle exposure level is less signi�cant among the susceptible individuals.

Furthermore, we plotted time series graphs to examine how the transmission
risk changes in the course of time, see Figure 7. It can be observed that all three
graphs dip down to varying degree at start of the break, remain stable from min-
utes 3 to 10, and then quickly increase between minutes 12 and 14. It appears
that the appearance of the plateau is attributed to the spatial distribution of
attendees in that the attendees do not actively walk around the preschool center.
The rapid increase from minutes 12 to 14 is seemingly due to the attendees' be-
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Table 1. Correlation between the estimated transmission risk level and the distance
between infected and susceptible individuals

Experiment Correlation

R -0.5414

G 0.0269

T -0.9181

Fig. 7. Time series of transmission risk estimated for all three experiments. Note that
the y-axis does not start at zero, zooming in the range of interest.

havior of returning to the table. In addition, the curve of experiment R increases
sharply between minutes 2 and 3. It is likely that the the queuing attendees
encounter the contagious individual when she leaves the restroom while walking
to the table or a subgroup.

5 Conclusion

We present a framework integrating agent-based modeling (ABM) and compu-
tational �uid dynamics (CFD) to systematically evaluate the airborne disease
transmission risk. We modeled the movement of individuals in line with ABM
and estimated virus particle concentration level based on CFD simulations. As
a case study, the framework was applied to a preschool COVID-19 cluster in
Singapore. We categorized the infected individual's movement into three types
based on the initial destination and evaluated its impact on the transmission
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risk level. Simulation results show that the average risk level is nearly the same
for all three movement types but it changes across time depending on the degree
of infected individual's active movement.

Our study demonstrated potential in coupling ABM and CFD to estimate
the airborne disease transmission risk, and the presented framework can be ap-
plied to di�erent scenarios where the air �ow condition is critical for the disease
transmission risk. Although the presented results are produced based on a simple
scenario, our study demonstrated potential in coupling ABM and CFD to esti-
mate the airborne disease transmission risk for a real-world case in Singapore.
The results are still useful for evaluating the airborne disease transmission risk
and comparing possible movement of the contagious person in the scenario.

A limitation of the study is that we did not explicitly consider various respi-
ratory activities (such as speaking, coughing, and singing) for simplicity. Compu-
tation of the aerosol and droplet dispersion re�ecting such respiratory activities
will allow us to better study the transmission risk as respiratory activities are
highly relevant to the infectiousness and rapid spread of airborne diseases [2].
While this study used a 2D CFD model with point-to-point movement trajecto-
ries of individuals to make transmission risk evaluation simple, a 3D CFD model
would provide greater model �delity. In addition, a few simple experiments were
designed and tested due to the lack of detailed information for the outbreak. The
presented ABM can be further improved with more information of the attendees'
behavior, for instance, their activity patterns before and after the training ses-
sion, and during the whole session. Furthermore, the presented framework can
be extended to estimate the critical amount of virus particle exposure level if
it is known which attendees were infected. Another possible future work is to
examine the impact of non-pharmaceutical control measures, for instance, social
distancing, ventilation, and wearing a mask.
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