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Abstract. Network intrusion detection is a commonly used and critical
defense mechanism in the field of cybersecurity for identifying abnor-
mal traffic online. However, the phenomenon of concept drift leads to
a decrease in the accuracy of online intrusion detection systems in rec-
ognizing malicious traffic. Traditional machine learning-based intrusion
detection systems are unable to adapt to the changes in data distribution
of dynamic data streams. To address this issue, we propose DWOIDS, an
online intrusion detection system based on dual adaptive windows and
a Hoeffding tree classifier. When concept drift occurs in network data
streams, it employs dual adaptive windows to monitor the prediction
error of the classifier, continuously refining the classifier’s accuracy in
identifying malicious traffic. We conducted experimental evaluations on
multiple datasets. Our proposed method demonstrated superior classifi-
cation performance when compared to the state-of-the-art.

Keywords: Concept-Drift · Intrusion Detection · Adaptive Windows.

1 Introduction

In the increasingly interconnected digital ecosystem, the internet has facilitated
a surge in networked devices, with network adversaries infiltrating these devices
through data streams to commit data misuse. Consequently, the demand for ro-
bust online Network Intrusion Detection Systems (NIDS) has intensified. Online
NIDS [1] are vital for maintaining security by continuously monitoring network
traffic in real-time to detect malicious and suspicious activities. In recent years,
research on Intrusion Detection Systems (IDS) has primarily been divided into
two categories: rule-based IDS [8,25] and IDS based on Machine Learning (ML)
[3,23] or Deep Learning (DL) [5,9,22]. Rule-based IDS relies on a predefined
set of rules and identifies malicious features in network traffic through pattern
matching. This approach offers the advantages of high detection accuracy and
rapid detection speed. However, its static rules are unable to adapt to unknown
threats and require regular updates. To overcome this limitation, researchers
have recently begun to integrate ML and DL technologies to develop IDS with
greater adaptability. Gao et al. [12] integrated various classifiers such as decision
trees, random forests, KNN, and DNN, and dynamically adjusted their weights
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to address declining classification accuracy. Chiche et al. [7] proposed a method
combining machine learning and knowledge systems to enhance the adaptability
and scalability of intrusion detection. These methods involve pre-training models
and optimizing parameters using gradient descent to effectively fit threat traf-
fic. Empirical studies have demonstrated that these methods possess a certain
degree of effectiveness in detecting unknown threats. However, the presence of
concept drift leads to a decline in the recognition accuracy of intrusion detec-
tion models trained on static datasets over time. While retraining these models
with current data is a feasible solution to maintain their optimal performance,
it incurs significant resources and time overhead.

The phenomenon of concept drift [18] refers to the non-stationarity of data
stream distributions over time, which in the realm of cybersecurity manifests
as unpredictable changes in the distribution of network data streams. Previous
work typically assumes that data streams within a network originate from a
single source and exhibit stable distributions. Consequently, when faced with
dynamically shifting data distributions, the trained ML or DL intrusion detec-
tion models may fail to adapt to these changes, leading to a degradation in their
predictive performance. Although the research on concept drift in IDS [20] has
garnered attention, it remains in its infancy. The prevalent approaches involve
directly transferring or integrating traditional concept drift detection techniques.
For instance, the ADWIN [6] algorithm maintains a variable sliding window to
statistically analyze the data distribution changes between two sub-windows,
using confidence levels to ascertain whether the distribution change exceeds
a predefined threshold. Similarly, the DDM [11] method detects concept drift
by calculating whether the model’s prediction error rate surpasses a threshold.
Meanwhile, HDDM [10] computes the moving average of the model’s predictions
and employs the Hoeffding inequality to determine the threshold boundary for
drift.

The challenges faced by existing IDS can be summarized into four key points:

– Traditional IDS, trained on fixed rules or static datasets, are vulnerable to
future unknown attack patterns.

– The data distribution of online network traffic evolves over time, and ML or
DL models trained on static datasets may struggle to adapt to such dynamic
changes.

– The cost of retraining models to replace outdated ones in the event of concept
drift is excessively high, posing practical challenges.

– Traditional concept drift detection methods have not been specifically opti-
mized for online network traffic, thereby limiting their detection performance
to some extent.

To overcome these challenges, we propose DWOIDS, an online intrusion de-
tection system framework based on dual adaptive windows and the Hoeffding
Tree classifier. This framework utilizes the Hoeffding Tree as the base classifier
for real-time prediction of malicious behaviors in online network traffic. To ef-
fectively mitigate concept drift, we innovatively calculate the momentum of pre-
diction errors within fast and slow windows, and estimate the degree of concept
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drift through the moving average difference of these momenta. Upon detection of
concept drift, the framework automatically replaces the base classifier with a new
classifier learned under the context of concept drift, thereby significantly reduc-
ing the overhead of model replacement and enhancing the framework’s adaptive
capabilities and detection efficiency.

The main contributions of this paper are as follows:

– We propose an online intrusion detection framework based on dual adap-
tive windows and the Hoeffding tree classifier. This framework effectively
addresses the issue of concept drift in real-time network flows, thereby sig-
nificantly improving the adaptability and detection efficiency of the intrusion
detection system.

– To accurately identify concept drift in network flows, we design the DAWMA
algorithm. This algorithm utilizes momentum and its moving average differ-
ence as estimators, effectively enhancing the intrusion detection performance
by recognizing concept drift.

– We comprehensively evaluate our proposed framework on two public datasets,
CIC-IDS2017[21] and NSL-KDD[24], and compare it with state-of-the-art
methods. The experimental results demonstrate that our framework excels
in handling intrusion detection tasks with concept drift.

The structure of this paper is organized as follows: Section 2 systematically
reviews the relevant research on concept drift in the field of IDS. Section 3 pro-
vides a detailed presentation of the innovative framework we propose. Section 4
discusses the experiments on the proposed framework to validate its effectiveness
and superiority. Finally, Section 5 offers a comprehensive summary of the entire
paper.

2 Related Work

In the context of online IDS, the application of concept drift is generally ap-
proached in two ways. One method involves incorporating the incoming network
data stream into an adaptive window and then statistically analyzing the distri-
butional changes between two sub-windows. If the change exceeds a predefined
threshold, it is deemed that concept drift has occurred. Another method involves
employing a classifier to initially predict network data streams and determine
their real-time accuracy. Following this, the moving average of the accuracy or
other statistical measures is evaluated. When the evaluated changes exceed a
certain threshold, it is concluded that concept drift has taken place.

2.1 Data Distribution-Based Concept Drift Mitigation in IDS

Yang et al. [27] introduced the CADE system for detecting and explaining con-
cept drift samples in security applications. CADE maps training data to a low-
dimensional space using contrastive learning and learns a distance function be-
tween samples to identify drift samples deviating from the training distribution.
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However, It struggles with sparse data, high dimensionality, and limited perfor-
mance on in-class evolution scenarios. Jain et al. [16] used a sliding window and
employed K-Means clustering to reduce the data volume and update the train-
ing set. Subsequently, KL divergence is employed to measure data distribution
differences and an SVM classifier is used for anomaly detection, and the model
is retrained based on statistical tests. It achieves high accuracy but depends on
manual parameter tuning and may not scale well with large or real-time data
streams. Rajeswari et al. [19] introduced an efficient intrusion detection system
based on concept drift in data streams and Support Vector Machines (SVM).
The system enhances data quality through data cleansing and normalization
techniques and facilitates pattern extraction and data change detection by in-
corporating a timestamp attribute for data streaming. The ADWIN algorithm
is utilized to detect concept drift in the data stream, splitting the window into
two parts at the cut-off point. An SVM classifier is then employed to categorize
the data into normal and attack classes.

2.2 Prediction Statistics-Based Concept Drift Mitigation in IDS

Andresini et al. [2] introduced INSOMNIA, a semi-supervised intrusion detec-
tion framework designed to address the issue of concept drift in network traffic
features over time. INSOMNIA employs a DNN classifier integrated with active
learning, label estimation, and XAI to enhance adaptability. Drift is detected
by assessing DNN accuracy against pseudo-labels from an NC classifier, trig-
gering model updates via the NC classifier to align with new traffic patterns.
While the approach demonstrates robustness to concept drift, it struggles with
detecting low-prevalence attacks and requires further work to generalize across
diverse attack types. Yang et al. [26] addressed the issue of concept drift in Inter-
net of Things (IoT) data streams by proposing an integrated framework named
PWPAE. PWPAE combines two popular drift detection methods (ADWIN and
DDM) with two state-of-the-art drift adaptation methods (ARF and SRP) to
construct base learners. Subsequently, the PWPAE is used to weight the base
learners based on their real-time performance, and to integrate them into a ro-
bust anomaly detection ensemble model, thereby enhancing the drift adaptation
performance. While PWPAE outperforms existing approaches in drift handling,
broader applicability and efficiency in resource-constrained settings require fur-
ther study.

Jain and Kaur [15] introduced a hybrid ensemble technique based on concept
drift detection for distributed anomaly detection in network data streams. This
technique integrates random forests and logistic regression as the first-level clas-
sifiers, with support vector machines serving as the second-level classifiers. To
address concept drift, they employed a sliding window-based K-Means clustering
technique to reduce the data volume and update the training set. Hnamte and
Hussain [14] proposed a hybrid deep learning model named DCNNBiLSTM for
network intrusion detection. This model leverages the strengths of both Convo-
lutional Neural Networks (CNN) and Bidirectional Long Short-Term Memory
networks (BiLSTM), and is optimized through a Deep Neural Network (DNN).
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The DCNNBiLSTM model first employs CNN to extract local features from the
input data, followed by the use of BiLSTM to capture long and short-term de-
pendencies in sequential data, with the final classification being performed by the
DNN. However, the proposed model’s high parameter complexity might exhibit
overfitting tendencies. Seth et al. [20] proposed an intrusion detection method
based on Adaptive Random Forest (ARF). ARF adapts in real-time to the evolv-
ing network environment and attack patterns, and prioritizes new data through
an instance weighting mechanism, thereby enhancing the intrusion detection ca-
pability. Hoeffding’s inequality and the moving average test provide statistical
support to the system, aiding in the timely identification of concept drift and
distinguishing between benign network changes and potential intrusions. How-
ever, Computational overhead from drift detection and adaptive updates may
hinder scalability.

3 Methodology

3.1 Overall Architecture
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Fig. 1. Overview of DWOIDS

Our proposed DWOIDS uses a dual adaptive window moving average tech-
nique (DAWMA) to detect concept drift and employs Hoeffding Trees as the base
classifier. As shown in the Fig. 1, this method first learns the characteristics of
network traffic in the Wi window, and then performs predictions in the Wi+1

window. The proposed framework initially preprocesses the data stream through
one-hot encoding, min-max normalization, and Birch [28] clustering to extract
representative training data streams. Following this, it employs Hoeffding trees
to learn and predict network traffic in the current environment, thereby generat-
ing corresponding prediction labels. The binary prediction results are then added
to both a fast and a slow window, with the difference between the mean values
of these windows being termed as the dual window mean. Subsequently, we in-
troduce an estimator based on the difference between the momentum moving
averages of fast and slow windows. Furthermore, we trigger a drift signal if the
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sign of the estimator at the current time step is opposite to that of the preceding
time step. Lastly, the classifier that was learned in the context of the detected
concept drift replaces the base classifier. This section offers a comprehensive
description of the modules within the framework.

3.2 Data Processing

Due to the vast scale of network traffic data streams and in order to maintain the
performance of the online IDS, we employ BIRCH clustering for the sampling of
training data. We chose the BIRCH clustering algorithm because it automatically
identifies high-quality cluster centers without pre-setting the number of clusters,
making it highly effective for large-scale network data streams.

Algorithm 1: Birch Clustering Algorithm
input : Network data stream setX {xi, ...xj}, label setY {yi, ...yj},

threshold T, branching factor B
output: The final retained clusters

1 Apply One-Hot encoding to the input sets;
2 Perform min-max normalization on the encoded data;
3 Initialize an empty CF Tree;
4 for i← 1 to length(setX) do
5 Find the closest leaf node L in the CF Tree to xi;
6 if after adding xi to node L, the diameter of L < T then
7 adding xi to L

8 if the number of CFs in L < B then
9 Create a new CF for xi in L

10 else split L to L’ and adding xi to node L’;

11 if the number of CFs in the root of the CF Tree ≥ B then
12 compress the tree

13 ClusterLabels ← global clustering on CF Tree;
14 clusters ← mapping of setX, setY and ClusterLabels;
15 nc ← number of clusters;
16 for i← 1 to nc do
17 if the ratio of malicious labels in the clusteri < 0.2 then
18 discard clusteri

19 return clusters

In this paper, the network data stream is represented as setX {xi, xi+1, ..., xj},
with i and j indicating different time points. And the label setY {yi, yi+1, ..., yj}
comprises two states: ‘normal’ and ‘malicious’. Specifically, we initially perform
one-hot encoding on the data stream features to facilitate subsequent calcula-
tions. Afterwards, we apply min-max scaling to the encoded results to ensure
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data consistency and comparability. Algorithm 1 presents the specific steps of
BIRCH clustering. Through the precise application of the BIRCH clustering al-
gorithm, we successfully delineated multiple clusters, each composed of similar
data streams.

3.3 Detecting Concept Drift with Dual Adaptive Windows

We input the processed network data stream into the classifier for prediction,
with details of the classifier provided in Section 3.4. The classifier outputs a
set of predicted labels {pi, ...pj}. We introduce the prediction error (pe) as an
quantify metric of classifier. As illustrated in Equation 1, the prediction error is
defined as follows: it takes the value of 0 when the predicted label matches the
actual label. Conversely, the prediction error is set to 1.

pei =

{
0, pi = yi

1, pi ̸= yi
(1)

To mitigate the limitations of relying solely on single-point prediction errors
for detecting concept drift, we introduce the Dual-Adaptive Window Moving
Average (DAWMA) algorithm. This approach aims to balance the sensitivity
and accuracy of drift detection. The DAWMA algorithm employs a dual-sliding
window mechanism, comprising a fast window and a slow window, both of which
continuously receive the most recent pei values. Initially, the slow window leads
the fast window by d units in length. As data continues to be input, the lengths
of both windows gradually increase until concept drift is detected. During this
process, we denote the lengths of the fast and slow windows as fl and sl, re-
spectively, and their respective average values as fa and sa. The dual-window
mechanism effectively balances the needs of short-term and long-term strategies.
Furthermore, the windows in this algorithm are designed to dynamically adapt:
if no concept drift is detected over a long period, the window size will automati-
cally increase to capture broader data trends; conversely, if concept drift occurs
frequently in the short term, the window will maintain a smaller size to enhance
sensitivity to rapid changes.

M = (fak − sak)−

k−1∑
i=k−n

(fai − sai)

n
(2)

As illustrated in the Formula 2, the DAWMA algorithm introduces the mo-
mentum of the slow window and the fast window to quantify the intensity of
changes in the prediction error. Subsequently, the moving average difference M
of these momenta is calculated to effectively filter noise and short-term data
fluctuations. Furthermore, if the sign of the current M is opposite to that of the
previous M , it indicates a trend of strengthening or weakening in the momen-
tum of the prediction error, at which point we determine that a concept drift
has occurred.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97626-1_15

https://dx.doi.org/10.1007/978-3-031-97626-1_15
https://dx.doi.org/10.1007/978-3-031-97626-1_15


8 X. Hu et al.

3.4 Classifier Based on Hoeffding Tree

Hoeffding Tree is an incremental decision tree algorithm for data stream classi-
fication. It processes large-scale data streams in real-time, learning and predict-
ing on the fly without storing all historical data. In this study, we assume that
the network data stream {xi, xi+1, ..., xj} is mutually independent and bounded
(ai ≤ xi ≤ bi). Based on this assumption, for any constant θ > 0 , the expression
represented by Equation 3 conforms to the Hoeffding’s bound.

P

(
n∑

i=1

xi − E

[
n∑

i=1

xi

]
≥ θ

)
≤ exp

(
− 2θ2∑n

i=1(bi − ai)2

)
(3)

This study constructs a decision tree model based on Hoeffding’s inequality.
Initially, the Hoeffding Tree consists of a single root node, which is responsible
for storing the class distribution information of the initial data. As new network
data streams arrive, these data start from the root node and are directed to the
corresponding child nodes based on the splitting attributes and feature values
of each node. This process is recursive and continues until the data reach a leaf
node. Upon arrival at a leaf node, the node updates its class distribution infor-
mation to reflect the incorporation of new data. During the splitting decision of
the decision tree, we use information gain as a metric, which is defined as the
difference between entropy and conditional entropy. Then, we utilize Hoeffding’s
inequality to determine whether the attribute with the currently observed max-
imum information gain exceeds the Hoeffding bound, thereby deciding whether
to perform node splitting. Since Hoeffding Tree is an incremental learning algo-
rithm, once concept drift is detected, new concepts are gradually integrated into
the Hoeffding Tree, thereby demonstrating the algorithm’s robustness.

4 Experiments Evaluation

This section delves into the experimental evaluation process, wherein we uti-
lized the CIC-IDS2017 [21] and NSL-KDD [24] datasets for testing. Under the
condition of consistent dataset distribution and environmental setup, we repro-
duced and conducted a comparative analysis with other research works, thereby
robustly validating the effectiveness of our proposed method.

4.1 Dataset and Processing

The CIC-IDS2017 dataset, published by the Canadian Institute for Cyberse-
curity, captures real network traffic from July 3, 2017, to July 7, 2017, and
includes 15 common attack scenarios such as brute force FTP, brute force SSH,
DoS, Heartbleed, web attacks, intrusions, Botnet, and DDoS. To enhance data
quality, we utilized the improved version of the dataset by Liu et al. [17], which
rectifies label errors and feature extraction inaccuracies in the original dataset
and removes meaningless artefacts.Ultimately, we acquired a total of 2,090,564
network traces, comprising 1,657,069 benign traces and 433,495 malicious traces.
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The specific distribution of the malicious traces is presented in Table 1. Due to
the significant imbalance between benign and malicious tracks, it is necessary to
consider the base-rate fallacy [4].

Table 1. Statistical Analysis of Malicious Traces

Attack Types Count Proportion

Infiltration 38 0.0088%

Brute Force 151 0.0348%

SQL Injection 12 0.0028%

XSS 27 0.0062%

DoS GoldenEye 7,567 1.7456%

DoS Hulk 158,469 36.5561%

DoS Slowhttptest 1,742 0.4019%

DoS Slowlori 4,001 0.9230%

Heartbleed 11 0.0025%

FTP Patator 3,973 0.9165%

SSH Patator 2,980 0.6874%

Botnet 738 0.1702%

DDoS 94,763 21.8602%

Portscan 159,023 36.6839%

SUM 433,495 100.0000%

The NSL-KDD dataset is an enhanced version of the KDD Cup 1999 dataset,
specifically designed for the evaluation of network intrusion detection systems. It
comprises 148,517 records, each consisting of 41 traffic features and a classifica-
tion label. The dataset encompasses five distinct types of data, namely Normal
(normal traffic), DOS (Denial of Service attacks), Probe (probing attacks), R2L
(Remote to Local attacks), and U2R (User to Root attacks). Among these, be-
nign traffic constitutes 53% of the dataset, while malicious traffic accounts for
the remaining 47%. The dataset contains 125,973 training samples and 22,544
testing samples.

4.2 Experimental Setup

Our experiments were conducted in an environment featuring Ubuntu 22.04 as
the operating system, an x86 hardware architecture, a 32-core AMD CPU, and
1TB of RAM. We implemented the proposed framework in Python and set the
BIRCH clustering threshold to 0.5. In addition, to ensure a fair comparison, we
obtained the source code for all baseline works and keep the best configurations
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for all hyperparameters. Furthermore, we conducted experiments using the same
dataset distribution and proportions to replicate their results.

In our experiments with the CIC-IDS2017 dataset, we adopted the same ap-
proach as previous work [2,16] by using windows containing 50,000 instances
to highlight the distribution characteristics of concept drift. For the NSL-KDD
training set containing 125,973 samples, we configured the window size as 7,000,
while for the test set with 22,544 samples, a window size of 2,000 was imple-
mented. However, unlike prior studies, we discard the last window if it’s smaller
than the set size. Specifically, we trained a model in the current Window Id Wi

(i starts from 0) and then used this trained classifier to predict in the subsequent
Window Id Wi+1.

4.3 Evaluation Metrics

In this experiment, we employ accuracy, false positive rate (FPR), precision,
recall, and F1 score as the metrics for performance evaluation. Specifically, true
positive instances are denoted as (TP), false positive instances as (FP), true neg-
ative instances as (TN), and false negative instances as (FN). The mathematical
expressions for these evaluation metrics are presented in Equations 4-8.

Accuracy =
TP + TN

TP + FP + TN + FN
(4)

FPR =
FP

FP + FN
(5)

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

F1 Score = 2 · Precision · Recall
Precision + Recall

(8)

4.4 Evaluation Results and Discussions

The aim of this study is to comprehensively evaluate the performance of our
proposed DWOIDS in network intrusion detection with concept drift. To this
end, we have designed the following two experiments:

– Classification Experiment: In this experiment, we do not apply special treat-
ment to concept drift, aiming to evaluate the prediction accuracy of the base
classifier (based on the Hoeffding tree) and address the issue of classifier pre-
diction bias.

– Intrusion Detection with Concept Drift Experiment: We will conduct exper-
iments using our proposed comprehensive framework, and compare it with
baseline methods to demonstrate the superior performance of our proposed
framework.
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Table 2. The Window where the Classifier Fails

Dataset Classifier Failed Window Id Failed Count

CIC-IDS2017
only Hoeffding tree

W1,W6,W7,W12,W14,W15,W17,
W18,W19,W22,W23,W29,W32,

W34,W35,W36,W37,W38

18

add DAWMA W14,W18,W35,W36,W38 5

NSL-KDD
only Hoeffding tree W3,W4,W6,W11,W12 5

add DAWMA / 0

Classification Experiment This study assesses the impact of concept drift
handling on prediction performance using the CIC-IDS2017 and NSL-KDD datasets.
The 2,090,564 CIC-IDS2017 samples are divided into 41 windows, while the
125,973 NSL-KDD samples are split into 17 windows. The experiment comprised
two phases: In the first phase, the base Hoeffding tree classifier was applied to
predict data streams within each window, with performance evaluated through
accuracy and false positive rate (FPR). The second phase introduced the Dual-
Adaptive Window Moving Average (DAWMA) method to address concept drift,
followed by recalculation of these metrics post-optimization. The experimental
results are presented in Fig 2. Then, we compute the average "add DAWMA Ac-
curacy" (average Acc) and "add DAWMA FPR" (average FPR). We establish a
failure criterion: The base classifier is deemed to have failed in addressing concept
drift if either the accuracy metric (acci) in window (Wi) satisfies the threshold
condition defined in Equation 9, or the false positive rate (fpri) reaches the crit-
ical value specified by Equation 10. Table 2 presents the Window Ids where the
base classifier fails before and after adding DAWMA. Empirical analysis reveals a
substantial decrease in the number of windows experiencing base classifier failure
due to concept drift following the incorporation of DAWMA, thereby enhancing
the classifier’s robustness.

acci < average Acc × 0.9 (9)

fpri × 0.2 > average FPR (10)

This experiment highlights three crucial findings: Firstly, concept drift indeed
exists in network data streams, posing a significant challenge for traditional
classifiers which often result in classifier failure. Secondly, the introduction of
our proposed DAWMA strategy enables rapid recovery and stable performance
of the classifier, thereby underscoring the necessity of accounting for concept drift
in the context of network stream online intrusion detection. Thirdly, in the event
of concept drift in the current window, our proposed framework swiftly replaces
the outdated classifier with a newly trained one, which then effectively monitors
the subsequent window. Experimental results demonstrate the effectiveness of
our approach.
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Fig. 2. CIC-IDS2017 and NSL-KDD in Concept Drift Handling

Intrusion Detection with Concept Drift Experiment In this study, We
reproduce all baseline methods and perform detailed comparative analysis. The
selected baseline methods are categorized into two groups: those that do not deal
with concept drift, like Naive Bayes and LightGBM, and those that do, such as
ARF+ADWIN[13], INSOMNIA [2].

For the CIC-IDS2017 dataset, we selected 1,396,914 traces from the last three
days for validation with a window size of 50,000. For the NSL-KDD dataset, we
used 22,544 test set traces for the experiment, with a window size of 2,000.
The experiment was designed to train models in the current window and use the
trained models to make predictions in the next window. Ultimately, we compared
the accuracy, precision, recall, and F1 score of each model.

Specifically for the INSOMNIA method, which requires pre-training a deep
neural network (DNN) model and making predictions on traces within the test
window during testing, while also using fine-tuning strategies to adjust model
performance in real-time, we used 693,650 traces from the first two days of CIC-
IDS2017 and 125,973 training set traces from NSL-KDD to train the model for
evaluation. Subsequently, we validated the model performance using the same
approach as other methods and conducted a comparative analysis within the
same test window interval to ensure the fairness of the experiment and the
comparability of the results.

Table 3 shows the average results of all experiments conducted on the CIC-
IDS2017 and NSL-KDD datasets. Our analysis reveals that methods account-
ing for concept drift significantly outperform those that do not when detecting
real-time data streams. This is attributed to the former to adjust their original
prediction strategies, either through fine-tuning or model replacement, follow-
ing the detection of concept drift. This observation supports our contention
that the distribution of network data streams evolves over time, and traditional
static Intrusion Detection Systems (IDS) are less capable of adapting to concept
drift. Notably, INSOMNIA encounters difficulties in detecting low-frequency and
covert attacks (such as Infiltration attacks), and its update mechanism fails to
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Table 3. Comparison of Algorithms for Online Intrusions Detection

Method Dataset Accuracy Precision Recall F1 Score

Naive Bayes∗
NSL-KDD 0.8563 0.8199 0.8730 0.8345

CIC-IDS2017 0.8787 0.9212 0.9067 0.8758

LightGBM∗ NSL-KDD 0.9418 0.9829 0.8802 0.9284

CIC-IDS2017 0.9401 0.8657 0.8020 0.7982

ARF+ADWIN
NSL-KDD 0.9340 0.9426 0.9028 0.9210

CIC-IDS2017 0.9383 0.9362 0.9972 0.9532

INSOMNIA
NSL-KDD 0.5455 0.4666 0.8178 0.5940

CIC-IDS2017 0.8656 0.3941 0.4857 0.3758

We Proposed DWOIDS
NSL-KDD 0.9463 0.9524 0.9214 0.9364

CIC-IDS2017 0.9608 0.9480 0.9969 0.9653

* indicates that this method does not address concept drift.

effectively utilize the knowledge of attacks that occur only within a single win-
dow (such as Brute Force attacks), resulting in degraded detection performance
in certain windows and thereby affecting the overall average performance met-
rics. Furthermore, our proposed framework achieved the best performance in
accuracy, recall, and F1 score on the NSL-KDD dataset. Similarly, on the CIC-
IDS2017 dataset, the framework also attained optimal results in accuracy, preci-
sion, and F1 score. Experimental results demonstrate that our proposed method
not only outperforms traditional machine learning and deep learning algorithms
but also exhibits significant advantages over other algorithms in handling con-
cept drift in intrusion detection.

5 Conclusion and Future Work

This paper presents DWOIDS, an innovative online network intrusion detection
system framework based on dual adaptive windows, designed to effectively ad-
dress the challenge of concept drift in the field of network intrusion detection.
This framework relies on a base classifier based on the Hoeffding tree to accu-
rately identify malicious components in network traffic. Experiments on NSL-
KDD and CIC-IDS2017 datasets demonstrate the necessity of addressing concept
drift in online intrusion detection, and our proposed framework outperforms the
baseline model. This enables real-time adaptation in critical scenarios, where
concept drift frequently disrupts anomaly detection.

Currently, our validation is limited to the binary classification problem of on-
line network streams using benchmark datasets. To bridge the academia-industry
gap, we plan to deploy DWOIDS in real-world environments in future work, fo-
cusing on evaluating its robustness to multi-class concept drift against emerging
network attack traffic.
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