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Abstract. As climate change increases the threat of weather-related
disasters, the importance of weather control research is growing. The
goal of weather control is to mitigate disaster risks by applying interven-
tions with optimal timing, location, and intensity. This study considers
a simulation-based control framework in which interventions in the wind
velocity field serve as inputs and accumulated precipitation as the out-
put. The objective is to identify optimal interventions that minimize
total precipitation. However, the optimization process is highly challeng-
ing due to the vast scale and complexity of weather phenomena, which
introduces two major challenges. First, obtaining accurate gradient infor-
mation for optimization is difficult. In addition, numerical weather pre-
diction models demand enormous computational resources, necessitating
parameter optimization with minimal function evaluations. To address
these challenges, this study proposes a method for designing weather in-
terventions based on black-box optimization, which enables efficient ex-
ploration without requiring gradient information. The proposed method
is evaluated in two distinct control scenarios: one-shot initial value inter-
vention and sequential intervention based on model predictive control.
Furthermore, a comparative analysis is conducted among four representa-
tive black-box optimization methods in terms of total rainfall reduction.
Experimental results show that Bayesian optimization achieves higher
control effectiveness than the others, particularly in high-dimensional
search spaces. These findings suggest that Bayesian optimization is a
highly effective approach for weather intervention computation.

Keywords: Black-Box optimization · Model Predictive Control · Warm
Bubble Experiment · Real Atmosphere Experiment.

1 Introduction

As global warming progresses, weather-related disasters such as hurricanes, floods,
and torrential rain have become increasingly frequent and severe across many
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regions of the world. Over the 35 years leading up to 2014, the number of weather-
related loss events approximately tripled, with total economic losses reaching up
to US$125 billion in 2005 [1]. Various studies on weather control have been con-
ducted under this background [2, 3]. However, because weather control involves
complex and large-scale meteorological phenomena, it faces the following three
major challenges: (1) identifying effective interventions, (2) selecting feasible in-
terventions, and (3) reducing the computational time required for intervention
calculations. To overcome these challenges, the application of control theory is
required; however, traditional control theory has limitations in handling nonlin-
ear, high-dimensional, and complex models such as weather systems [4].

The problem of identifying an effective intervention reduces to the optimiza-
tion of its parameters such as timing, location, and intensity. However, the opti-
mization process is extremely challenging due to the vast and complex nature of
meteorological phenomena [5]. First, obtaining accurate gradient information of
the objective function is difficult. Moreover, state-of-the-art numerical weather
prediction (NWP) models demand enormous computational resources for each
simulation run, thereby enforcing the necessity of minimizing function evalua-
tions during parameter optimization. These constraints collectively suggest that
black-box optimization methods [6], which operate exclusively on input-output
data, offer a promising approach for designing interventions. Specifically, such
methods iteratively explore the parameter space to seek optimal input values
that maximize or minimize the objective function without recourse to derivative
information. Their capacity to leverage evaluation results for efficient exploration
renders them particularly well-suited to the demands of weather intervention
optimization. However, to the best of our knowledge, no previous studies have
applied black-box optimization techniques to the design of weather interventions,
leaving the question of the most effective algorithm unresolved.

Therefore, in this paper, we design a weather intervention computation method
using black-box optimization and evaluate its effectiveness through simulations
using NWP models. We formulate two control scenarios: one that permits in-
tervention only at a single time point (initial value intervention) and another
that enables sequential interventions via model predictive control. Furthermore,
by combining these control problems with two experimental settings that dif-
fer in scale and complexity, we conduct a comprehensive evaluation of several
representative black-box optimization methods. Specifically, we compare the per-
formance of Bayesian optimization, random search, particle swarm optimization,
and genetic algorithms.

The contributions of this work are summarized as follows. This study pro-
poses a black-box optimization framework for weather intervention optimization
and demonstrates that effective interventions can be identified with minimal
function evaluations. Furthermore, a rigorous comparative analysis of four rep-
resentative black-box optimization algorithms is performed in terms of total rain-
fall reduction, with a detailed examination of their operational characteristics.
Notably, the experimental results provide evidence that Bayesian optimization
achieves superior performance, particularly in high-dimensional search spaces.
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Table 1: Overview of warm bubble experiment and real atmosphere experiment.
Warm bubble experiment Real atmosphere experiment

Objective Ideal settings to reproduce cu-
mulus convection and localized
phenomena.

Reproduce large-scale meteoro-
logical phenomena using real at-
mospheric conditions.

Computational
domain

Small (e.g., 10 km2) Large (e.g., 3 240 000 km2)

Overall, the findings support Bayesian optimization as a highly effective and re-
liable approach for computing weather interventions, outperforming alternative
algorithms.

2 Control Problem Formulation

This section first describes the meteorological model used in this study, Scalable
Computing for Advanced Library and Environment Regional Model (SCALE-
RM). Next, two weather control problems are formulated using this model and
the challenges associated with solving the corresponding optimization problems
are discussed.

2.1 SCALE-RM

SCALE-RM is a NWP model specifically developed for climate research. This
model is part of the SCALE software library, which supports weather forecasting
across various computational platforms [7, 8]. Due to its versatility and reliabil-
ity, SCALE-RM has been widely utilized in studies on weather forecasting and
atmospheric science [9]. In weather control research, SCALE-RM plays a vi-
tal role in modeling and assessing control methods.This model enables detailed
simulations of atmospheric interactions and external interventions, facilitating
precise evaluations of control method effectiveness.

In this study, numerical simulations were conducted using two experimental
setups provided by SCALE-RM. The first one, the warm bubble experiment [10],
employs a two-dimensional model to idealize and simulate convective clouds. The
second one, the real atmosphere experiment, uses a three-dimensional model to
replicate more realistic atmospheric behavior. An overview of these two exper-
imental settings is provided in Table 1, and the details of each experiment are
described in Sections 4 and 5, respectively.

Let wt denote the atmospheric state variables at a given time t, such as poten-
tial temperature or humidity, and f0 denote the model representing atmospheric
state changes. The weather system can be modeled as

wt+1 = f0(wt), (1)

where, wt is a high-dimensional vector that encapsulates all meteorological state
variables distributed in space, and f0 represents an idealized model assuming
no noise. In both experimental setups, the dimensionality of wt exceeds tens of
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thousands. The model f0 exhibits nonlinearity due to the complexity of processes
governing meteorological phenomena, such as turbulence and cloud microphysics.

2.2 Weather Control Problem

In this study, interventions to the initial atmospheric state in a numerical weather
prediction model are considered as control inputs for weather modification, with-
out assuming specific intervention methods. This approach is based on the frame-
work proposed by Ohtsuka et al. [11]. Let ut denote the intervention at a given
time t, and f denote the model representing atmospheric state change with the
intervention. The control system in this study can be modeled as

wt+1 = f(wt, ut). (2)

SCALE-RM includes variables MOMX and MOMY, which represent atmo-
spheric momentum [kg ·m/s]. In this study, these variables are modified as an
intervention in the atmospheric state, corresponding to the manipulation of the
wind velocity field. Real-world intervention methods are expected to involve
deploying offshore wind turbines [12] or installing obstacles. Furthermore, the
objective of the intervention is set to minimization of the total precipitation in-
tensity, expressed in [kg/m2/s], over a specified surface region from t = 1 [s] to
t = Te [s]. NWP models simulate physical phenomena within a spatial framework
called the computational domain, which is divided into basic units called grid
cells. Let PREC(t, x, y) denote the precipitation intensity at grid cell (x, y, 0) at
time t. Then, define G as the set of grid cells where total precipitation is to be
minimized.

In this study, we formulate two control problems: one based on initial value
intervention, which applies intervention at a single time step, and another using
model predictive control, which enables sequential interventions. The following
sections present an overview of each control problem and describe the corre-
sponding optimization formulation.

Initial value intervention In this control problem, intervention is applied only
at the initial time. Let the intervention to MOMX and MOMY be denoted as
dX and dY , respectively. The intervention is applied to a single grid cell, with
the intervention location given by (x, y, z). Then, this intervention is represented
as

u0 = (dX , dY , x, y, z). (3)

Let U denote the set of grid cells (x, y, z) where interventions can be applied.
The optimization problem to be solved can then be formulated as

minimize
u0

Te∑
t=1

∑
(x,y)∈G

PREC(t, x, y)

subject to wt+1 = f0(wt), t = 1, 2, . . . , Te − 1 (4)
w1 = f(w0, u0)
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dX ∈ [d, d̄], dY ∈ [d, d̄], (x, y, z) ∈ U

where d, d̄ are the boundary values for the amount of change applied to the
atmospheric momentum.

Model Predictive Control MPC [13] is a control method that optimizes con-
trol inputs while predicting the future state of the control target at each time
step. MPC measures the system output in real time via feedback control and
sequentially computes the appropriate control inputs. Due to this characteris-
tic, MPC is considered highly effective, especially for control systems exhibiting
chaos and uncertainty, such as meteorological systems.

In this control problem, intervention is applied at multiple time steps. Specifi-
cally, we consider a setting in which interventions are applied every Tstep [s] start-
ing from time t = 0 [s]. Here, we define the interval between interventions as
one time step. Let dτ,X and dτ,Y denote the intervention to MOMX and MOMY
at τ steps ahead of the current time, respectively. The intervention location is
represented as (xτ , yτ , zτ ), and the intervention at step τ is then represented as

uτ = (dτ,X , dτ,Y , xτ , yτ , zτ ). (5)

The prediction horizon is set to Tf steps, and the optimization problem at time
t is formulated as

minimize
v0,v1,...,vTf−1

TstepTf∑
k=1

∑
(x,y)∈G

PREC(t+ k, x, y)

subject to wTstepτ+1 = f(wTstepτ , vτ ), τ = 0, 1, . . . , Tf − 1,

wTstepτ+l+1 = f0(wTstepτ+l), l = 1, 2, . . . , Tstep − 1,

dτ,X ∈ [d, d̄], dτ,Y ∈ [d, d̄], (xτ , yτ , zτ ) ∈ U.

(6)

Among the intervention sequence v0, v1, . . . , vTf−1 obtained by solving Opti-
mization Problem (6), v0 is applied as the actual intervention applied at time t.
By executing this operation every Tstep from t = 0 to Te, the accumulated pre-
cipitation in the target region G from t = 1 to Te, which is the control objective,
is reduced.

2.3 Challenges of Optimizing an Intervention

This section discusses the challenges and difficulties associated with solving equa-
tions 4 and 6. First, atmospheric phenomena are inherently nonlinear and highly
sensitive to initial conditions, causing even slight differences to amplify exponen-
tially [14]. As a result, the objective function often has a highly complex land-
scape with non-convexity and numerous local optima. As many optimization
methods assume a smooth objective function, convergence becomes challenging.
Second, numerical weather prediction models are computationally expensive,
and incorporating high-resolution models like SCALE-RM into the optimization
loop significantly increases simulation costs. Furthermore, SCALE-RM solves
atmospheric equations through numerical time integration. However, due to the
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complexity of this process, obtaining an explicit analytical gradient with respect
to state variables is challenging, making gradient-based methods inapplicable.
Additionally, constraints on momentum modifications dX , dY , grid cell selection,
and model uncertainties further complicate finding an exact optimal solution.

Given these challenges, finding exact solutions under limited computational
resources is impractical. Instead, approximate methods, heuristics, and local op-
timization techniques are required. To address the difficulty of obtaining gradient
information directly, this study employs black-box optimization methods.

3 Evaluation Setting

This section first provides an overview of black-box optimization methods, fol-
lowed by a description of the simulation setting used to evaluate their effective-
ness.

3.1 Black-box optimization

Black-box optimization methods are used to search for optimal input values
that maximize or minimize an objective function when the function itself and
its constraints are not explicitly given, and only input-output data is available.
These methods are widely applied in various fields, including engineering de-
sign, hyperparameter tuning of machine learning models, and simulations of
complex systems [15]. In such optimization problems, the objective function is
often nonlinear, discontinuous, noisy, or computationally expensive. Therefore,
selecting an efficient search method is crucial. Representative black-box opti-
mization methods include Bayesian Optimization (BO), Random Search (RS),
Particle Swarm Optimization (PSO), and Genetic Algorithm (GA). We omit the
detailed explanation of the methods due to page limitations.

3.2 Simulation Setting

First, we describe the implementation details and hyperparameter settings for
each optimization method used in this study. BO was implemented using the
gp_minimize function or the Optimizer class from the Scikit-Optimize library,
adopting the default hyperparameter settings. For PSO, we employed the Lin-
early Decreasing Inertia Weight Method (LDIWM) [16], a widely used parameter
adjustment technique. PSO requires defining the hyperparameters c1, c2, and w,
which determine particle movement. In LDIWM, these hyperparameters are set
as c1 = c2 = 2.0, and w is linearly decreased as follows: w = wmax− n(wmax−wmin)

nmax

where n is the current iteration count, and nmax is the maximum number of it-
erations. Following [16], we set wmax = 0.9 and wmin = 0.4. For GA, we used
real-valued encoding. The selection, crossover, and mutation methods were set
as follows: tournament selection, blend crossover [17], and random replacement
with real values. The corresponding hyperparameters were: a tournament size
of 3, a crossover rate of 0.8, a blending factor α of 0.5, and a mutation rate of
0.05. Since the control problems in this study involve a search space with integer
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values, when applying PSO or GA, the search space is defined in real numbers,
and the obtained parameters are rounded to the nearest integers.

Next, we describe the simulation settings designed to ensure a fair evaluation
of the control effectiveness of the black-box optimization methods. In weather
intervention optimization, it is crucial to identify effective interventions with a
minimal number of function evaluations. Therefore, simulations were conducted
with various maximum function evaluation limits—specifically, 15, 30, 50, 100,
150, 200, 250, and 300. Since both PSO and GA require the specification of a
population size, we set the population size based on the evaluation limit: a pop-
ulation size of 5 was used when the maximum function evaluations were 15, and
a population size of 10 was employed for all other cases. Furthermore, to account
for the inherent randomness of black-box optimization methods, we conducted
simulations using 10 different random seeds, applying each optimization method
to each seed. The results were then analyzed and discussed.

4 Warm Bubble Experiment

This section presents the simulation setup, results, and discussion in the context
of the warm bubble experiment.

4.1 Experimental Settings

The warm bubble experiment is a widely used benchmark test for evaluating
the performance of NWP models [10]. This experimental setup replicates at-
mospheric convection processes under idealized conditions. As demonstrated by
Ohtsuka et al. [11], who validated control methods using this setup, the warm
bubble experiment also serves as a benchmark for weather control studies.

In this study, simulations were conducted using SCALE-RM version 5.5.1. In
this experiment, the horizontal grid spacing was set to 500m in both the east-
west and north-south directions, with 1 grid point in the east-west direction and
40 grid points in the north-south direction. The vertical domain consisted of
97 layers, with the model top at 20 km. The initial condition featured a warm
bubble placed near the surface at the center grid in the y-direction. The warm
bubble had a horizontal radius of 4 km, a vertical radius of 3 km, and a center
temperature 3K higher than the surrounding environment. This warm bubble
triggered cumulus cloud formation and convection, leading to precipitation. This
atmospheric motion is observed over a duration of one hour from the start of
the experiment. Fig. 1 presents the accumulated precipitation at each location
over one hour without intervention. For each control problem, the objective is
to determine an intervention that minimizes the total area of this bar graph,
subject to the given constraints.

The two weather control problems described in Section 2 are formulated in
a form applicable to the warm bubble experiment. The control objective is to
reduce the total accumulated precipitation over the entire computational do-
main from time t = 1 [s] to t = 3600 [s]. Furthermore, since this experiment
employs a north-south vertical plane as a two-dimensional setup, interventions
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Fig. 1: Accumulated precipitation over one hour without any control. Grid Y
represents the grid-cell index in the north–south (Y) direction; the length of one
grid cell in Y is 500m.

to the atmospheric state are applied only to MOMY. In this experiment, the
lower and upper bounds of dY , denoted by d and d̄, were set to −30 and 30, re-
spectively. Intervention requires predefined intensity limits. However, since this
study does not assume a specific intervention method, the appropriate bounds
are not uniquely determined. Therefore, based on preliminary experiments, we
selected bounds sufficient for evaluating the control performance of each method.
Initial value intervention In this control problem, we attempt to reduce
accumulated precipitation by applying intervention only at the initial time step.
At the initial time, the intervention applied to MOMY at a specific grid cell
(x, y, z) = (0, y, z) is defined as u0 = (dY , y, z). The corresponding optimization
problem is then formulated as follows:

minimize
u0

3600∑
t=1

39∑
y=0

PREC(t, 0, y)

subject to wt+1 = f0(wt), t = 1, 2, . . . , 3599

w1 = f(w0, u0), (7)
0 ≤ y ≤ 39, y ∈ Z,
0 ≤ z ≤ 96, z ∈ Z,
− 30 ≤ dY ≤ 30.

MPC In this control problem, we attempt to reduce accumulated precipita-
tion through sequential interventions applied every Tstep = 600 seconds from the
initial time. This interval balances the number of control patterns and computa-
tional efficiency, allowing effective evaluation of black-box optimization methods.
Let the intervention applied at a future location (x, y, z) = (0, yτ , zτ ) at τ steps
ahead of the current time be represented as vτ = (dτ,Y , yτ , zτ ). With a predic-
tion horizon of Tf steps, the MPC optimization problem at a given time t can
be formulated as follows:

minimize
v0,v1,...,vTf−1

600Tf∑
k=0

39∑
y=0

PREC(t+ k, 0, y)
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subject to w600τ+1 = f(wTstepτ , vτ ), τ = 0, 1, . . . , Tf − 1, (8)
w600τ+l+1 = f0(w600τ+l), l = 1, 2, . . . , 599,

0 ≤ yτ ≤ 39, yτ ∈ Z,
0 ≤ zτ ≤ 96, zτ ∈ Z,
− 30 ≤ dτ,Y ≤ 30.

In this experiment, the prediction horizon at the initial time step is set to
Tf = 6 and decreases by one step as control progresses. From the sequence of
interventions v0, v1, . . . , vTf−1 obtained by solving the optimization problem (8),
only v0 is applied as the actual intervention at time t. Since the total experiment
duration is 3600 seconds, the optimization problem (8) is solved a total of six
times.

4.2 Results and Discussion

This study aims to compare the effectiveness of black-box optimization methods
as computational approaches for weather intervention. Since simulations require
substantial computational resources, identifying appropriate parameters with a
minimal number of function evaluations is crucial. To this end, for each of the
two control problems, the control effectiveness of the optimal solutions obtained
under different function evaluation limits is computed and presented in Figs. 2a
and 2c. Furthermore, to evaluate the impact of the inherent randomness in black-
box optimization methods on control performance, we conducted 10 simulations
with the number of function evaluations fixed at an upper limit of 300. The re-
sults of these simulations are presented in Figs. 2b and 2d. Finally, the optimal
solutions and corresponding optimal values explored by the black-box optimiza-
tion methods for the control problem involving initial value interventions are
presented in Fig. 3.

First, as shown in Figs. 2a and 2c, the reduction rate of accumulated precip-
itation generally improved with an increasing number of function evaluations,
except when PSO was applied to the initial value intervention problem. For the
initial value intervention problem, PSO achieved higher reduction rates, whereas
for the MPC problem, BO performed better. This suggests that differences in
control problems, such as the dimensionality of the search space and the use of
feedback control, significantly impact control effectiveness.

Next, as shown in Figs. 2b and 2d, BO consistently achieved the highest re-
duction rate among all methods, even in the worst-case scenarios. This trend was
particularly pronounced in the MPC problem, where, with the maximum num-
ber of function evaluations fixed at 300, the worst-case reduction rate achieved
by BO exceeded the median reduction rates of other methods. This result can be
attributed to BO’s use of Gaussian process regression, which allows the regres-
sion model to approximate the objective function and effectively balance explo-
ration and exploitation. Consequently, the random variability of initial sampling
points had minimal impact on the final control performance. For PSO, outliers
with exceptionally high reduction rates were observed in both control problems.
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Fig. 2: Results of the warm bubble experiment. The upper panel shows the results
of initial value intervention, while the lower panel shows those of MPC. (a) and
(c) represent the average control effect at each function evaluation step, while
(b) and (d) present the results with a function evaluation limit of 300.

This is likely due to PSO’s convergence characteristics—once an exceptionally
favorable search point is found, the swarm rapidly converges toward that search
point. This suggests that PSO’s control performance is strongly influenced by
its inherent randomness.

Finally, Fig. 3 shows that grid cells with high control effectiveness, repre-
sented by large points, are concentrated in the region where Z ≤ 20. Addition-
ally, control effectiveness tends to increase as |dY | becomes larger.

5 Real Atmosphere Experiment

This section presents the simulation setup, results, and discussion in the context
of the real atmosphere experiment.

5.1 Experimental Settings

The real atmosphere experiment is a numerical simulation framework that repli-
cates and predicts real-world weather phenomena based on actual atmospheric

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97626-1_14

https://dx.doi.org/10.1007/978-3-031-97626-1_14
https://dx.doi.org/10.1007/978-3-031-97626-1_14


Black-Box Optimization toward Weather Intervention 11

0 20
Grid Y

0

20

40

60

80
Gr

id
 Z

BO

0 20
Grid Y

0

20

40

60

80

Gr
id

 Z

RS

0 20
Grid Y

0

20

40

60

80

Gr
id

 Z

PSO

0 20
Grid Y

0

20

40

60

80

Gr
id

 Z

GA

0 20
Grid Y

0

20

40

60

80

Gr
id

 Z

0 20
Grid Y

0

20

40

60

80
Gr

id
 Z

0 20
Grid Y

0

20

40

60

80

Gr
id

 Z
0 20

Grid Y
0

20

40

60

80

Gr
id

 Z

Reduction(%)
  2
 10
 40

30

20

10

0

10

20

30

In
te

rv
en

tio
n 

in
te

ns
ity

10
0 

fu
nc

tio
n 

ev
al

ua
tio

ns
30

0 
fu

nc
tio

n 
ev

al
ua

tio
ns

Fig. 3: The optimal solutions and corresponding values were obtained for each
maximum number of function evaluations in the warm bubble experiment. The
optimal solutions obtained from each simulation are represented by the position
and color of the points. The size of each point indicates the reduction rate of
accumulated precipitation achieved through control. Grid Y and Grid Z denote
the grid-point indices in the meridional (north–south) and vertical directions,
respectively. One Grid Y spacing is 500 m; Grid Z spacings vary with height
(smaller near the surface, larger aloft). The upper panel shows results for a
maximum of 100 function evaluations, while the lower panel shows those for 300
function evaluations.

conditions and surface parameters. This framework requires substantial com-
putational resources due to large-scale data processing and complex physical
calculations. However, the higher computational cost enables more realistic be-
havior compared to idealized experiments. Therefore, this framework serves as
a crucial tool for advancing real-world weather control.

In this study, simulations were conducted using version 5.5.1 or 5.5.3 of the
SCALE-RM model. In these simulations, the horizontal grid spacing was set to
20 km in both the east-west and north-south directions, with 90 grid points in
each direction. The model included 36 vertical layers, with an upper boundary
approximately 28 km above the surface. The computational domain was centered
around approximately 34◦N and 135◦E, encompassing Japan and the Korean
Peninsula. Atmospheric data, including wind speed and temperature, as well as
elevation and sea surface data at 00:00 UTC on 15 July 2007, were used as initial
conditions.

The two weather control problems described in Section 2 are formulated in a
form applicable to the real atmosphere experiment. First, a baseline simulation
was conducted without intervention to evaluate the 6-hour accumulated pre-
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Fig. 4: The 6-hour accumulated precipitation without any interventions is pre-
sented, with only grid cells receiving 20mm or more of precipitation being col-
ored. The red-framed region in the figure indicates the target area where the
accumulated precipitation is to be minimized in this section.

cipitation at each location in the computational domain. The results, shown in
Fig. 4, indicate significant precipitation within the red-framed region. Therefore,
the objective of the intervention is set to minimization of the total precipitation
intensity [kg/m2/s] over the target region G = {(x, y) ∈ Z2 | 65 ≤ x ≤ 74, 60 ≤
y ≤ 69} during the period from t = 1 [s] to t = 21600 [s].

In a preliminary experiment, we attempted to control the system using the
same settings as those in Section 4, by applying intervention only to a single grid
cell. However, the reduction in accumulated precipitation was negligible. Here,
we expand the number of grid cells to which intervention is applied. The set of
grid cells where intervention is applied is defined as

Rℓ,m,n = {(x, y, z) ∈ Z3 | ℓ ≤ x ≤ ℓ+ 4,m ≤ y ≤ m+ 4, n ≤ z ≤ n+ 4} (9)

where ℓ,m, n represent the western, southern, and bottom boundaries of the
region where intervention is applied, respectively. The same intervention is ap-
plied to all grid cells within this region. However, based on the results in Section
4, interventions in the upper atmosphere have limited effects. Therefore, in-
terventions are applied near the surface by fixing n = 0. Furthermore, Fig. 4
indicates that interventions in the western part of the computational domain
have a limited impact on precipitation reduction in the target region. Based on
this observation, the feasible intervention is restricted to ℓ ∈ {45, 46, . . . , 85} and
m ∈ {0, 1, . . . , 85}.

In the simulation, the intervention bounds were initially set to d = −30 and
d̄ = 30, as in the warm bubble experiment. However, this sometimes led to a
loss of physical consistency, causing simulation failure. To prevent this issue, the
bounds were adjusted to d = −20 and d̄ = 20.
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Initial value intervention In this control problem, we attempt to reduce
accumulated precipitation by allowing intervention only at the initial time. An
intervention is applied at the initial time to the region Rℓ,m = {(x, y, z) ∈
Z3 | ℓ ≤ x ≤ ℓ + 4,m ≤ y ≤ m + 4, 0 ≤ z ≤ 4}, which is represented as
u0 = (dX , dY , Rl,m). We omit the details due to page limitation.
MPC In this control problem, we attempt to reduce accumulated precipitation
by allowing sequential interventions. The intervention is applied at intervals of
Tstep = 3600, starting from the initial time. Let the intervention applied to a
region Rτ,ℓ,m = {(x, y, z) ∈ Z3 | ℓτ ≤ x ≤ ℓτ + 4,mτ ≤ y ≤ mτ + 4, 0 ≤ z ≤ 4}
at τ steps ahead of the current time be represented as vτ = (dX,τ , dY,τ , Rτ,ℓ,m).
In this experiment, the prediction horizon Tf at the initial time step is set to 6.
We omit the details due to page limitation.

5.2 Results and Discussion

In this section, simulation experiments similar to those in Section 4 are con-
ducted. The control effect achieved with the optimal solutions was calculated
for each upper limit on the number of function evaluations and the results are
illustrated in Figs. 5a and 5b. Furthermore, the results of 10 simulations con-
ducted with the number of function evaluations fixed at an upper limit of 300
are presented in Figs. 5b and 5d.

First, as shown in Figs. 5a and 5c, the reduction rate of accumulated precip-
itation generally improved with an increasing number of function evaluations,
except when PSO was applied to the initial value intervention problem, similar
to the warm bubble experiment. Furthermore, in both control problems, BO
achieved the highest reduction rates among the four methods. Next, as shown
in Figs. 5b and 5d, BO consistently achieved higher minimum reduction rates
than other methods, aligning with the results of the warm bubble experiment.
Notably, in the initial value intervention problem, when the number of function
evaluations was fixed at 300, the median reduction rate equaled the maximum
reduction rate, indicating exceptionally high convergence to the optimal solution
with BO. A significant difference from the warm bubble experiment is that BO
was also the most effective method for the initial value intervention problem.
In the real atmosphere experiment, the search space dimensionality increased
by one, which may have influenced the results. This is further supported by the
observation that in the MPC problem, which has an even higher-dimensional
search space, the control effectiveness of BO becomes even more pronounced.

6 Conclusion

In this study, we designed a weather intervention computation method based on
black-box optimization and evaluated its effectiveness through simulations using
the NWP model. The results suggest that, among the black-box optimization
methods tested, BO demonstrates notably high effectiveness. It should be noted
that these findings are based on specific experimental settings and may not
necessarily generalize to other scenarios. Nevertheless, our results indicate the
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Fig. 5: Results of the real atmosphere experiment. The upper panel shows results
with initial-value intervention, while the lower panel shows those with MPC. (a)
and (c) represent the average control effect at each function evaluation times,
while (b) and (d) present results with a function evaluation limit of 300.

potential of black-box optimization as a viable approach for weather intervention
computation and offer valuable insights into the distinct characteristics of each
method.

However, several challenges remain. First, hyperparameters for PSO and GA
were selected based on prior studies and preliminary testing, but their suitability
for the specific tasks requires further validation. Second, the experimental setups
may not fully capture the complexity of real atmospheric systems. Incorporat-
ing data assimilation and ensemble simulations could address this limitation.
Third, the findings are based on a specific scenario and may not generalize to
other weather control objectives or regions. Further testing under diverse condi-
tions is needed. Lastly, the feasibility of implementing large-scale interventions in
real-world conditions remains uncertain. Future research should explore realistic
control strategies and assess their viability through detailed simulations.
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