
A Deeper Look into the Limitations of Early-Exit
Architectures for Single and Multi-Label

Classification

Klaudia Bałazy1,3, Julian McAuley2, and Jacek Tabor1

1 Jagiellonian University
2 University of California San Diego

3 Doctoral School of Exact and Natural Sciences at Jagiellonian University
Corresponding author: klaudia.balazy@doctoral.uj.edu.pl

Abstract. In this study, we explore the limitations of early-exit ar-
chitectures, which are designed to enhance computational efficiency in
neural networks, focusing particularly on both single and multi-label
classification tasks within the computer vision domain. We introduce a
systematic evaluation framework that not only advances research in this
area but also bridges an important gap in understanding how these ar-
chitectures perform within the complexities of multi-label settings. Our
findings reveal a significant challenge: while early-exits improve efficiency
without compromising accuracy in single-label tasks, they struggle to of-
fer similar benefits in multi-label classification, necessitating uniquely
tailored strategies. Further insights from our ablation suggest that the
difficulty in achieving benefits from early-exits in multi-label classifica-
tion may stem from the varying complexities of processing distinct classes
within a single instance. This work lays a solid foundation for future re-
search focused on developing early-exit strategies that effectively handle
the complexities of diverse classification contexts.

Keywords: Computational Efficiency · Dynamic Neural Networks · Early-
Exit Architecture · Multi-Label Classification.

1 Introduction

Deep neural network models have shown remarkable performance in various
fields, including computer vision and natural language processing. The signifi-
cant improvements in accuracy and predictive capability often come at the cost of
increased computational complexity and resource demands [1]. Early-exit strate-
gies [2, 3, 4, 5], which dynamically adjust the computation time based on the
complexity of the input, have emerged as a promising approach to mitigate
these challenges. Early-exit architectures introduce internal classifiers at differ-
ent depths within a neural network. These classifiers, also known as “heads”,
can independently make predictions and stop the inference process early if cer-
tain conditions, such as a predefined confidence threshold, are met. By enabling
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Fig. 1: The underlying complexity of leveraging early-exit models for multi-label
classification can be illustrated by this example image with easily identifiable
cars and a harder-to-spot bike. Our experiments (see Section 4.3) suggest that
while the model may quickly detect easier to notice classes (like cars in this ex-
ample), identifying the bike could require further processing. This highlights the
challenge of finding the optimal exit point when multiple objects with varying
recognition difficulty are present (this problem is absent in single-label classifi-
cation).

models to exit inference early under certain conditions, these strategies can sig-
nificantly improve computational efficiency.

While early-exit models have been the subject of growing interest, several
key aspects remain underexplored. Primarily, the evaluation of these strategies
is still a challenging task due to the lack of a universally agreed-upon frame-
work for comparison. Although the Efficient Language Understanding Evalua-
tion (ELUE) [6] has been proposed for natural language processing tasks allow-
ing for evaluation of early-exit methods with different exit thresholds, a broader
framework applicable across diverse domains is still lacking. Secondly, the un-
derstanding of the limitations and benefits of early-exit strategies needs deeper
investigation. Finally, despite considerable research on early-exits for single-label
tasks, studies focusing on multi-label tasks are noticeably missing.

In this study, we address these gaps by introducing a systematic framework
for the evaluation of early-exit strategies. Our proposed framework offers a struc-
tured guideline for future assessments and comparisons within this field. It in-
corporates a robust evaluation metric that quantifies the performance differences
between training each model’s head independently and using a collective training
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approach with a selected early-exit strategy. This approach allows for a deeper
understanding of early-exit strategies and can serve as a cornerstone for subse-
quent research in this field.

For single-label classification, we demonstrate that early-exits are advanta-
geous regardless of the number of output classes. The advantages are particularly
pronounced in the initial layers of the network and gradually diminish in later
layers. Moreover, our analysis adds nuance to the “big label” problem, a phe-
nomenon identified by Liu et al. [7] in the context of the WOS-46985 dataset,
where early-exits struggle with single-label classification tasks involving a large
number of output classes. Our investigation reveals that this issue is not universal
but dataset-dependent. Specifically, our single-label experiments with multiple
output classes did not reproduce the “big label” problem, emphasizing the need
for context-aware analyses of early-exit models.

Furthermore, we delve into the analysis for multi-label classification tasks,
an area that we have identified as presenting considerable challenges in terms
of deriving benefits from early-exit methods. We provide a solid baseline and
contribute with insights into this underexplored area. We examine diverse archi-
tecture choices and various exiting criteria, including entropy [8, 9, 10], confi-
dence [11, 12, 13], patience [14, 15], learning-to-exit [16], and hybrid approach-
es [17]. Our investigation reveals that using a confidence or entropy criterion is
an effective approach for multi-label classification. To further improve the perfor-
mance, we explore a learning-based approach for early-exiting that integrates a
modified loss function, resulting in enhanced performance at a specific speedup.

We also design an experiment to gain a deeper understanding of the chal-
lenges associated with employing early-exit strategies for multi-label classifi-
cation. Our hypothesis, supported by our findings, indicates that the varying
recognition difficulty associated with each class within an instance could be a
key challenge when employing early-exits in a multi-label context (see Figure 1).
This investigation not only enriches our understanding of the complexities inher-
ent in multi-label classification with early-exit strategies but also points towards
intriguing directions for future research.

By offering insights into the limitations of early-exit architectures and shed-
ding light on the complexities of applying these strategies to multi-label classifi-
cation tasks, our study opens up important directions for future research in this
domain. We hope that our work will not only contribute to a better understand-
ing of early-exit models but also inspire further advancements in their design
and application.

Our contributions can be summarized as follows:

– We propose a systematic framework for evaluating the benefits of early-exit
architectures in deep neural network models.

– We conduct an in-depth examination of various exiting criteria and architec-
ture choices for single-label and multi-label tasks within the computer vision
domain, establishing a strong baseline for future research.

– We assess the “big label” problem [7] within the context of early-exit archi-
tectures. Our findings reveal that the challenges associated with handling a
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large number of output classes in single-label classification are influenced by
specific dataset characteristics, rather than being inherent limitations of the
early-exits.

– We show that applying early-exit models to multi-label classification presents
substantial complexities compared to single-label scenarios (see Figure 3).
We provide detailed insights into this phenomenon and offer an intuitive
understanding of the underlying factors (see Figure 1 and Figure 6).

2 Related work

Early-exit models are types of dynamic neural networks that can accelerate
inference by terminating it at an earlier layer. This section provides an overview
of the key developments in early-exit methods, and then discusses the approaches
for evaluating and analyzing the performance of these methods.

Early-exit methods Adaptive Computation Time (ACT) [2, 3] introduced a train-
able halting mechanism for input-adaptive inference. However, training the halt-
ing model required extra effort and added more parameters and increased in-
ference costs. To address this issue, BranchyNet [4] utilized the entropy of the
prediction probability distribution as a measure of branch classifier confidence
to enable early exiting. Shallow-Deep Networks (SDN) [5] employed the softmax
scores of branch classifier predictions to counteract the overthinking problem
associated with deep neural networks.

Following research in computer vision, there have also been approaches for
natural language processing models, as these models are usually large and deep.
Some methods rely on predefined confidence thresholds to determine early-exit
points. Examples include DeeBERT [8], RightTool [11], FastBERT [9], Rome-
BERT [10], and SkipBERT [13]. These approaches typically involve training
BERT with internal classifiers and using entropy or other metrics to determine
when a model’s prediction is confident enough to exit early.

Another line of studies recycle the predictions of internal classifiers to im-
prove overall performance and reduce wasted computation. PABEE [14] uses
early stopping from model training to jointly train internal classifiers and ex-
its when k consecutive classifiers make the same prediction. LeeBERT [15] en-
courages consistency among internal classifiers, while Sun et al. [18] introduce
diversity loss and voting mechanisms for ensembling. Ensemble-based methods
have been shown to improve both efficiency and robustness. Zero Time Waste
(ZTW) [12] adds direct connections between internal classifiers and combines
previous outputs in an ensemble-like manner, to improve performance.

In contrast to predefined confidence thresholds, some methods learn the early-
exit criterion. BERxiT [16] uses a learning-to-exit module to predict the correct-
ness of current internal classifiers, while CAT [19] employs a “meta consistency
classifier” to determine conformity with the final classifier.
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Evaluation and analysis of early-exits Evaluating and analyzing early-exit mod-
els poses unique complexities, and currently, there is no universally agreed-upon
method for comparison and evaluation across various contexts. In the context of
natural language processing, the Efficient Language Understanding Evaluation
(ELUE) [6] has been proposed as a potential standard, which considers multiple
speed-accuracy pairs when different thresholds are selected for early-exit meth-
ods. However, it is still crucial to agree on the evaluation framework that can
facilitate robust evaluation across various applications and domains.

Analyzing the limitations and benefits of early-exit strategies is a complex
task, yet it is critical for understanding the conditions under which these models
excel or fall short. Liu et al. [7] provide valuable insights into the limitations for
single-label classification tasks, uncovering the “big label” issue for the WOS-
46985 dataset. The term “big label” problem represents the case in which early-
exit models have difficulties accurately processing tasks with a large number of
output classes. As a potential solution, they propose a strategy of label reduc-
tion to mitigate this issue. Our investigation further deepens the understand-
ing of this issue, demonstrating its dataset-dependent nature and emphasizing
the importance of context-aware analyses. While considerable research exists on
early-exits for single-label classification tasks, there is a notable gap in the liter-
ature regarding multi-label classification tasks. In contrast to existing works, our
study comprehensively explores both single- and multi-label classification using
early-exit strategies.

3 Evaluation framework of the early-exits effectiveness

In this section, we outline our evaluation framework for assessing the advantages
and limitations of using early-exits to speed up inference in neural networks.

Evaluation Setup To evaluate the performance of early-exit strategies, we start
with a pre-trained classification model with an unfrozen backbone. We enhance
this model by adding additional classification heads, also referred to as internal
classifiers, after each layer, aligning with methods used in prior studies [5, 12].
Each of these H heads is trained independently using an appropriate loss func-
tion, resulting in H distinct models. These models demonstrate the potential
of a static exit strategy, where each head is configured to terminate processing
after specific layers. Concurrently, we develop an early-exit model in which all
heads are trained collectively. This dynamic model requires a carefully defined
exit strategy for each example.

Training Objective In single-label classification tasks, we employ the cross-entropy
(CE) loss function coupled with a softmax activation. This setup is chosen for its
effectiveness in handling mutually exclusive class predictions typical in single-
label scenarios. For multi-label classification, where multiple independent labels
may be correct, we use binary cross-entropy (BCE) loss with sigmoid activation
at the classification heads. Sigmoid activation allows each label to be treated
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independently, predicting a label as positive (with a score above a threshold of
0.5) or negative (below this threshold). Alternatively, we also utilize CE loss with
softmax activation, requiring the selection of a specific threshold above which a
label is considered positive.

Early-exiting strategies We evaluate various commonly used early-exiting strate-
gies: confidence thresholds, entropy thresholds, rank-patience-based strategies,
hybrid approaches blending confidence (or entropy) with rank-patience mea-
sures, and learning-based (classifier-based) methodologies. For strategies that
employ thresholds, we explore a spectrum of potential thresholds, generating a
performance-speedup curve in the process. The effectiveness of a strategy is in-
dicated by the area under this curve; the larger the area, the more effective
the strategy. In the case of the learning-based approach, we derive a single
performance-speedup point.

Confidence-based strategies [5, 11, 12, 13] suggest that the model should exit if
a certain confidence threshold is surpassed. This threshold applies to the highest
probability label in single-label classification and to all positively classified labels
in multi-label case.

Entropy-based approaches [8, 9, 10] operate on the principle that a model
should exit if the entropy of its prediction drops below a particular level (low
entropy implies a higher degree of certainty in the prediction).

In patience-based strategies [14, 15], the decision to exit depends on the consis-
tency of predictions across successive internal classifiers. We adapt this approach
for multi-label classification by introducing a rank-based measure, where the exit
decision also takes into account the order of predicted classes based on their prob-
ability magnitudes. We name this strategy rank-patience-based approach, as the
model is permitted to exit if the rank of class probabilities remains adequately
consistent across consecutive layers. This modification enhances the applicability
of patience-based strategies in the context of multi-label classification.

Hybrid approaches [17] combine confidence (or entropy) measures with pa-
tience-based measures (rank-patience-based in our multi-label scenario). In this
strategy, the model’s exit decision is influenced by the confidence or entropy
measure, but it also incorporates a rank-patience factor. This factor assesses the
stability of the rank (order) of the predictions, allowing the model to process ad-
ditional layers before deciding to exit, even if the confidence or entropy threshold
has been met.

Learning-based approaches Xin et al. [16] introduce an auxiliary classifier with
sigmoid activation at each potential exit point. These binary classifiers, trained
to predict whether the model should exit at that head, use the corresponding
hidden state or the logits from the respective head classifier as input. We employ
the Mean Squared Error (MSE) loss function (following previous works [16]),
which calculates the difference between the predicted exit probability pj and the
actual binary label yj (indicating whether an early exit should occur) across all
m training instances.

To impose a heavier penalty on incorrect predictions when the model should
continue processing, we introduce an additional regularization loss component.
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This component is computed as the MSE of the predicted exit probability pj in
cases where the model should not exit. We also incorporate a weighting factor
into the final loss calculation to impose a greater penalty on the earlier heads, as
their predictions have the most significant influence on further processing. The
weights are determined by 1

hi+1 , where hi denotes the head index. Furthermore,
we balance the MSE loss and the regularization loss with an additional hyper-
parameter α. The final loss L is formulated as the sum of individual losses Lhi

across all H heads:

L =

H∑
i=1

Lhi
, (1)

where the loss Lhi
for each head hi is defined as:

Lhi
=

1

m(hi + 1)

(
α ·

m∑
j=1

(pj − yj)
2 + (1− α) ·

m∑
j=1

(pj · (1− yj))
2
)
. (2)

Early-Exit Benefits Evaluation Framework To assess the effectiveness of early-
exit architectures, we compare the performance of static classifiers with early-exit
models, similarly to the ELUE metric used in NLP [6]. We propose the following
systematic approach:

– Performance evaluation: We first measure the performance Phj of each
static classifier at head hj for all n instances in the test set. Simultaneously,
we evaluate the performance of the early-exit model Pee(E) at specific aver-
age exit layer E. The average exit layer E is calculated as: E =

∑
i(ei)

n , where
ei denotes the exit layer for each instance. The performance Pee(E) repre-
sents the aggregated performance across all test instances at their respective
exit points.

– Locating the Nearest Performance Point: To ensure fair comparisons,
we calculate Eclosest(hj), which identifies the average exit layer in the early-
exit model that most closely matches the computational depth of each static
classifier head hj . We determine the average exit layer that best aligns, in
computational terms, with the layer where head hj is located. This average is
computed across all test instances and may vary depending on the thresholds
set within our chosen strategy. This alignment ensures that performance
comparisons between the early-exit and static models are conducted under
equivalent computational conditions:

Eclosest(hj) = argmin
E

|E − hj |

– Early-Exits Benefits Quantification: We then calculate the benefits of
early-exit strategies BEEj

for each static head index j by comparing the
performance of the early-exit model at the Eclosest(hj) average exit layer to
the performance of the static classifier at head hj :

BEEj
= Pee(Eclosest(hj))− Phj
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If the computed value BEEj
is positive, it indicates that the early-exit strat-

egy enhances performance relative to the static model for an equivalent compu-
tational effort. This positive benefit suggests that the early-exit model offers a
more efficient processing strategy without sacrificing accuracy. A negative BEEj

indicates no benefit from using early-exit models compared to static networks,
while a zero value indicates equivalent performance. Our methodology enables us
to systematically evaluate and demonstrate the practical advantages of early-exit
strategies across various applications.

4 Experiments

In our study, we employ a pre-trained ResNet50 model [20] as the backbone.
We extend this model with internal classifiers, which are appended after core
bottleneck layers to enable early-exiting. To establish a baseline for comparison,
each internal classifier head is fine-tuned independently on a designated dataset,
resulting in H distinct static models. These models serve as benchmarks for
evaluating the performance at various depths without early-exiting strategies.
In parallel, we also develop an integrated early-exit model where all internal
classifier heads are collectively optimized. This model is designed to assess the
performance and efficiency of dynamic exiting during inference, contrasting di-
rectly with the static models that do not incorporate early-exit functionality.

The performance of the models is assessed on specific test sets through F1
score (averaged over all instances) and accuracy score. For static models with
independently trained heads, we compute the scores across the entire test set for
each head. In contrast, for the early-exit model, we employ diverse strategies,
the specifics of which are covered in the subsequent experiment descriptions.

4.1 Early-exits for single-label classification

We start by exploring early-exits for single-label classification. We use the Im-
ageNet [21] dataset with a varying number of output classes. We train models
using different learning rates: λ ∈ {10−3, 10−4, 10−5}. For the early-exit models,
we employ a widely-adopted confidence strategy [5, 12] to determine the exit
head for specific examples.

Our findings, illustrated in Figure 2, highlight the considerable benefits of
using early-exit for single-label. However, these advantages seem to decrease in
the final layers for this specific dataset. Moreover, the models with 2-output
classes exhibit increased instability, likely attributed to the limited volume of
training and test data. Based on these experiments, we draw the conclusion
that the incorporation of early-exit architectures for single-label offers significant
advantages. The “big label” problem identified for WOS-46985 [7], which refers
to poor early-exits performance with many output classes, appears to be dataset-
dependent and did not occur in our experiments.
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Fig. 2: Benefits of early-exits for single-label ImageNet classification across vary-
ing number of output classes. BEE shows the mean F1 and accuracy difference
between static exits and a confidence-based early-exit model. The graph shows
mean benefits and standard deviations for each exit layer speedup across mod-
els trained with different learning rates. Regions above the dashed line indicate
favorable performance-speedup trade-offs, highlighting the effectiveness of early-
exits for single-label classification.
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Fig. 3: The disparity in benefits of early-exit architectures for single- and multi-
label classification. The graph shows mean benefits BEE and standard deviations
from experiments with different hyperparameters. Curves above the dashed line
indicate a favorable performance-speedup trade-off. For single-label classifica-
tion, benefits are predominantly positive, while for multi-label tasks, they are
considerably smaller and symmetrically distributed around zero.

4.2 Early-exits for multi-label classification

We next evaluate the effectiveness of early-exit strategies for multi-label classifi-
cation tasks using three datasets: VOC [22], COCO [23], and a modified version
of ImageNet [21]. To adapt the ImageNet dataset for multi-label classification, we
randomly select n = 10 classes and combine images from m randomly chosen cat-
egories (m ∈ {2, 4}), creating composite images that belong to multiple classes.
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We train early-exit models using either sigmoid or softmax activation functions
at the outputs of the internal classifiers. For loss functions, we employ binary
cross-entropy (BCE) for sigmoid activations and cross-entropy (CE) for softmax
activations. In the softmax models, we use varying thresholds {0.01, 0.05, 0.1,
0.2, 0.3} during the evaluation phase to determine positive classifications. For
our initial experiments, we evaluate early-exit models using two strategies: an
entropy-based strategy for softmax-activation models and both confidence and
entropy-based strategies for sigmoid-activation models. All models are trained
with learning rates λ ∈ 10−3, 10−4, 10−5.

Limited benefits for multi-label classification Figure 3 illustrates the mean and
the standard deviation of performance outcomes achieved by early-exits with
basic exiting strategies, such as confidence and entropy thresholds, for VOC,
COCO, and ImageNet test sets. The benefits of implementing early-exit archi-
tectures for multi-label classification are significantly less pronounced than those
observed for single-label scenarios, with statistical significance levels p ≤ 0.05.
These findings indicate that applying early-exit strategies in a multi-label con-
text poses greater challenges compared to their application in single-label tasks.
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Fig. 4: The benefits BEE of using rank-patience-based early-exiting strategies for
multi-label VOC test dataset. Rank-patience-based approaches generally yield
less promising results compared to simple confidence-threshold strategies. How-
ever, there are notable benefits in employing rank-patience-based approaches to
enhance accuracy at higher speedups.

Rank-patience-based early-exiting strategy for multi-label classification Recog-
nizing the performance gap outlined in previous experiments, we decided to
further explore the alternate early-exit strategies for multi-label classification.
Figure 4 presents the performance outcomes when implementing rank-patience-
based strategies and hybrid strategies that combine rank-patience information
with confidence or entropy thresholds. We employ two metrics to assess rank
agreement: Normalized Discounted Cumulative Gain (nDCG) and Kendall’s tau.
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Models are trained using different learning rates (λ ∈ {10−3, 10−4, 10−5}), pa-
tience thresholds (t ∈ {2, 3, 4, 5, 6}), and rank-agreement tolerance thresholds
(for nDCG scores values below {0.001, 0.01, 0.05, 0.1, 0.15} and for Kendall’s tau
correlation tolerances values above {0.7, 0.8, 0.9, 0.95}).
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Fig. 5: Benefits BEE of the learning-based early-exit strategy compared to base-
line confidence and entropy methods. For each dataset, we show the best results
from baseline methods alongside various hyperparameter configurations of the
learning-based approach. Each point of the learning-based strategy represents a
distinct model setup, illustrating that while there are modest performance im-
provements at certain speed-ups, these gains vary depending on the dataset.

Figure 4 showcases the results from the VOC dataset, where we tested vari-
ous learning rates, consecutive head agreements, and prediction order tolerance
thresholds. Our analysis reveals that despite rigorous testing, strategies based
on patience and predicted probability order did not surpass basic methods such
as the confidence-based strategy, with all results being statistically significant
(p ≤ 0.05). However, certain experiments demonstrated modest accuracy im-
provements at higher average exit layers, likely due to enhanced decision con-
sensus in deeper layers, resulting in more accurate and reliable predictions.

Learning-based early-exiting We further explore the learning-based (classifier-
based) early-exiting strategy. We introduce an auxiliary classifier added to each
classification head, deciding whether an example should exit at that head. Dur-
ing evaluation, the output value (following sigmoid activation) ranges from 0 to
1, with a value exceeding 0.5 indicating a decision to exit. This single-point deci-
sion criterion directly determines the model’s performance and specific speedup.
While this strategy eliminates extra threshold selection, it also restricts the flex-
ibility of controlling the performance-speedup ratio, offered by other strategies.

For the input to the early-exit decision classifiers, we use the logits from
the corresponding classification head outputs (experiments with hidden states
did not notably improve performance). We evaluated several common binary

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97626-1_13

https://dx.doi.org/10.1007/978-3-031-97626-1_13
https://dx.doi.org/10.1007/978-3-031-97626-1_13


12 K. Bałazy et al.

0 10 20 30 40
Test examples

1

2

3

4

5

6

7

8

9

10VO
C 

bi
na

ry
-c

la
ss

ifi
ca

tio
n 

ea
rly

-e
xi

t m
od

el
s

0

2

4

6

8

10

12

14

16

Exit layer

Fig. 6: Illustration of the challenge in early-exit models for multi-label classi-
fication. The x-axis shows test examples; the y-axis, ten class-specific binary
models. Colors indicate the chosen exit head, highlighting varied recognition
difficulty across classes. Rare instances where two different models exit at the
same layer are shown in orange, while an example with objects of significantly
different recognition difficulty, is highlighted in red.

classification loss functions: Binary Cross-Entropy (BCE), Mean Squared Error
(MSE), L1 loss, and Hinge loss, across different hyperparameter configurations.
Mean Squared Error loss with regularization, as shown in Equation (1), yielded
the best performance. To maintain conciseness, we present only the results from
this loss function. Notably, the parameters of the main model remain frozen
while training the early-exit decision classifiers, allowing these classifiers to be
trained independently.

Figure 5 illustrates the performance of the learning-based early-exiting strat-
egy in comparison to the baseline confidence and entropy strategies across differ-
ent multi-label datasets: VOC, COCO, and ImageNet. While the learning-based
approach achieves performance improvements at certain speedups, the extent
of these improvements varies significantly across datasets. This variability high-
lights the importance of customizing early-exit strategies to fit specific dataset
characteristics. Further exploration of learning-based strategies with different
architectures and learning schemes may lead to more robust and universally
effective solutions for multi-label classification tasks.

4.3 Ablation study

Our exploration of the early-exit limitations in multi-label classification reveals
that they provide fewer benefits compared to single-label scenarios. We suppose
this complexity arises from the distinct recognition difficulty associated with
each class within a single example. In other words, when we have a lot of classes
present in one image, the network recognizes the presence of objects from differ-
ent classes at different processing stages. To validate our hypothesis, we conduct
a simple experiment, depicted in Figure 6.

We train ten early-exit models, each dedicated to a unique class from the
VOC dataset. Each model consists of binary classifiers heads that determine the
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presence or absence of its designated class. If the classifier recognizes its class as
present, it exits at the current head. We selected test examples that included at
least two of the ten classes we focused on. In Figure 6, each point on the x-axis
represents a test example, with its color indicating the exit head chosen by the
respective model on y-axis. We highlight with orange color when two distinct
models, each tasked with a different class, exit at the same layer. The diversity of
exit heads across the models illustrates that different classes within an example
indeed present varying degrees of recognition difficulty, thereby reinforcing our
initial hypothesis.

Our findings suggest that in a multi-label settings, the idea of early-exit
must extend beyond the traditional notion of determining an optimal exit point
based on the overall prediction confidence. Instead, it should consider the var-
ied recognition difficulty of each class within an example, hence posing a more
nuanced problem. Our intuition is that the key characteristic impacting the ef-
fectiveness of early-exits could be the similarity of the classes within a dataset.
When classes are very similar, the problem resembles multi-label case, making
it more challenging for the model to distinguish between them, thus requiring
more processing. Conversely, when classes are very distinct, they are easier to
recognize, potentially benefiting more from early-exit strategies.

5 Conclusions

We introduced a systematic framework for evaluating early-exit architectures
in single- and multi-label classification tasks, demonstrating its effectiveness in
computer vision. We found that early-exits reduce computational time in single-
label tasks with minimal accuracy loss, while their benefits in multi-label tasks
are limited due to the complexity of recognizing multiple classes (see Section 4.3).
We revisited the "big label" problem, suggesting that challenges in single-label
tasks with many output classes arise more from dataset characteristics than
from early-exit limitations. For single-label tasks, widely used confidence-based
strategies proved highly effective. In contrast, multi-label classification presents
greater challenges, underscoring the need for adaptive exit strategies tailored to
class-specific difficulties. This presents a promising direction for future research
aimed at improving both performance and efficiency.
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