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Abstract. The Energy Exascale Earth System Model (E3SM) Land
Model (ELM) has been extended to kilometer-scale (km-ELM) resolu-
tions, enabling high-fidelity simulations of terrestrial processes at 1 km ×
1 km grid spacing. In ELM, domain decomposition partitions the compu-
tational domain across processors, ensuring efficient parallel execution.
Currently, round-robin decomposition is applied, providing a straight-
forward way to distribute computational workload. As ELM continues
evolving at the kilometer-scale (km-scale), particularly with integrating
lateral flow modeling, decomposition strategies must also account for
the increased workload and data movement. This paper introduces a
flexible user-defined domain decomposition framework, allowing users
to customize domain partitioning based on application requirements.
The impact of different decomposition strategies is evaluated across var-
ious applications concerning computation, communication, and I/O. Re-
sults demonstrate that while 1D partitioning yields superior I/O perfor-
mance, k-nearest neighbors (KNN) clustering effectively reduces inter-
process communication overhead. This study lays the groundwork for
scalable partitioning in large-scale land surface simulations, enhancing
next-generation Earth system modeling.

Keywords: Earth System Modeling, E3SM Land Model (ELM) · Kilometer-
Scale ELM · Domain Decomposition · Load Balancing · I/O

1 Introduction

The Energy Exascale Earth System Model (E3SM) [1] is a state-of-the-art, high-
resolution Earth system model developed to simulate and project climate change
with a focus on water cycle, biogeochemical, and cryospheric processes. Designed
for exascale computing, E3SM integrates multiple components, including atmo-
sphere, ocean, land, and ice, to provide high-fidelity climate predictions. The
land component of E3SM, known as the E3SM Land Model (ELM), is respon-
sible for simulating terrestrial processes such as energy balance, water fluxes,
vegetation dynamics, and biogeochemical cycles. ELM has evolved as a sophis-
ticated land surface model, supporting simulations at various spatial resolutions
and facilitating studies on climate-land interactions.
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With the advancement of high-performance computing (HPC) and the in-
creasing demand for more granular climate simulations, ELM has been extended
to kilometer-scale ELM (km-ELM) [2,3]. Unlike traditional land models that op-
erate at coarser resolutions (e.g., 10–100 km), km-ELM enables fine-scale simu-
lations down to 1 km × 1 km grid spacing, capturing small-scale heterogeneities
in land surface processes. This capability is crucial for improving regional cli-
mate assessments, hydrological modeling, and ecosystem studies, particularly in
complex terrains and highly heterogeneous landscapes.

However, achieving efficient and scalable kilometer-scale (km-scale) simula-
tions poses significant challenges due to the sheer volume of data and com-
putational workload. First, the computational cost increases drastically as the
number of grid cells grows, requiring efficient load balancing to prevent idle
processors and ensure optimal utilization of computing resources. Second, km-
ELM requires lateral flow processes. Unlike traditional column-based land mod-
els where each grid cell operates independently, lateral flow requires frequent
data exchanges between neighboring subdomains to simulate surface and sub-
surface water transport. Third, the high-resolution nature leads to substantial
I/O demands, particularly in restart files and history files [3].

These challenges can cause potential bottlenecks in km-ELM in load balanc-
ing, data movement, and I/O, especially when considering the current simple
approach of round-robin decomposition strategy [4, 5]. Efficient domain decom-
position strategies, a technique used to partition the vast computational domain
into smaller subdomains for parallel processing, are critical to ensuring that com-
putational workloads are evenly distributed across processors while minimizing
communication overhead, allowing km-ELM to leverage modern supercomputing
architectures effectively.

In this paper, we introduce a flexible user-defined domain decomposition
framework (FUDD) in km-scale ELM, allowing users to customize domain par-
titioning based on specific application requirements. Unlike the current round-
robin strategy, FUDD provides adaptability, enabling optimized load balancing,
efficient communication, and improved I/O performance across different km-
ELM use cases. The contributions of this paper are as follows:

– Introducing a flexible user-defined domain decomposition framework inte-
grated into km-scale ELM.

– Demonstrating domain decomposition using static predefined strategies, adap-
tive data-driven methods, and watershed-based partitioning.

– Evaluating decomposition strategies’ impact in multiple applications on dif-
ferent clusters in terms of computation, communication, and I/O.

To the best of our knowledge, this is the first work to systematically study
the effect of domain decomposition in kilometer-scale ELM simulations.

The structure of this paper is as follows. Section 2 discusses prior research
relevant to our work. Section 3 provides the necessary background on km-scale
ELM along with domain partitioning and gridcell grouping. The user-defined
decomposition framework is described in Section 4. A performance evaluation
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and analysis is then conducted in Section 5, and finally, Section 6 outlines our
conclusions and future directions.

2 Related Work

2.1 Km-scale E3SM Land Model Development

E3SM [1] is a state-of-the-art climate modeling system built to capture intricate
interactions among atmospheric, oceanic, terrestrial, and cryospheric processes
with fine-grained spatial and temporal fidelity. Within this framework, ELM
plays a pivotal role by offering a sophisticated representation of surface pro-
cesses, including energy fluxes, hydrological cycles, vegetation dynamics, and
biogeochemical transformations [6].

The ELM codebase is extensive, comprising nearly half a million lines of
code. It employs a diverse range of specialized data structures, including roughly
2,000 globally referenced multidimensional arrays and more than 1,000 subrou-
tines [7,8]. In response to the increasing demand for precision in land surface sim-
ulations, researchers have recently introduced ultrahigh-resolution ELM (uELM)
models. These leverage Exascale computing capabilities to conduct highly de-
tailed simulations at continental and global scales. Cutting-edge computational
frameworks have been devised to optimize uELM execution on hybrid Exas-
cale platforms, further enhancing the efficiency and accuracy of these large-scale
simulations [2, 9]. In one notable study from 2022, a high-resolution ELM sim-
ulation at a 1 km × 1 km scale was applied to such a limited domain [10].
This investigation utilized a streamlined ELM model, incorporating a reduced
number of subgrid components alongside a satellite phenology submodel, aim-
ing to examine subgrid topographic influences on land-atmosphere interactions
in mountainous regions. The increasing availability of high-resolution datasets,
including detailed climate forcing and soil property information [11–13], has
significantly improved the feasibility of conducting km-scale ELM simulations.
These datasets provide the necessary spatial resolution to better capture complex
geographical features and extreme meteorological phenomena. The ongoing de-
velopment of a kilometer-scale (km-scale) ELM is being pursued alongside other
E3SM components, including high-resolution atmosphere and ocean models, to
ensure optimal performance on Exascale systems [14,15].

Despite these advancements, transitioning to high-resolution simulations can
present substantial computational challenges. The increased grid density signif-
icantly amplifies resource demands, necessitating robust computing power and
storage solutions to accommodate the expansive data volumes.

2.2 Domain Decomposition in E3SM

Domain decomposition is a critical technique for improving the scalability and
efficiency of land surface models, particularly in high-resolution Earth system
simulations. The scalability of land models in Earth system simulations has been
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a long-standing challenge. Hoffman et al. [4] analyzed parallel efficiency and do-
main decomposition strategies for climate models, emphasizing the importance
of load balancing in large-scale simulations. More recent work has further opti-
mized land model performance at high resolutions. Tang et al. [5] introduced a
km-scale ELM framework for large-domain simulations, demonstrating the scal-
ability of ELM at continental scales. They employed a basic round-robin domain
decomposition, which, while effective in load distribution, presents inefficiencies
when lateral interactions, such as hydrological processes, are introduced. How-
ever, existing decomposition strategies, such as round-robin, often struggle with
heterogeneous land cover and variable workloads [3]. While these approaches
ensure equal partitioning, they do not account for communication costs asso-
ciated with lateral flow or optimize I/O performance for large-scale km-ELM
simulations. Our work introduces a flexible user-defined domain decomposition
approach, allowing users to tailor partitioning strategies based on specific appli-
cation needs, addressing both load balancing and communication overhead.

3 Background

3.1 Km-scale ELM

This work utilizes ELM in land-only mode, isolating it from atmospheric feedback
mechanisms. Instead of interactive coupling, it employs observational datasets
to impose atmospheric forcing, enabling the simulation of ecosystem dynamics
under past climatic conditions [16–19]. By adopting this configuration, the study
ensures that ecosystem responses to climate fluctuations are examined indepen-
dently, free from interactions with other components of the Earth system.

ELM functions as a terrestrial ecosystem model driven by data, where each
gridcell is processed independently. Its execution requires numerous computa-
tional cycles spanning gridcells and their respective subgrid elements. Though
the model consists of more than 1000 subroutines, none impose a significant
computational burden. The model advances in half-hourly or hourly increments.
At every step, computations are performed over each clump, a structured group-
ing of gridcells and their active subgrid components, to update ecosystem state
variables and flux exchanges among terrestrial processes. This process relies on
more than 3,000 global arrays to manage state variables and nutrient cycles.
While most calculations related to subgrid and gridcell dynamics—such as the
nutrient cycles of carbon (C), nitrogen (N), and phosphorus (P)—are conducted
independently, certain operations introduce dependencies.

ELM’s computational demands stem from handling extensive global datasets
while rigorously upholding the conservation principles of mass and energy. To
maintain these conservation laws, ELM systematically compiles all pertinent
state variables and rigorously verifies their consistency at every timestep through-
out all gridcells. At the end of a simulation, ELM produces a substantial volume
of output data. By default, each monthly history file records more than 550
variables, encapsulating diverse terrestrial ecosystem dynamics such as hydro-
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logical fluxes, energy exchanges, and the biogeochemical interactions of carbon,
nitrogen, and phosphorus across all land grid cells.

3.2 Domain Partitioning and Gridcell Grouping

At the beginning of a simulation, the ELM model systematically traverses the
computational domain, assigning unique identifiers to individual land grid cells.
These cells are then distributed among MPI (Message Passing Interface) pro-
cesses following a round-robin assignment approach, which helps maintain an
even computational load across processes [4]. Within each MPI process, a collec-
tion of specialized datatypes is utilized to delineate the computational domain
(see Table 1). After distribution, the assigned grid cells are further organized into
structures referred to as clumps within each MPI process. Every clump maintains
metadata, including the MPI rank of the corresponding processor and informa-
tion about the total count of subgrid components, along with their respective
index boundaries. To optimize memory usage, each MPI process preallocates
contiguous memory blocks (arrays) to store ELM variables corresponding to its
assigned grid cells and their subgrid components. ELM variables are globally
allocated and initialized as arrays to facilitate uniform access throughout the
execution. Each grid cell is provisioned with a predefined upper limit on the
number of subgrid components, and during each timestep, a filtering mechanism
identifies and tracks the active subgrid components within individual grid cells.

Table 1: Customized Data Structures for Defining the Computational Domain
Datatype Description
npes Represents the total number of MPI processes used in the simulation.
nclumps Represents the total number of clumps in the simulation.
begg & endg Determine offset for each clump assigned to each process
clumps Contains the owner process ID, size of grid cells (including subgrid com-

ponents), and the starting and ending indices of these subgrid elements
within each clump. Each process can have multiple clumps.

lcid A mapping structure used to store the processor ID
gdc2glo 1D mapping array that stores the global 2D position of each grid cell,

each processor manages the range from its begg to endg
procinfo Stores information on the number of clumps, clump identifiers, size of

grid cells, and the start and end indices of subgrid elements within the
corresponding MPI process.

bounds_type Manages data related to the total number of subgrid components in grid
cells, including their starting and ending indices within either clumps
or MPI processes.
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4 User-Defined Decomposition Framework

4.1 Framework Description

As mentioned hereinbefore, in the default ELM decomposition framework, do-
main partitioning relies on a static round-robin distribution of land grid cells
across processors to maintain load balance. However, this approach lacks flexibil-
ity in defining custom partitioning strategies, potentially leading to inefficiencies
in computation, communication, and I/O at the kilometer scale.

To address this limitation, we introduce a user-defined partition framework
that provides a flexible mechanism, allowing users to modify the amask values
(user-provided decomposition) in the domain file to control domain decomposi-
tion. The amask is a 1D array where each grid cell is assigned a value, indicating
whether it is a land unit (≥ 1 denotes land, and 0 indicates ocean) and defining
the affinity or clump assignment of each grid cell (ranging from 1 to nclumps).
This method directly maps amask to lcid, which records the clump assignment
for each grid cell (see Table 1). This mapping enables fine-grained control over
decomposition, allowing users to apply various partitioning strategies without
modifying the core algorithm in ELM. Algorithm 1 illustrates the process of it-
erating through each grid cell, reading amask values, and assigning them to lcid
to ensure proper workload distribution. Here, lns represents the total number
of grid cells, while numg, lcid, procinfo, and clumps are utilized later when
updating gcd2glo.

The implementation of this framework requires modifications to ELM’s do-
main decomposition logic. A key modification involves adapting the gdc2glo
mapping, which converts between 1D and 2D grid structures. Rather than re-
lying on predefined round-robin assignments, the framework employs lcid to
determine the number of land units assigned to each clump of each processor.

Algorithm 1: User-Defined Domain Decomposition in Fortran.
1 for ln = 1 to lns do

// Loop over each grid cell; lns represents the 1D domain size
2 if amask(ln) > 0 then

// Check if the current grid cell is a land unit
3 numg = numg + 1 // Count active land grid cells
4 lcid(ln) = amask(ln) // Assign processor ID from mask (amask is

the mask value read from the domain file)
5 if iam == clumps(lcid(ln))%owner then
6 procinfo%ncells = procinfo%ncells+ 1 // Update processor

cell count
7 end
8 clumps(lcid(ln))%ncells = clumps(lcid(ln))%ncells+ 1 // Update

clump cell count
9 end

10 end

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97626-1_12

https://dx.doi.org/10.1007/978-3-031-97626-1_12
https://dx.doi.org/10.1007/978-3-031-97626-1_12


Flexible User-defined Domain Decomposition 7

This method ensures precise updates of begg and endg, which define the compu-
tational range (refer to Table 1). In detail, lcid provides the 1D position of each
assigned land unit, facilitating efficient indexing. These 1D indices are mapped
back to their 2D global positions (i.e., latitude lni and longitude lnj), ensuring
that gdc2glo is correctly updated while preserving spatial relationships.

Another complexity arises from ELM’s hierarchical grid structure, where each
primary land grid cell contains six subgrid levels. A different partition necessi-
tates corresponding updates to the bounds_type structures (see Table 1) at each
subgrid level, which governs memory allocation and communication. To ensure
consistency across different configurations, rigorous validation is also performed.

4.2 Partition Strategies for Demonstration

Different partitioning strategies impact computation, communication, and I/O
performance differently. Therefore, we select six representative partitioning strate-
gies across three categories: (i) static, predefined partitioning, (ii) adaptive, data-
driven methods, and (iii) watershed-based strategy. These strategies represent
different workload distributions and data access patterns, as visualized in Fig. 1,
where a 10× 10 grid is distributed across 10 clumps.
Static, predefined partitioning. 1D Partition divides the computational do-
main into contiguous segments, ensuring that each processor is assigned a con-
tinuous block of grid cells. Regular round robin distributes grid cells sequentially
across all processors in a cyclic manner. Block round robin provides an interme-
diate approach between these two, offering a comparative perspective. It assigns

Fig. 1: Visualization of various partitioning strategies using ten clumps.
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gridcells in fixed-size blocks, cyclically distributing them among processors. The
block size (e.g., 5 in Fig. 1(b)) determines how many consecutive grid cells are
assigned to a single processor before moving to the next.
Adaptive, data-driven partitioning. Random Mask allows users to directly
assign processors to specific grid cells by modifying the land mask randomly, pre-
senting an extreme case in partitioning strategies. K-Nearest Neighbors (KNN)
employs a clustering algorithm based on spatial proximity or feature similarity
to group neighboring gridcells together.
Watershed-based partitioning. Watershed-based partitioning divides the com-
putational domain based on the demographic partitioning of the Tennessee Val-
ley Authority (TVA) region (details in Section 5.2). Within these subdomains,
the independent partitioning strategies mentioned above are applied to assess
effectiveness in grouping grid cells based on hydrological characteristics.

5 Performance Results and Analysis

5.1 Experimental Settings

The experiments are conducted on two high-performance computing systems
from the Oak Ridge Leadership Computing Facility (OLCF):
– Baseline: A CPU-based system composed of 180 compute nodes. Each node

is equipped with two AMD EPYC 7713 processors, providing a total of 128
cores running at 2.0 GHz. The nodes are configured with either 256 GB or
512 GB of memory. It offers 2.3 PB of shared storage through the Wolf2
GPFS filesystem, making it suitable for large-scale simulations with high
I/O throughput requirements.

– Frontier: A GPU-accelerated supercomputer utilizing AMD hardware, com-
prising 9,408 compute nodes. Each node integrates a 64-core AMD Opti-
mized 3rd Gen EPYC processor alongside four AMD MI250X GPUs, sup-
ported by 512 GB of DDR4 memory. The system is connected to Orion, a
parallel filesystem based on Lustre and HPE ClusterStor, featuring a 679
PB usable namespace.

In this study, the MPI binding policy is set to by-core, meaning that each core
hosts exactly one process. Without loss of generality, each process includes one
clump for simplicity. The block size remains fixed for block round-robin in each
application throughout the experiments. Additionally, under the KNN strategy,
the number of assigned blocks can be adjusted based on the number of processes.
This work utilizes ELM in land-only mode, as detailed in Section 3.

5.2 Application Settings

To evaluate different partition strategies, we select four distinct regions: AKSP,
AKSPx10, TES_TVA, and TN. These domains allow us to assess the impact of
different partition methods.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97626-1_12

https://dx.doi.org/10.1007/978-3-031-97626-1_12
https://dx.doi.org/10.1007/978-3-031-97626-1_12


Flexible User-defined Domain Decomposition 9

– AKSP: The AKSP domain covers the Seward Peninsula in western Alaska,
spanning approximately 330 km in length and 145–225 km in width, with a
total area of 72,083 km². The simulation employs a high-resolution 1 km ×
1 km grid, resulting in 72,083 grid cells.

– AKSPx10: This experiment scales up the AKSP domain to evaluate par-
titioning methods in ELM. The AKSPx10 simulation maintains the same
spatial characteristics but expands to 720,830 land grid cells with corre-
sponding subgrid components. Its presentation is identical to that of the
AKSP domain.

– TES_TVA: Designed to test the Watershed-Based Partition method, this
domain is first subdivided into four distinct subdomains within the Tennessee
Valley Authority (TVA)—Mississippi (MS), Ohio (OH), Tennessee (TN),
and Gulf (GULF)—each representing a hydrologically significant region. The
domain consists of 10,357 grid cells, reflecting natural watershed boundaries.

– TN: This focuses on the TN region within the TVA watershed, encompassing
6,317 grid cells and capturing its hydrological and ecological characteristics.

5.3 Decomposition Map

Fig. 2 presents the partition map of different decomposition strategies (see Fig. 1)
in real applications (AKSP and TN) generated on Baseline with 128 processes.
Grid cells in E3SM are stored in a structured 1D format but are mapped to a 2D
computational grid using row and column indices. The column index corresponds
to the x-axis direction (longitude), while the row index represents the y-axis di-

(a) 1D block. (b) Block round robin. (c) Regular round robin.

(d) Random mask. (e) KNN in AKSP. (f) KNN in TN.

Fig. 2: Decomposition map of AKSP ((a)-(e)) and TN ((f)).
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rection (latitude). These indices are derived by normalizing spatial coordinates
relative to their minimum values and dividing by the grid resolution. In Fig. 2,
grid cells are ordered (1) starting from the left corner for AKSK in Fig. 2 (a)-(e)
(i.e., (column index, row index): (0, largest_value_in_y-axis)) and (2) starting
from the left center for TN in Fig. 2 (f) (i.e., (column index, row index): (0,
0)), which are then progressed row by row. AKSP is based on an older mapping
system, so its actual starting point does not align with modern geographic con-
ventions, resulting in a rotated and flipped representation. From these figures,
we observe slight differences in the decomposition results compared to Figure 1,
primarily due to irregularities in the domain file and the skipping of ocean grid
cells (see Algorithm 1). These results illustrate the decomposition of real-world
applications under different strategies, emphasizing the complexities introduced
by domain-specific constraints.

5.4 Impact of Partitioning Methods on Computation

Table 2 presents a comparison of computational time across different partition-
ing strategies for various test cases on Baseline. Each case type is evaluated
under different node configurations. The computational time is determined by
subtracting lnd component I/O time from the lnd component total running time.
While the similarity in computational times across different partitioning methods
within each case suggests effective load balancing, slight variations are observed.
Static, predefined partitioning methods (1D partition, block round robin, and
regular round robin) distribute grid cells evenly among processors, resulting in
better workload balance and reduced computational time. In contrast, adap-
tive, data-driven partitioning methods (random mask and KNN) exhibit slightly
higher computational times due to variations in workload distribution. For in-
stance, Random Mask may lead to certain processors receiving more grid cells
than others, causing computational load imbalance.

The results also demonstrate both weak and strong scalability. Consider the
1D Partition as an example. Weak scalability is assessed by comparing AKSP on
a single node (337.02s) with AKSPx10 on 10 nodes (432.12s), showing that as
problem size increases proportionally with computational resources, performance
remains stable. Strong scalability is evident in the AKSP cases, where compu-

Table 2: Comparison of Computational Time (Seconds). Red: worst computa-
tional time; Blue: best computational time.
Case Type 1D Partition Block Round Robin Round Robin Random Mask KNN
AKSP 1 node 337.02 338.97 338.44 343.16 346.59
AKSP 5 nodes 63.14 64.24 64.14 62.02 62.99
AKSP 10 nodes 31.74 33.73 33.78 35.11 34.67
AKSPx10 10 nodes 432.12 521.32 491.77 511.44 516.67
TVA Watershed 1 node 68.17 63.44 63.09 70.82 64.90
TN 1 node 34.61 33.34 32.44 36.55 32.29
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tational time decreases from 337.02s (1 node) to 63.14s (5 nodes) to 31.74s (10
nodes), indicating improved efficiency with increasing computational resources.

5.5 Impact of Partitioning Methods on Communication

Fig. 3 (a) visualizes the four distinct subdomains within TVA, and Fig. 3 (b)–(f)
presents the boundary grid cell heatmap for different partitioning strategies ap-
plied to the TVA watershed sub-domain on Baseline with 128 processes. The
partitioning method for each sub-domain remains consistent in each setting,
while each sub-domain can adopt a different decomposition. Each partitioning
method results in a unique distribution of boundary grid cells, which are com-
puted using an adjacency-based method, indicating the extent of inter-process

(a) Watershed demographic based
on TES_TVA

(b) 1D Partition (9,626 boundary grid
cells)

(c) Block Round Robin (11,322 bound-
ary grid cells)

(d) Regular Round Robin (11,353
boundary grid cells)

(e) Random mask (11,351 boundary
grid cells)

(f) K-Nearest Neighbors (3,374 bound-
ary grid cells)

Fig. 3: Different partition strategies applied to watershed sub-domain

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97626-1_12

https://dx.doi.org/10.1007/978-3-031-97626-1_12
https://dx.doi.org/10.1007/978-3-031-97626-1_12


12 Zhuowei Gu & Dali Wang et al.

communication required under each strategy. For each grid cell, its process/-
clump ID is compared with the four neighboring grid cells (top, bottom, left,
and right). If the ID of any neighboring grid cell differs, the boundary count for
that grid cell is incremented. Consequently, the boundary value of each grid cell
ranges from 0 to 4, indicating the number of communications if lateral flow is
enabled. The total number of boundary grid cells is obtained by counting all grid
cells where this computed value is greater than zero. From the results shown in
the figures and the boundary grid cell counts, KNN exhibits the lowest number
of boundary grid cells, thereby introducing the lowest communication overhead
when lateral connectivity is activated. The 1D partition performs worse than
KNN due to irregularities in the domain file and the omission of ocean grid cells,
as discussed in Section 5.3.

5.6 Impact of Partitioning Methods on I/O Performance

Table 3 compares the effect of different partitioning strategies on I/O, includ-
ing five settings on Baseline and two on Frontier. The table reports the to-
tal running time (TOT Time) and land component running time (LND Time),
where TOT Time includes the time of LND, CPL (coupler), and ATM (atmo-
sphere) [3]. Km-ELM is deployed in land-only mode (details in Section 3), so
LND contributes to most of the time-to-solution. The computational time across

Table 3: Impacts of Partitioning Methods on I/O (Seconds). Red: worst running
time; Blue: best running time.
Time (s) 1D Partition Block Round Robin Regular Round Robin Random Mask KNN

AKSP 1 node (Baseline)
TOT Time 387.76 413.83 636.52 1277.80 435.00
LND Time 375.61 393.17 613.96 1263.57 415.85

AKSP 2 node (Frontier)
TOT Time 364.25 374.16 382.01 390.27 387.72
LND Time 359.15 370.08 363.02 368.02 370.42

AKSP 10 nodes (Baseline)
TOT Time 93.73 99.59 96.58 113.24 102.32
LND Time 86.71 85.88 83.41 97.61 87.34

AKSPx10 10 nodes (Baseline)
TOT Time 901.98 915.99 1191.92 1168.17 1171.88
LND Time 866.31 840.01 1060.50 1106.21 1081.51

AKSPx10 20 nodes (Frontier)
TOT Time 401.23 420.74 432.02 432.03 432.02
LND Time 367.64 379.09 385.38 389.24 385.38

TVA 1 node (Baseline)
TOT Time 74.54 77.74 82.02 79.74 83.72
LND Time 70.54 72.89 72.62 72.58 78.09

TVA Watershed 1 node (Baseline)
TOT Time 82.28 75.98 77.61 87.57 81.33
LND Time 76.30 70.85 70.93 79.32 74.10

TN 1 node (Baseline)
TOT Time 42.02 41.48 41.50 53.45 46.10
LND Time 39.90 38.30 37.29 45.11 39.73

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97626-1_12

https://dx.doi.org/10.1007/978-3-031-97626-1_12
https://dx.doi.org/10.1007/978-3-031-97626-1_12


Flexible User-defined Domain Decomposition 13

different partitioning strategies remains nearly identical (see Section 5.4), and
lateral flow is under development in km-ELM, so we use the TOT/LND time
as the I/O effects. Additionally, each Baseline node consists of 128 cores, while
each node on Frontier has 64 cores. To maintain consistency in computational
resources, all experiments on Frontier are conducted using twice the number
of nodes as in the Baseline setup. Km-ELM optimizes I/O efficiency by em-
ploying the SCORPIO parallel I/O library [20, 21], which organizes distributed
data before transferring it to underlying storage libraries such as PnetCDF and
NetCDF. These libraries improve write performance by grouping MPI processes
into aggregators, which manage collective data output to parallel file systems like
Lustre [22] and GPFS [23]. The aggregation process reduces file fragmentation
and enhances overall throughput.

From this table, partitioning methods significantly impact I/O performance
due to differences in data arrangement, where 1D partition usually is the best and
random mask the worst. When using a 1D partition strategy, the grid cells are
already assigned to processors in a contiguous and sequential manner. As a result,
SCORPIO can efficiently process the data with minimal rearrangement, reducing
I/O overhead. In contrast, methods like random mask introduce non-contiguous
data distribution, increasing the time required for SCORPIO to restructure the
output before writing it to storage. Given the absence of lateral flow in the
current experiments, the reduced data reordering time makes 1D partition the
most efficient method in most scenarios. Furthermore, comparing the results
of AKSPx10 between the Baseline and Frontier (901.98s on Baseline and
401.23s on Frontier for 1D partition), Frontier demonstrates shorter I/O time
(515.41s on Baseline and 29.66s on Frontier for 1D partition), indicating the
improved filesystem on Frontier.

6 Conclusion and Future Work

This study introduces FUDD, a flexible framework for user-defined domain de-
composition, and explores its application within km-scale ELM. The analysis
examines six distinct partitioning strategies, categorized into three main types:
static predefined approaches, adaptive data-driven techniques, and watershed-
based methods, each representing different workload distributions and data ac-
cess behaviors. By applying FUDD in real-world scenarios across two clusters, we
evaluate FUDD’s impact on computation, communication, and I/O. The results
provide a foundation for advancing scalable domain decomposition strategies,
contributing to the development of efficient next-generation Earth system mod-
elings. Looking ahead, we plan to extend the capabilities of FUDD by integrating
it with the GPU-enabled version of ELM, known as uELM [5], to further explore
its effectiveness in heterogeneous environments. Additionally, we intend to eval-
uate FUDD when the lateral flow in km-ELM becomes available. Furthermore,
we aim to develop an automated mechanism for intelligently selecting the most
suitable partitioning strategy based on the characteristics of a given application.
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