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Abstract. Geomagnetic storms are large-scale disturbances of the Earth’s
magnetosphere driven by solar wind interactions, posing significant risks
to space-based and ground-based infrastructure. The Disturbance Storm
Time (Dst) index quantifies geomagnetic storm intensity by measur-
ing global magnetic field variations. This study applies symbolic regres-
sion to derive data-driven equations describing the temporal evolution
of the Dst index. We use historical data from the NASA OMNIweb
database, including solar wind density, bulk velocity, convective elec-
tric field, dynamic pressure, and magnetic pressure. The PySR frame-
work, an evolutionary algorithm-based symbolic regression library, is
used to identify mathematical expressions linking dDst/dt to key so-
lar wind. The resulting models include a hierarchy of complexity levels
and enable a comparison with well-established empirical models such
as the Burton-McPherron-Russell and O’Brien-McPherron models. The
best-performing symbolic regression models demonstrate superior accu-
racy in most cases, particularly during moderate geomagnetic storms,
while maintaining physical interpretability. Performance evaluation on
historical storm events includes the 2003 Halloween Storm, the 2015 St.
Patrick’s Day Storm, and a 2017 moderate storm. The results provide in-
terpretable, closed-form expressions that capture nonlinear dependencies
and thresholding effects in Dst evolution.

Keywords: Symbolic Regression · Geomagnetic Storms · Dst Index Pre-
diction · Interpretable Machine Learning.

1 Introduction

Space weather investigates the dynamics of the near-Earth space environment
driven by solar activity, including solar wind, geomagnetic field disturbances, and
energetic particles [1]. One of the most significant events in space weather is the
occurrence of geomagnetic storms, which are large-scale disturbances of Earth’s
magnetosphere caused by increased interactions between the solar wind and the
magnetosphere, such as coronal mass ejections. Geomagnetic storms strongly
⋆ This work is supported by the European Commission, with Automatics in Space

Exploration (ASAP), project no. 101082633. The OMNI data were obtained from
the GSFC/SPDF OMNIWeb interface at https://omniweb.gsfc.nasa.gov.
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impact human assets in space and on the ground; they can affect satellite opera-
tions, navigation systems, power grids, and high-frequency communications [12].
Additionally, increased radiation exposure poses risks to astronauts and those
involved in high-altitude flights. Therefore, predicting geomagnetic storms is es-
sential for protecting human life and assets in space and on the ground.

The Disturbance Storm Time (Dst) index measures global geomagnetic ac-
tivity. Specifically, it reflects Earth’s horizontal magnetic field disturbances due
to the ring current in the magnetosphere. The Dst index is widely used in space
weather to monitor and classify geomagnetic storms according to their value. In
this work, we employ symbolic regression to derive data-driven equations that de-
scribe the time evolution of the Dst index. To achieve this, we use i) data from the
NASA OMNIweb database [10], including the Dst index, solar wind parameters
(density, bulk velocity, . . . ), and Interplanetary Magnetic Field (IMF) param-
eters. This data is obtained from solar wind monitoring spacecrafts, including
ACE, Wind, IMP-8, and DSCOVR. ii) PySR, a symbolic regression library based
on evolutionary algorithms [5]. With PySR, we can search for optimal mathemat-
ical expressions that capture the underlying relationships between dDst/dt and
key solar wind parameters, such as the convective electric field, dynamic pres-
sure, magnetic pressure, and Dst itself. By varying the equation complexity, we
recover a hierarchy of models, ranging from simple empirical-like formulations
to more complex expressions that reveal non-linear dependencies. This approach
allows us to systematically compare different equations to describe the temporal
evolution of the Dst and assess their physical interpretability.

This paper aims to derive data-driven mathematical equations that describe
the temporal evolution of the Dst index using symbolic regression. This work
uses solar wind, IMF parameters, and Dst historical data from the NASA OM-
NIweb database. It employs the PySR framework to investigate interpretable
relationships between geomagnetic storms and solar wind properties and IMF.
The contributions of this work are as follows:

– We employ symbolic regression to derive data-driven equations for the Dst
temporal evolution (dDst/dt), using solar wind parameters such as the con-
vective electric field, dynamic pressure, magnetic pressure, and the Dst index,
obtained from the OMNIweb database.

– We explore a hierarchy of models, obtained with PySR, by varying equation
complexity as input of PySR. We recover equations with increasing physical
accuracy.

– We compare the discovered equations with well-established empirical mod-
els, such as the Burton-McPherron-Russell [3] and O’Brien-McPherron mod-
els [13,14], in accuracy. We show that the best models found with the sym-
bolic regression approach outperform these established models in the cases
considered.

– We present the advantages of symbolic regression for geomagnetic storm
modeling by providing interpretable, closed-form expressions rather than
black-box predictions, such as those provided by neural networks.
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2 Background and Related Work

The Dst index measures variations in Earth’s geomagnetic field. It is expressed
in nanoteslas as the magnetic fields and primarily reflects the strength of the
equatorial ring current, which intensifies during geomagnetic storms. The ring
current consists of energetic ions and electrons, which can create a magnetic field
in the opposite direction of Earth’s intrinsic geomagnetic field. When the ring
current increases, such as during geomagnetic storms, it causes a weakening of
the Earth’s field. A negative Dst value corresponds to a reduction in the Earth’s
surface magnetic field strength due to the intensification of the ring current.
Formally, the Dst index is defined as the horizontal component perturbation on
equatorial magnetometers [16], and its first definition dates back to von Hum-
boldt in the early 18th century [11]. The Dst is measured as the longitudinally
averaged part of the external field at the geomagnetic dipole equator on the
Earth’s surface. The World Data Center provides its values for Geomagnetism
in Kyoto, and they are also available and tabulated in the NASA OMNIweb
database [10], which we use in this work.

One of the most popular definitions of geomagnetic storm is based on a
threshold Dst value, e.g., -50 or -100, below which an event is categorized as a
geomagnetic storm [2]. The geomagnetic storms can also be classified depend-
ing on their minimum Dst value [8] as moderate (min Dst: between -50 nT
and -100 nT), intense/great (min. Dst: between -100 nT and -250 nT), and
super/extreme (minimum Dst less than -250 nT). The evolution of the Dst in-

Fig. 1. Typical Dst evolution during a geomagnetic storm.

dex during a geomagnetic storm follows three phases as depicted in Fig.1: (i)
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an initial phase with increased Dst, often called Sudden Storm Commencement
(SSC), when an interplanetary shock compresses the magnetosphere, frequently
associated with a coronal mass ejections (ii) a main phase, where the Dst index
rapidly drops as solar wind-driven particle injection enhances the ring current,
and (iii) a recovery phase, where Earth’s magnetic field returns to its pre-storm
state. The evolution of the Dst index can be compared to a capacitor charging
process in an RLC circuit: the magnetosphere can be seen as a capacitor storing
energy, and the sudden increase in current is analogous to a transient current
increase in an electrical circuit [4].

The time evolution of the Dst index has been studied using a range of
models, varying from first-principles physics-based approaches (such as global
MHD models coupled with ring current models [7]) to empirical models. Due
to their simplicity and physical insights, empirical formulations that approx-
imate dDst/dt based on solar wind parameters are among the most widely
used. The Burton-McPherron-Russell (BMR) model [3] is a first and success-
ful example, describing dDst/dt as a balance between solar wind-driven ring
current injection and exponential decay due to charge exchange and ionospheric
losses. The model uses an input function proportional to the convective electric
field, which is linked to the strength of solar wind-magnetosphere coupling and
controls the efficiency of energy injection into Earth’s magnetosphere. The dy-
namic pressure of the solar wind also plays an important role by compressing
the magnetosphere, modulating the ring current response, and influencing the
initial phase of geomagnetic storms. Later improvement, such as the O’Brien-
McPherron (OBM) model [13], introduced nonlinear decay terms and improved
parameterizations to capture storm-time dynamics better. Neural networks have
also been explored for predicting dDst/dt, using their ability to model highly
nonlinear relationships [6,18,9]. However, while neural networks often achieve
high predictive accuracy, they function as black-box models: it is unclear how
input variables contribute to the output. AI-driven symbolic regression provides
a complementary approach by directly discovering data-driven equations from
observational datasets. Unlike neural networks, symbolic regression produces ex-
plicit mathematical expressions, allowing for better interpretability and physical
insight.

PySR is a symbolic regression framework designed for discovering interpretable
mathematical expressions from data using evolutionary search. It is developed
primarily in the Julia programming language and provides a Python interface,
which is used in this work [5]. PySR uses evolutionary algorithms: it searches for
optimal symbolic expressions by iteratively evolving equations, using operations
such as addition, multiplication, and exponentiation, as provided by the user.
One of the PySR advantages over other symbolic regression frameworks, such
as gplearn [15], and AI Feynman [17], is its flexible operator set: this includes
conditionals (if-else), min, and max functions. These are essential operators
for modeling non-linear and threshold-dependent events in the magnetosphere,
such as geomagnetic storms. gplearn is a genetic programming-based tool for
symbolic regression. It has a customizable function set, but does not natively
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include if-else logic without user-defined extensions. AI Feynman supports a
range of nonlinear and algebraic operations, including polynomial and rational
functions. However, its support for conditionals and piecewise functions is more
limited compared to PySR. AI Feynman is primarily designed for cases where
exact functional relationships exist, such as analytical physics laws. In contrast,
PySR is more adaptable to complex, noisy datasets where no exact equation is
known a priori.

3 Methodology

3.1 OMNIWeb Dataset and Preprocessing

The dataset utilized in this study is obtained from the NASA OMNIweb dataset,
a collection of near-Earth solar wind, IMF parameters, and geomagnetic indices.
Our dataset ranges from January 1, 1995, to May 31, 2021, and includes mea-
surements of solar wind plasma parameters, IMF components, and geomagnetic
activity indicators, such as the Dst, at a 1-hour resolution. Our primary target
variable is the rate of change of the Dst index, dDst/dt, expressed in nT/hr. Fol-
lowing the examples of previous empirical, physics-based models of the temporal
evolution of the Dst, our input variables include the solar wind speed Vsw(km/s),
the IMF North-South component in GSM coordinates (Bz(nT), GSM), the solar
wind proton density np (cm−3), and |B|(nT) is the magnitude of the IMF. Data
pre-processing involves interpolating missing values using a linear scheme, fol-
lowed by forward and backward filling to ensure continuity. The time derivative
of the Dst index is computed using a central finite difference approximation. We
then calculate derived quantities, which have been demonstrated by previous
study to impact the temporal evolution of the Dst. These derived quantities are:

– Convective Electric Field (Ey), which is defined as Ey = −VSW Bz ×
10−3(mV/m). The magnitude of Ey reflects how strongly the solar wind
couples with Earth’s magnetosphere. In physics-based models of the Dst, Ey

is used to estimate the energy injection rate into the ring current.
– Dynamic Pressure (Pdyn), which is calculated from the solar wind proton

density and speed Pdyn = 1.6726 × 10−6 nV 2
SW(nPa), where the pre-factor

accounts for the proton mass and necessary unit conversions. The solar wind
has two important effects in the context of geomagnetic storms. First, high
dynamic pressure leads to a compression of the magnetosphere, e.g., it causes
the magnetopause to move inward. Second, strong solar wind shocks with
high dynamic pressure can increase ring current formation.

– Magnetic Pressure (PB), which is given by PB = B2

2µ0
with µ0 = 4π ×

10−7 being the permeability of free space. In the context of geomagnetic
storms, the magnetic pressure is the contribution of the IMF and Earth’s
magnetic field to the overall pressure balance in the magnetosphere. The
magnetic pressure can affect the magnetopause position by balancing solar
wind pressure.
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3.2 Exploratory Analysis

We conduct first an exploratory analysis to assess potential relationships among
the variables impacting the evolution of the Dst. Fig. 2 presents a pairplot com-
paring dDst/dt, the previous Dst value (DST_prev), Pdyn, Ey, and PB . In the
pairplot, the diagonal entries display the distributions of each variable. The off-
diagonal plots show pairwise scatter plots, which show potential correlation or
anti-correlation, if the points appear along one line, or non-linear trends. Analyz-
ing Fig. 2, we can first focus on distributions along the diagonal of the pairplot.
The distribution shows that dDst/dt has peaked near zero, indicating that most
variations in the Dst index occur in relatively small increments. The distribution
of DST_prev shows that the Dst index peaks on slightly negative values of the
Dst with a long tail in the negative Dst direction, which comprises intense and
extreme geomagnetic storms. When inspecting the different scatter plots, we can
focus on different relationships between the quantities of this study:

– Relation between dDst/dt and DST_prev. The panel in the second row
and first column shows the relation of dDst/dt and Dst value at the previous
measurement, e.g., an hour before. Overall, the relation is linear with a
negative slope, corresponding to Pearson’s anticorrelation of -0.18. We also
note that a number of points in the scatter plots are clearly divided but still
aligned along a line with a negative slope. This separation indicates some
thresholding phenomenon, such as when Dst reaches an increased value.

– Relation between dDst/dt and Pdyn. The scatter plot representing the
relation of dDst/dt and Pdyn does not show any linear behavior (Pearson
Correlation: 0.17), hinting at the presence of a non-linear coupling between
the Dst evolution and the dynamic pressure. In empirical models, this rela-
tion typically follows a square root dependence.

– Relation between dDst/dt and Ey. When investigating the relation be-
tween Dst/dt and the convective electric field (for instance, the panel in the
fourth row and first column), we note an overall linear dependence with a
negative slope (Pearson correlation: -0.43). We also identify clear outliers for
negative large temporal variations of the Dst index: this might indicate the
presence of some thresholding event.

– Relation between Dst/dt and PB . Similarly to the relation between
dDst/dt and Pdyn, we find a non-linear relationship between the two quan-
tities. However, we observe a larger number of outliers.

3.3 Symbolic Regression with PySR

We run PySR to discover mathematical models that capture the relationship be-
tween our input variables and dDst/dt, which is the target. The overall method-
ology is shown and summarized in Fig. 3. The PySR regression algorithm searches
the space of candidate expressions constructed using operators the user selects.
In our study, we select the following operators which could be used in our dDst/dt
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Fig. 2. Pairplot of the primary variables considered in this study: dDst/dt, DST_prev,
Pdyn, Ey, and PB . The diagonal subplots display histograms or density plots for each
variable, while the off-diagonal subplots show pairwise relationships.

model: +, −, ×, ÷, max, min, exp, log,
√
·, (·)2, and sign(·). The explored models

are evaluated with an L1 loss function, also called Mean Absolute Error (MAE).
Since L1 loss is based on absolute differences, it is less sensitive to outliers.

Two crucial concepts in PySR are the complexity and parsimony of an equa-
tion/model. The PySR complexity of an equation is based on its expression tree:
each mathematical operation, constant, or variable contributes to the total com-
plexity score, potentially with different weight, e.g. trigonometric functions have
higher complexity weights than basic operations, such as sum. PySR uses an
evolutionary search for symbolic regression and has two main parameters: the
number of populations and iterations. The population size determines the num-
ber of different candidate solutions that exist in each generation. Increasing the
population size improves exploration but also increases the computational cost.
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Fig. 3. A diagram showing the methodology for discovering mathematical models that
predict dDst/dt. The data includes data input, symbolic regression with varying hy-
perparameters, and final model selection based on evaluation metrics.

The number of iterations defines how many times the evolutionary process up-
dates the population to find better equations. A high number of iterations allows
the algorithm to refine solutions further. All the equations discovered have a PySR
complexity value.

Parsimony is the preference for simpler mathematical expressions over more
complex ones during the model fitting process. PySR implements parsimony
through a complexity penalty, which is added to our L1 loss. The level of parsi-
mony can be increased by setting a hyperparameter, which acts as a weight to
the complexity penalty in the loss function.

The symbolic regression is performed over 100 independent PySR runs to
account for the stochastic nature of evolutionary algorithms. During each op-
timization run, hyperparameters such as the parsimony coefficient (randomly
selected from [0.0, 0.9]) and the population size (randomly chosen between 20
and 120) are varied. The test data set used for the regression test spans from
January 1, 1995, to March 31, 2021.

After the 100 PySR runs, the candidate equations are extracted and filtered
based on their loss and complexity metrics, neglecting all equations with com-
plexity greater than 30. Duplicate equations across optimization runs are re-
moved, and the remaining candidates are ranked according to their L1 loss,
where lower values indicate a better fit to the test dataset. The final ensem-
ble of candidate models is collected in a CSV file, providing an overview of the
discovered equations for dDst/dt. The performance of each candidate equation
is evaluated using the Root Mean Square Error (RMSE) and Mean Absolute
Error (MAE), computed from May 1, 2021, to October 1, 2021. The Python
code for the symbolic regression, the dataset from the OMNI database, and the
discovered equations are available on GitHub1.

1 GitHub repository: https://github.com/smarkidis/Dst-Symbolic-Regression
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4 Physical Model Hierarchy from PySR

When analyzing the equations generated by PySR, we identify the best equations
(with the lowest L1 norm) for different complexities. Table 1 shows how increas-
ing equation complexity increases the mathematical description of dDst/dt and
the physical description.

Table 1. Equations for dDst/dt with increasing complexity and their corresponding
physical interpretation. The progression from a basic exponential decay to a fully cou-
pled model shows how more complex equations introduce additional physics.

Comp. Equation Physical Interpretation

3 −0.031Dst Basic exponential decay.
5 −0.041Dst − Ey Adding Ey to account for solar wind forcing.

7 −0.05Dst − max
(
Ey, −0.16

) Introducing thresholding to cap Ey’s effect,
simulating saturation phenomena.

9
−0.062Dst

−max
(
−0.062, Ey/0.638

) Rescaling Ey, and refining the coupling
efficiency and threshold limits.

10
−0.057Dst

−max
(√

Pdyn Ey, −0.098
) Incorporating

√
Pdyn to modulate Ey, to reflect

the influence of solar wind dynamic pressure.

12 min
{[

−0.05Dst − Ey
]

×
√

Pdyn, −0.055Dst
}

Balancing a dynamic pressure–modulated driver
with pure decay, letting the dominant effect
prevail.

19

[
−0.036(Pdyn + Dst)

−max(−0.008Dst, Ey)
]

×
√

Pdyn + 1.278 + 0.319

Combining Dst and Pdyn with refined
thresholding and a constant offset, representing
a fully coupled system with background effects.

With complexity 3, the simplest model captures a basic exponential decay
of the Dst index, representing a basic relaxation process. This term corresponds
to the decay of the ring current over time due to various loss processes. Note
that -1/0.031 corresponds to the decay constant found by the regression (1/0.031
hours ≈ 32 hours). The model begins to consider external forcing effects by in-
troducing the solar wind electric field Ey in the equation with complexity 5.
In particular, Ey represents the rate at which energy from the solar wind is in-
jected into the Earth’s magnetosphere, increasing the ring current. Further phys-
ical refinements are included in the equations with complexities 7 and 9: these
incorporate thresholding nonlinearities, adjust the impact of Ey, and simulate
saturation effects in the magnetospheric response. Including dynamic pressure
Pdyn in complexity 10 modulates the influence of Ey. This reflects the increased
energy transfer under varying solar wind conditions. Finally, the most complex
model in Table 1 with complexity 19 combines these elements—coupling DST
and Pdyn, applying thresholding, and including a baseline offset to include terms
for modeling quiet times. Note that magnetic pressure is not included in any
of the equations discovered by PySR. This suggests that the symbolic regression
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process identifies the primary geophysical drivers of dDst/dt, in alignment with
physics-based models in space physics, where Ey and Pdyn are the dominant
contributors to geomagnetic activity.

5 Evaluation and Ranking of Data-Driven Dst/dt Models

To assess and rank the equations obtained from PySR, we carry out a comparative
evaluation using a subset of the NASA OMNIweb dataset, spanning from May 1,
2021, to October 1, 2021. The tests use 2,000 randomly selected initial conditions.
For each valid initial condition, a 48-hour prediction of the Dst index is generated
using 11 different equations, ranging in complexity from 25 down to 15.

The 48-hour prediction is achieved by iteratively integrating the dDst/dt
equation using an Euler method-like method. We start from an initial actual Dst
value, calculate the dDst/dt at each hourly step by including the current values
of Ey and Pdyn, rather than relying on their initial values. The performance of
each equation is then quantified by computing the RMSE and MAE over these
48-hour intervals, providing an evaluation of the different models. Fig. 4 shows

Fig. 4. RMSE and MAE comparison with standard deviation for data-driven Dst/dt
models of different complexities. The error bars indicate the standard deviation across
the test dataset. The red bars show the five best-performing models (lowest RMSE and
MAE).

the RMSE and MAE values for various data-driven models, discovered by PySR,
categorized by their complexity (on the x-axis). The error bars represent the
standard deviation of the different equations.

Among the models analyzed, the five PySR best-performing models using the
test dataset, are indicated in red and explicitly presented in Table 2, which
also includes the equations for the established dDst/dt model, BMR and OBM.
We use the five best-performing PySR models to predict the Dst evolution of
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Table 2. Equations for Dst/dt: BMR, OBM, and data-driven models (DDM) #1,#2,
#3, #4, #5 with different levels of complexity (C).

Model Equation

DDM#1
(C:19)

[
−0.036 (Pdyn +Dst)−max(−0.008Dst, Ey)

]√
Pdyn + 1.278 + 0.319

DDM#2
(C:20)

[
−0.042 (Pdyn +Dst)−max(0.168, Ey)

]
×√

Pdyn +max(0.097, min(Ey, 3.385)) + 0.381

DDM#3
(C:18)

min
(
−0.0443Dst, (0.621 +

√
Pdyn)

[
−0.0443Dst−max(Ey,−0.728)

])
+

0.194

DDM#4
(C:16)

min
(
−0.0443Dst, (0.621 +

√
Pdyn)

[
−0.0443Dst− Ey

])
+ 0.194

DDM#5
(C:22)

min
(√

Pdyn + 1.058
[
−0.0434Dst− Ey

]
, −0.0434Dst

)
+ 0.136 (2.537−

0.735Pdyn)

BMR −0.13
(
Dst− 0.2

√
Pdyn + 20.0

)
+

{
−5.4 (Ey − 0.5) if Ey ≥ 0.5,

0 if Ey < 0.5

OBM − 1

τ

(
Dst− 0.2

√
Pdyn + 20.0

)
+{

−5.4 (Ey − 0.5) if Ey ≥ 0.5,

0 if Ey < 0.5
, τ =

{
7.7 (Ey < 0.5)

3.5 (Ey ≥ 0.5)

geomagnetic storms and compare them to established models.

5.1 Performance of Data-Driven Models in Real Geomagnetic
Storm Scenarios

To assess the accuracy of the five best data-driven models, discovered with PySR
and presented in Table 2, in predicting geomagnetic storms, we test five data-
driven models against the BMR and OBM models using actual storm events.
The performance of these models was evaluated by comparing their predicted
Dst with actual Dst values over 72-hour periods. The accuracy of each model
was quantified using the RMSE and MAE metrics.

The first event we evaluate is the extreme geomagnetic storm that occurred
on 29-30 October 2023. This geomagnetic storm has been widely studied in the
literature and goes under the name of the Halloween Storm. Fig. 5 shows the Dst
prediction for the best PySR models and compares with BMR and OM models
on the top panel, and RMSE and MAE in the bottom panel. When investigating
the Dst prediction, we note that the BMR model overestimates the lowest Dst
value during the geomagnetic storm, and data-driven models #4 and #5 do not
correctly model the recovery from the second Dst minimum. The models with
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the lowest MAE errors are, in order, data-driven model #1 (complexity: 19) and
data-driven model #2 (complexity: 20), followed by the OBM.

Fig. 5. Comparison of Dst predictions for the extreme Halloween Storm (October 29–
30, 2003). The top panel shows the predicted vs. actual Dst, while the bottom panel
presents RMSE and MAE errors.

As the second event, we select an intense/great geomagnetic storm that oc-
curred on March 17, 2015, the so-called St. Patrick’s Day Storm of 2015. The top
panel of Fig. 6) shows the Dst prediction and good performance of all the data-
driven models compared to the actual Dst. The BMR model underestimates the
Dst minimum value as in the previous event, while the OBM does not correctly
capture the recovery phase. In this Dst prediction, all the data-driven models
outperform the BMR and OBM models.

Finally we asses the accuracy of different models against a moderate storm
occurred on September 27, 2017. Fig. 7) shows the Dst prediction, along with
the RMSE and MAE, for the different models. For this moderate storm, as in the
case of intense storms, the data-driven models consistently outperform the BMR
and OBM models. This is likely because the number of moderate and intense
geomagnetic storms is higher than that of extreme geomagnetic storms in the
training dataset. However, in extreme cases, such as the 2003 Halloween event,
only two equations discovered by PySR provided better accuracy than the BMR
and OBM models.
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Fig. 6. Comparison of Dst predictions for the intense St. Patrick’s Day Storm (March
17, 2015) in the top panel and MAE and RMSE errors for different models in the bottom
panel. The data-driven models, found by PySR, outperform the BMR and OBM models
in terms of MAE and RMSE.

6 Conclusion

This work applied symbolic regression to derive data-driven equations for the
temporal evolution of the Dst index, quantifying the evolution of geomagnetic
storms. Using NASA OMNIweb data and PySR, we explored models and equa-
tions of increasing complexity and compared them with established empirical
models for dDst/dt prediction. The methodology used PySR to identify inter-
pretable expressions linking dDst/dt to solar wind parameters, IMF, and the
Dst index itself.

The equations discovered by PySR showed increased accuracy compared to
traditional empirical models, such as the BMR and OBM models. The best-
performing data-driven models, ranked based on RMSE and MAE, captured non-
linear dependencies, including thresholding effects and dynamic pressure modu-
lation. A key aspect is that models discovered by PySR provide high performance
while maintaining physical interpretability, unlike other AI-based methods that
rely on neural networks.

Performance evaluation against real geomagnetic storms, including the 2003
Halloween Storm, the 2015 St. Patrick’s Day Storm, and a moderate storm in
2017, showed that the data-driven equations consistently outperformed BMR
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Fig. 7. Comparison of Dst predictions for the moderate geomagnetic storm on Septem-
ber 27, 2017 over 72 hours. The data-driven models outperform the semi-empirical BMR
and OBM models for moderate geomagnetic storms.

and OBM in most cases. However, only the highest-ranked symbolic regression
models demonstrated superior accuracy during extreme geomagnetic storms.

We found that symbolic regression can lead to physically interpretable models
for geomagnetic storm prediction. The discovered equations provide physical
insight and an alternative to black-box neural network approaches.
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