
Towards weight-space interpretation of Low-Rank
Adapters for Diffusion Models

Jacek Duszenko1 and Piotr Bielak1

Department of Artificial Intelligence,
Wrocław University of Science and Technology

jacek.duszenko@gmail.com, piotr.bielak@pwr.edu.pl

Abstract. Low-rank adapters (LoRAs) have emerged as an efficient
method for customizing large-scale diffusion models, but their internal
representations remain poorly understood. We present a comprehensive
investigation of the interpretability of adapter weight-spaces for image
diffusion models. To that end, we open-source a dataset of 100,000 Sta-
ble Diffusion adapters fine-tuned across a hierarchy of image concepts
amounting to 264 leaf classes, complete with training metadata. Through
systematic analysis, we demonstrate that adapter weights encode mean-
ingful semantic information about their training data, enabling direct
interpretation without image generation. We evaluate multiple weight-
space representations, including raw parameters, statistical summaries,
and learned embeddings, to determine their effectiveness in predicting
training data characteristics. To demonstrate real-world impact, we ap-
ply our findings to the critical task of detecting potentially harmful con-
tent on newly introduced NSFW (Not Safe For Work) toy dataset of Sta-
ble Diffusion LoRAs fine-tuned on harmful content. This work advances
the interpretability of adapter-based fine-tuning and provides practical
tools for understanding and auditing adapted diffusion models.

Keywords: Weight-space models · Metanetworks · Low-rank adapters
· Image diffusion · Interpretability

1 Introduction

Text-to-image diffusion models, particularly Stable Diffusion [1], have revolution-
ized the field of AI-generated imagery by enabling widespread access to high-
quality image synthesis. Although these models offer impressive general-purpose
capabilities, many applications require customized image generation aligned with
specific artistic styles, concepts, or domain requirements. This customization
typically requires fine-tuning the model on specialized datasets.

However, full model fine-tuning presents significant computational challenges,
often requiring extensive GPU resources and training time. Low-Rank Adapta-
tion (LoRA) [2] has emerged as an efficient alternative, allowing for a lightweight
model adaptation through training small adapter modules while keeping the base
model frozen. This approach has led to a proliferation of publicly shared LoRA
adaptations across various communities.
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A critical challenge has emerged with the widespread adoption of these
adapter modules: the lack of transparency regarding their encoded content and
behaviors. Users who incorporate third-party LoRA modules into their genera-
tion pipeline have no reliable way to verify the nature of the adaptations without
trial-and-error image generation. This raises concerns about potential inappro-
priate, biased, or harmful content being inadvertently introduced into the gen-
eration process.

Current approaches to understanding LoRA adaptations rely primarily on
empirical testing through image generation, which is both time-consuming and
computationally expensive. Moreover, this black-box testing approach may fail
to reveal the full scope of encoded behaviors. There is a clear need for methods
to analyze and interpret LoRA adapters directly without requiring the execution
of the full diffusion model.

In this work, we experiment with various weight-space representations and
predictive models to interpret LoRA adapters. Our approach enables direct ex-
amination of adapter weights eliminating the need for image generation or model
execution, which are both resource and time intensive. This methodology has im-
mediate practical applications for popular model repositories such as Civit.ai
[3] and Hugging Face [4], where thousands of community-contributed LoRA
adapters are shared. Such platforms could leverage the weight-space approach
to automatically categorize and tag adapters based on their encoded content,
significantly improving content organization and enabling more effective content
moderation - all without the computational overhead of running the adapters
themselves.

We summarize our contributions as follows:

1. We prepare and open-source the largest dataset of LoRA adapters for Stable
Diffusion fine-tuned across a variety of image categories. We publish multiple
versions differing in size (number of LoRA adapters), i.e. 1K, 10K, 50K and
100K adapters. Our dataset includes not only the final adapter weights, but
also complete training metadata.

2. We provide an experimental evaluation of various weight-space representa-
tions and report their performance in classification of the fine-tuning set
class.

3. Additionally, we contribute a small real-world use case dataset for predicting
whether LoRA adapters were trained on harmful content and empirically
prove that it’s possible to do solely by looking at adapter’s weights.

4. We make our models and code publicly available, ensuring reproducibility of
our experiments, to accelerate weight-space research for LoRA adapters.

2 Related Work

Image synthesis. Image synthesis has advanced significantly with Genera-
tive Adversarial Networks (GANs) [5], which enabled realistic image generation
through a generator-discriminator framework. Diffusion models [6,7] offered more
stable training and better image quality by iteratively denoising images, though
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at the cost of slower inference. CLIP [8] enabled text-conditioned generation
in both GANs [9,10,11] and diffusion models [12,13,14]. Stable Diffusion [1] im-
proved efficiency by operating in latent space, reducing computational costs while
preserving quality, and became widely adopted due to its open-source nature,
spurring innovations such as parameter-efficient fine-tuning.

Model adaptation. While fine-tuning entire models has been the traditional
approach to customization, parameter-efficient adaptation methods have recently
gained prominence. Low-Rank Adaptation (LoRA) [2] has emerged as a particu-
larly effective approach. For a given weight matrix W ∈ Rd×k, LoRA introduces
a low-rank decomposition: ∆W = BA where B ∈ Rd×r and A ∈ Rr×k with
rank r ≪ min(d, k). The final weight matrix becomes: W′ = W + α∆W where
α is a scaling factor. This decomposition typically reduces trainable parame-
ters by several orders of magnitude. Variations include AdaLoRA [15], which
dynamically adjusts rank during training, and adapter layers [16], which insert
trainable modules between existing layers. In diffusion models, LoRA has be-
come the standard for community adaptations due to its efficiency and ease of
implementation. To prevent overfitting of the original base pipeline on the train-
ing set, the standard practice is to combine LoRA adaptation with DreamBooth
[17] due to its ability to preserve prior class features while enabling personal-
ized subject adaptation with a small dataset. We employed DreamBooth while
creating the dataset.

Weight space models for LoRA adapters. Several recent works have fo-
cused on using LoRA weights for various tasks. Salama et al. (2024) [18] propose
a task of predicting the number of training samples used to fine-tune a model
based on LoRA weights. Their method exploits the relationship between the sin-
gular value spectrum of LoRA matrices and dataset size and leverages a simple
K-NN approach for training set size prediction. They evaluate their approach
on a dataset of 2 thousand fine-tuned LoRA adapters with snapshots of their
weights amounting to 25 thousand samples. In contrast, our dataset doesn’t use
multiple in-training snapshots of a single adapter’s weights as samples.

Putterman et al. (2024) [19] draw on geometric deep learning, focusing on
designing GL-invariant and equivariant architectures for predicting fine-tuned
model properties, e.g. accuracy on downstream tasks, training data membership
and training data attributes. Their models are trained on a curated less-noisy
subset of CelebA[20] dataset to predict physical binary attributes of the person’s
face diffusion model was personalized to. In contrast, our dataset comprises of
diverse hierarchical concepts not constrained to physical attributes of a human
face. Their dataset comprises of about 8 thousand adapters’ weights in total.

Dravid et al. (2024) [21] focus on representing adapters in the principal com-
ponent space of rank-one LoRA weights, enabling linear edits for visual concept
transfers, sampling new adapters and inverting images into the weight space.
Their dataset has roughly 60 thousand samples.
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Horwitz et al. (2024) [22] propose a representation learning approach by
propagating learnable vectors through a frozen dense matrix and subsequently
projecting and aggregating the outputs. Although they demonstrate the efficacy
of their method on a classification task analogous to our experimental setup, their
empirical validation is limited to 5,000 LoRA adapters. Their methodology, al-
though theoretically extensible, relies on selecting a single LoRA adapter weight
matrix to derive model-wide representations, a choice that is determined through
hyperparameter optimization on a validation set of 500 samples. Furthermore,
their supervised learning framework, which jointly optimizes the representation
space and classification head, introduces potential limitations in scenarios where
labeled data is scarce, a common constraint in weight-space modeling.

3 Proposed dataset

We present a comprehensive dataset of fine-tuned LoRA adapters along with
their associated training metadata. The code used in the dataset creation process
is available at https://github.com/JacekDuszenko/weightspace-lora-for-
diffusion

Source images. The dataset is constructed using a carefully curated subset
of ImageNet [23], leveraging its hierarchical structure of visual concepts. We
selected 10 distinct hierarchies from ImageNet, encompassing general concepts
such as dog, cat, airplane, car, fruit, and vegetable. The leaf nodes within each
hierarchy correspond to specific instances of these concepts, such as particular
dog or cat breeds.

Sample size and LoRA hyperparameters. For each leaf node, we sam-
ple between 4 and 15 images without replacement to create training sets for
LoRA adaptation, resulting in inputs for 200,000 distinct LoRA adapters. These
source images are made available as a separate dataset which we open source
at https://hf.co/datasets/jacekduszenko/weightspace-images. Using the
well known Stable-Diffusion-v1-5 as our base model, we perform Dream-
Booth fine-tuning without prior preservation loss to create the LoRA adapters.
Each adapter is trained using consistent hyperparameters: rank = α = 1 and a
learning rate of lr = 1e−4, with training conducted for 200 iterations.

Fine-tuning. The training process employs a standardized textual prompt for-
mat: a photo of sks CLASS, where CLASS represents one of the ten general
categories, and sks serves as a unique identifier for each specific concept, follow-
ing standard DreamBooth methodology. The adapters are configured to modify
the query (Wq) and value (Wv) projections within the attention layers of the
Stable Diffusion U-Net. For each adapter, we store both the A and B LoRA
matrices for each layer. Given the 64 layers in the architecture, this results in
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128 LoRA matrices per adapter, with matrices represented as 320, 640, 768 or
1024-dimensional vectors due to the rank-1 configuration.

The dataset maintains balanced representation across categories, with adapters
trained on each general category comprising 10% of the total dataset. These
trained adapters represent 264 unique concepts corresponding to the leaf classes
from which the training images were sampled. For each adapter, we preserve com-
prehensive metadata including epoch-wise loss values, adapter gradient norms,
weight norms, and training duration.

Hardware resources. The training infrastructure utilized 8 NVIDIA A100
GPUs in a distributed setting, requiring a total of 2096 GPU hours to complete.

Dataset versions. To facilitate various research applications, we release four
versions of the dataset at different scales, with uniform distribution across gen-
eral class labels. These datasets, including LoRA weights and training metadata,
are available at the following URLs:

– LoRA-WS-1k (https://hf.co/datasets/jacekduszenko/lora-ws-1k),
– LoRA-WS-10k (https://hf.co/datasets/jacekduszenko/lora-ws-10k),
– LoRA-WS-50k (https://hf.co/datasets/jacekduszenko/lora-ws-50k),
– LoRA-WS-100k (https://hf.co/datasets/jacekduszenko/lora-ws-100k).

NSFW classification toy dataset. Additionally, we develop a small Not Safe
For Work detection dataset comprising LoRA adapters fine-tuned on two dis-
tinct classes: not safe for work content of one of the class from [24] and neutral
concepts from our ImageNet subset. With the exception of fixed training set size
of 5 images, adapters are trained using procedures and parameters identical to
those of the main dataset, with complete preservation of the training data and
the weights of the trained LoRAs. This supplementary dataset consists of 160
samples of adapters distributed evenly across the binary label and is available
at https://hf.co/datasets/jacekduszenko/lora-ws-nsfw.

4 Weight-space representations

Traditional representation learning methods build representation (embedding)
vectors for various data types such as images, audio, text or graphs [25], often
utilizing neural networks combined with a carefully crafted objective function, to
convert the input objects into vector form. In contrast, weight-space representa-
tion learning aims at building representation vectors for neural networks. Their
weights are processed either directly, by means of simple statistical operations
[26], or by other neural networks [27].

In this paper, we focus on direct vector processing and statistical operations,
leaving more advanced neural network approaches for future work. In particular,
we examine the following approaches:
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Fig. 1. Overview of our setup. a) The LoRA weight-space datasets were created by
Stable Diffusion finetuning using low-rank adapters. For each sample of images, we
finetune Stable Diffusion and save all the LoRAs from the UNet component. b) A sin-
gle low-rank adapter consists of two vectors A and B (we assume rank = 1, so instead
of matrices, we obtain vectors). c) The weight-space representation learning methods
take as input a collection of LoRAs (from a single Stable Diffusion finetuning instance)
and compute a single vector representation h which captures the characteristics of the
adapters. d) To evaluate our hypothesis that LoRA weights encode sufficient infor-
mation to retrieve the class of the input finetuning images, we use the weight-space
representations to train an MLP classifier and report the classification performance on
the test set.

– FlatVec – the most popular baseline approach in weight-space representa-
tion learning; for each adapter layer, the weight matrices are flattened into
vectors, next all the vectors are concatenated into one long vector; in our
case the final vector dimensionality is dim(FlatVec) = 99648,

– FlatVecPCA@K – the high dimensionality of the FlatVec approach is unfea-
sible in most scenarios, therefore, we reduce the dimensionality of FlatVec’s
output vector by using Principal Component Analysis and keep K compo-
nents, so that dim(FlatVecPCA@K) = K,

– StatsFlatVec – another popular weight-space representation approach is
to compute basic statistics of the model weights; previous works [26,27]
have shown that such representation provides quite competitive results, even
against complex neural network approaches; in our case, we take the FlatVec’s
output vector and compute the following statistics for it: for the LoRA-WS-1k
and LoRa-WS-10k datasets – mean, std, median, min, max, kurtosis, skew,
which results in dim(StatsFlatVec) = 7, and for LoRA-WS-50k – the same
statistics except for kurtosis and skew (due to Out-Of-Memory errors during
evaluation), which results in dim(StatsFlatVec) = 5,

– StatsLayer – given that each adapter layers consists of two matrices A and
B, we compute the statistics (same as for StatsFlatVec) but for each matrix
and adapter layer independently, and finally we concatenate all the vectors,
which results in dim(StatsLayer) = 896,
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– StatsLayerDense – we first compute the dense matrix of each adapter layer,
i.e., ∆W = BA, flatten this matrix and compute the same statistics as before
for each adapter layer, finally we concatenate all the vectors; this results in
dim(StatsLayerDense) = 448.

5 Experiments

We evaluate the performance of the introduced representation methods against
our proposed dataset. We perform several experiments to better understand the
nature of low-rank adapters and provide insights based on the observed results.
Each experiment is described in a separate subsection below.

5.1 Fine-tuning dataset classification

Goal. We investigate whether adapter weights contain sufficient information to
predict the class of images on which an adapter was fine-tuned. Specifically, we
aim to classify LoRA adapters into one of 10 base classes solely by examining
their weight representations.

Setup. For this task, we utilize the five distinct weight representations described
in Section 4. We partition our dataset using a 70/10/20 split for training, valida-
tion, and testing respectively. The classifier architecture consists of a multi-layer
perceptron with three hidden layers of size 512 with ReLU activations, trained
using cross-entropy loss. We employ the Adam optimizer [28] with a learning
rate of lr = 1e−3 and train for a maximum of 2000 epochs with early stopping
to prevent overfitting. To ensure robust evaluation, we repeat each experiment
10 times with different random seeds and report the mean performance metrics
with standard deviations. Furthermore, we conduct separate experiments across
multiple dataset scales (1k, 10k, and 50k) to assess how the effectiveness of differ-
ent representation methods scales with data volume. This systematic approach
enables us to identify which weight representation techniques most effectively
capture the discriminative information necessary for determining the original
fine-tuning class. We report the results in Table 1.

Discussion. For the smallest dataset (LoRA-WS-1k), we observe that for all
reported metrics, the FlatVecPCA@200 method clearly outperforms the other
approaches by a large margin. It allows achieving up to approx. 86% AUROC,
whereas the next best method (StatsLayerDense) achieves approx. 81% AU-
ROC. Unsurprisingly, the FlatVec method performs poorly – having vectors
with almost 100,000 dimensions, while having only 700 training samples makes
it hard for any kind of classifier to generalize well. Similarly, the 700 samples do
not provide enough information for the StatsFlatVec method, which reduces
the almost 100,000 numbers into 7 statistics.
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Table 1. Classification metrics using different representation learning methods. Results
are reported as mean ± standard deviation over 10 runs (different seeds). Higher values
are better (↑). Best results are bolded, whereas second best results are underlined. (a)
Results on LoRA-WS-1k dataset (top), (b) results on LoRA-WS-10k dataset (middle), (c)
results on LoRA-WS-50k dataset (bottom).

a) LoRA-WS-1k Accuracy (↑) AUROC (↑) Precision (↑) Recall (↑) F1 (↑)

FlatVec 15.62± 2.17 55.64± 1.94 16.95± 3.42 15.50± 2.14 14.91± 2.21
FlatVecPCA@200 42.21± 1.20 86.12± 1.01 41.54± 1.55 42.06± 1.19 40.69± 1.05
StatsFlatVec 16.22± 2.89 55.15± 2.26 17.69± 3.74 15.94± 2.79 15.60± 3.04
StatsLayer 33.18± 2.10 77.27± 0.49 32.83± 3.18 33.55± 2.20 32.74± 2.51
StatsLayerDense 37.51± 2.07 81.62± 0.61 36.71± 1.85 37.30± 2.07 36.41± 1.93

b) LoRA-WS-10k Accuracy (↑) AUROC (↑) Precision (↑) Recall (↑) F1 (↑)

FlatVec 65.83± 1.39 92.83± 0.51 66.48± 1.46 65.81± 1.39 65.84± 1.42
FlatVecPCA@200 81.36± 1.07 98.14± 0.16 81.63± 1.04 81.33± 1.07 81.41± 1.04
StatsFlatVec 64.75± 1.66 92.32± 0.64 65.44± 1.98 64.73± 1.68 64.81± 1.82
StatsLayer 44.22± 1.05 83.50± 0.37 44.34± 1.14 44.01± 1.04 44.07± 1.08
StatsLayerDense 52.61± 0.63 88.22± 0.22 52.43± 0.64 52.49± 0.63 52.36± 0.63

c) LoRA-WS-50k Accuracy (↑) AUROC (↑) Precision (↑) Recall (↑) F1 (↑)

FlatVec 93.26± 2.56 99.63± 0.26 93.28± 2.51 93.26± 2.55 93.26± 2.54
FlatVecPCA@1000 78.33± 1.37 97.61± 0.20 78.47± 1.44 78.30± 1.37 78.33± 1.39
StatsFlatVec 93.21± 2.17 99.63± 0.18 93.20± 2.15 93.20± 2.17 93.19± 2.17
StatsLayer 63.68± 0.38 93.01± 0.17 63.57± 0.32 63.58± 0.38 63.56± 0.35
StatsLayerDense 44.49± 0.47 84.09± 0.26 45.14± 0.41 44.44± 0.47 44.72± 0.44

For the LoRA-WS-10k dataset, we find that the overall metrics have increased
substantially compared to the 1k variant, for instance, now the maximum AU-
ROC value is approx. 98% compared to 86% on the 1k dataset; similarly, the
Accuracy and F1 metrics have nearly doubled. This confirms our motivation
for creating larger datasets for weight-space representation learning on low-rank
adapters. Once again, the FlatVecPCA@200 method outperforms other represen-
tation methods; however, this time the second best method is FlatVec. Despite
having almost 100,000 dimensions, we now have much more samples to fit a clas-
sifier and allow it generalize better. Note also that the StatsFlatVec method
achieves performs quite similarly to the FlatVec method, while having signifi-
cantly less dimensional representations.

In case of the LoRA-WS-50k dataset, the FlatVec method obtains the best
results for all metrics; however, the StatsFlatVec method performs only slightly
worse on all but one metric – for AUROC the mean values are the same with
StatsFlatVec having a smaller standard deviation. The data volume (50k sam-
ples) allows to achieve even better results than on the 10k dataset variant.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97626-1_8

https://dx.doi.org/10.1007/978-3-031-97626-1_8
https://dx.doi.org/10.1007/978-3-031-97626-1_8


Toward weight-space interpretation of LoRAs for Diffusion Models 9

StatsFlatVec being the second best method shows again that despite more
samples, the dataset can be efficiently compressed down to only 5 dimensional
vectors.

To sum up, we observe that the FlatVec and FlatVecPCA@K methods work
the best overall. For the 50k dataset variant, the StatsFlatVec method also
works great despite compressing the representations to only 5 dimensions. How-
ever, for practical applications, these methods are not suitable. They either use
very high dimensional vectors (dim(FlatVec) ≈ 100, 000) or they use such vec-
tors as intermediate steps (FlatVecPCA@K and StatsFlatVec), which requires
large computational resources. For future work, we would like to focus on rep-
resentation methods that operate on lower dimensional vectors, allowing for
resource efficient data processing.

5.2 Expressiveness of individual layers

Goal. To systematically analyze the information content encoded within indi-
vidual LoRA adapter layers, we isolate and evaluate the predictive power of each
adapter layer independently on the LoRA-WS-1k dataset.

Setup. For each LoRA adapter layer l, we extract and flatten its weight matrices
adapting W

(l)
q and W

(l)
v as well as self-attention maps in various attention layers

of the U-Net into feature vectors xl ∈ Rd, where d varies based on the layer
dimensions. We partition the dataset into training (70%), validation (10%), and
test (20%) sets. An MLP classifier is trained on the training set and evaluated on
both validation and test sets. The MLP architecture remains consistent with the
previous experiment, featuring three hidden 512-dimensional layers with ReLU
activations. We employ early stopping based on validation performance and use
the Adam optimizer with a learning rate of lr = 1e−3. We repeat this process
10 times with different random seeds. We report averaged results across all runs
in Figure 2.

Discussion. We empirically demonstrate that LoRA adapter weights in cross-
attention layers encode substantial information about the fine-tuning dataset,
with the value projection adapter (Wv) achieving the highest classification accu-
racy (97.01% on the test set), slightly outperforming the query projection (Wq).
This suggests that the learned adaptations in Wv retain stronger dataset-specific
signals, potentially due to their direct role in modulating text-conditioned feature
integration. In contrast, self-attention layers exhibit significantly lower predictive
power, with most performing near chance level (10%) and only a few reaching
moderate expressiveness (60%). This disparity highlights the dominant role of
cross-attention in shaping model-specific adaptations, while self-attention layers
primarily facilitate general feature propagation rather than encoding dataset-
specific signatures.
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Fig. 2. Classification accuracy across different LoRA adapter layers in the U-Net ar-
chitecture. The plot demonstrates the predictive power of individual adapter weights
for dataset class identification. Notable peaks in accuracy correspond to text condition-
ing cross-attention layers, particularly in the query (Wq) and value (Wv) projections,
achieving up to 97.01% test accuracy. Other attention layers such as self attention of
the latent feature maps of the U-net are in gray.

5.3 Dimensionality reduction

Goal. To elucidate the relationship between representational dimensionality
and feature quality, we conduct Principal Component Analysis (PCA) on high-
dimensional feature vectors constructed by the FlatVec method (note that this
setup is essentially the same as the FlatVecPCA@K method with different choices
of the K value).

Setup. Figure 3 illustrates the relationship between classification accuracy and
the number of retained principal components. We extend this experiment to the
larger LoRA-WS-10k dataset, maintaining the same framework as in our previous
analysis, with the key modification being the use of concatenated adapter weights
as input features rather than individual layer representations. We try different
PCA values (100, 200, 500, 1000, 2000, 3000, 5000 and 7500) and report the
mean accuracy achieved in ten runs of the experiment with different random
seeds.

Discussion. We observe that the performance on both validation and test splits
is quite similar with Validation Accuracy being only a bit worse than the Test Ac-
curacy. Moreover, both metrics highly depend on the choice of the K parameter,
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Fig. 3. Classification accuracy as a function of retained PCA components for different
LoRA adapter layers. The plot demonstrates how predictive power varies with dimen-
sionality reduction.

ranging from almost 20% for K = 7500 up to approx. 85% for K = 500 (which is
the sweet spot for this dataset variant). Using both 200-dim and 1000-dim vec-
tors also provides a decent performance, however, we would recommend going
with K = 200 as it requires less computational power (due to lower dimensional
vectors). Overall, we observe that the data points approximate a convex func-
tion, where larger dimensional vectors achieve worse performance that smaller
ones. Hence, when using the FlatVecPCA@K method, we would recommend us-
ing lower dimensional vectors, i.e., smaller values of K and check a few values
around K = 500.

5.4 Harmful content detection

Goal. We want to address a crucial application area of weight-space represen-
tation learning for low-rank adapters – detection of potentially harmful LoRAs.
Hence, in this experiment we predict whether an adapter was fine-tuned on im-
ages depicting harmful content represented as one of the classes from [24].

Setup. We take sexually explicit anime/manga images as concepts to train
harmful adapters. As showed empirically in previous experiments, simple classi-
fiers are not doing very well on small datasets. To tackle this problem, we feed a
single layer as input to the classifier and choose the best performing layer in eval-
uation. We use a 80/20% dataset split. We pre-process the weights of adapters
to obtain representations described earlier and conduct experiments with each
representation. To this end, we train an MLP with three hidden layers of size
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1024 and final classification head with two dimensional output. We then back-
propagate on the cross-entropy loss. In evaluation, we treat the more probable
class as final prediction of the model. We use the learning rate of lr = 1e−4,
leverage the Adam optimizer and train with early-stopping on 2000 epochs. We
present our results in Table 2.

Table 2. Classification metrics for harmful content detection using different represen-
tation learning methods. Results are reported as mean ± standard deviation on the
test set over 10 runs (different seeds). Higher values are better (↑). Best results are
bolded, whereas second best results are underlined.

LoRA-WS-NSFW Accuracy (↑) AUROC (↑) Precision (↑) Recall (↑) F1 (↑)

FlatVec 98.12± 1.53 99.96± 0.12 99.41± 1.76 96.88± 3.12 98.08± 1.57
FlatVecPCA@20 67.01± 4.46 62.46± 2.58 63.98± 3.42 76.88± 7.93 69.74± 5.00
StatsFlatVec 66.87± 4.00 61.88± 1.39 63.84± 2.62 77.50± 9.35 69.83± 4.95
StatsLayerDense 60.34± 10.30 60.30± 4.41 61.20± 4.00 69.01± 1.00 65.03± 3.38

Discussion. Our results demonstrate that certain adapter weights, primarily
the ones concerned with cross-attention to support textual conditioning, con-
tain clear signatures of harmful content training, with flattened vector achiev-
ing near-perfect detection accuracy (98.12%). Statistical summaries and dimen-
sionality reduction by PCA perform poorly (66-67%), indicating that feature
engineering provides only marginal benefits in the small dataset setting. Our
experiments with summary statistics of dense representation yielded poor per-
formance (60.34% accuracy), confirming that joining two layers and aggregating
them further degrades classification efficacy. This finding aligns with our previ-
ous experimental observations and demonstrates that dense representations have
limited expressiveness.

6 Conclusions and future work

In this paper, we addressed the problem of learning representations for low-rank
adapters based on their weights (so called weight-space representation learn-
ing). We contributed several StableDiffusion LoRA datasets varying in size, i.e.,
LoRA-WS-1k, LoRA-WS-10k, LoRA-WS-50k and LoRA-WS-100k. We performed a
variety of experiments to better understand the performance of different weight-
space representation learning methods on our dataset. We have shown that low-
rank adapters encode sufficient information in their weights to be able to clas-
sify the content the adapter was trained on without the need to generate the
actual images. Such a setup is crucial when working with potentially harmful
adapters, where we do not want to generate the actual images to detect whether
it was trained on dangerous content. To that end, we introduced a small dataset
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LoRA-WS-NSFW and analyzed the performance a several embedding methods. Re-
sults show that by just using the weights directly, we can build a well performing
classifier.

In future work, we want to extend our experiments to the LoRA-WS-100k
dataset. However, to achieve that we need to first focus on developing a dedicated
weight-space representation learning method, which does not require operating
on almost 100,000-dimensional vectors (as we had to do for the other dataset
variants). Working with such large vectors combined with a large dataset size,
makes it difficult to train any kind of classification models (due to high re-
source requirements). Next, we want to also extend our LoRA-WS-NSFW dataset
by increasing the dataset size. Finally, we want to introduce noise to the LoRA
datasets, which should better reflect real-world conditions and help to test the
generalization ability of the weight-space representations. We want to also check
scenarios where labels are imperfect and/or classes are imbalanced, which are
also likely to be found in real-world cases.
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