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Abstract. Floating Offshore Wind Turbines (FOWT) provided new potential in 
harvesting wind energy in far offshore deep-sea regions and contributed to the 
world decarbonization Net-Zero target. Providing structural health monitoring 
(SHM) is crucial for ensuring the structural integrity of FOWT in lifecycle. How-
ever, the SHM is technically challenging with high Operational and Maintenance 
Expenditure (OPEX).  Recently, Digital Twin (DT) and advanced sensor tech-
nologies offer alternative solutions to provide effective strategy in SHM re-
motely. Data-driven DT with deep learning models can formulate highly nonlin-
ear dynamics systems. Yet, these existing models only perform the “black box” 
prediction without explicitly modeling the spatial-temporal relationship and con-
sider only homogenous loading exerted in contrast to the complicated loading 
combination of FOWT with wind, wave and sea current.  
To address the existing modelling limitations, a new Graph Neural Network 
(GNN)-Encoder-Decoder-Long Short-Term Memory (LSTM) surrogate model 
of FOWT is presented in this work, which can perform 50 times faster than the 
real-time of simulation data set with accurate prediction of wind turbine tower 
bottom forces in the dominant dynamic modes force-aft and side-side directions. 
The training data is based on the software QBlade simulation and focuses on the 
OC4 5MW DeepCwind FOWT structure.  A holistic quantitative analysis is car-
ried out to validate the tractable latent space vectors for this complex FOWT sys-
tem. 

Keywords: Floating Offshore Wind Turbine, Artificial Intelligence, Deep 
Learning, Digital Twin, Tractable Latent Space, Surrogate model 

1 Introduction 

Offshore wind energy has been demonstrated promising renewable energy over the 
past decade, which was implemented all over the globe, including China, UK and Ger-
many [1]. Especially, FOWT are considered to have potential for harvesting wind 
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energy from far offshore deep-sea regions compared to fix-bottom offshore wind. When 
implementing construction projects, there are huge technical challenges in providing 
maintenance of large-scale wind farm in which pose huge OPEX. With the advance-
ment of state-of-the-art sensor technology and cloud technology, it allows the develop-
ment of DT technologies [2], which is a virtual representation of the physical asset. 
Finite Element Modeling (FEM) is widely used to model multibody dynamics, but it is 
computationally expensive to run in real-time for DT. Surrogate models allow DT run-
ning instantaneously but keeping the accuracy in highly nonlinear dynamics. 

In this work, we presented a novel GNN-Encoder-Decoder-LSTM for solving men-
tioned above. In deep learning architecture, there are autoencoder and encoder-decoder 
used for dimension compression, which are the nonlinear reduced order model ap-
proaches. However, in literature, there is a lack of organized analysis explaining the 
behavior of latent space characteristics. Therefore, we provide a systematic analysis for 
the relationship between the higher dimensions graph embedding and the latent space 
vector and provide the first application of Modal Assurance Criterion (MAC) [3] to 
demonstrate the tractability of the latent representation of performing this temporal dy-
namic prediction task of FOWT.  

2 Related work 
Nowadays mid-fidelity engineering tools e.g. OpenFAST [4] and QBlade [5] can sim-
ulate complex coupling in between the aerodynamic, hydrodynamic, structural dy-
namic, servo-dynamic, and provide efficient computation time comparing to high fidel-
ity tool e.g. Computation Fluid Dynamics. However, mid-fidelity engineering tools still 
have limitations in running real-time in a desktop computer and typically for time series 
dynamic simulation that require the numerical transient period for the iterating the con-
vergence in between different dynamic modules. For example, QBlade employed Hil-
ber-Hughes-Taylor formulation [6] integrator for solving the Differential-Algebraic 
Equations. To address the inherent computational time problem, Reduced Order Model 
(ROM) is commonly adopted to speed up the simulation. In this section, we review 
recent developments in ROM for structural dynamics. 
 
2.1 Physics-based and Conventional ROM 

A reduced ordered state space model with linearized approach can be used to run the 
interested parameters simulation of Ordinary Differential Equation. Which requires to 
linearize the nonlinear function at certain operating points e.g. sea state for FOWT. For 
instance, [7] formulated the time series ROM with N4SID system identification tech-
nique and created a bank of state space models at several sea states for Kalman Filtering 
and then merged the estimation result with Bayesian Multiple-Model Adaptive Estima-
tion algorithm. This provided the mooring forces estimation for FOWT for unseen sea 
states with 20 times faster than real-time. There are also effective compression ap-
proaches for high dimensional data, such as the method of Proportional Orthogonal 
Decomposition (POD) [8] and Dynamic Mode Decomposition (DMD) [9] are used to 
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truncate the high order component to provide the low rank matrix for faster computa-
tion.  
2.2 Deep Learning ROM 

Recently, machine learning and neural network provide new alternatives with the 
concept of “Universal approximation theorem”, and deeper layer network “Deep 
Learning” can provide better prediction. Especially Autoencoder [10] forms the 
architecture that learns the lower dimension representation by training the neural 
network with means square error loss. For instance, [11] used AE-LSTM to extract the 
low-dimension and pass to LSTM. However, this does not explicitly incorporate the 
physical properties of the structure e.g. mass, stiffness and geometrical space. 
Furthermore, the existing deep learning applications in FEM only considered simple 
structures e.g. a single beam element or a rectangular multistorey frame with 
homogeneous loading input e.g. one horizontal force or one acceleration. [12] used the 
Variational Autoencoder (VAE) and POD for time series force prediction and 
homogeneous loading or ground motion acceleration, and the real-time factor was not 
reported. On the contrary, FOWT experiences a complicated combination of wind, 
wave and current with different amplitudes and turbulence, which are heterogenous 
loading properties problem to the structural system. The above-mentioned deep 
learning methods have not addressed the highly nonlinear problem for FOWT. 

Recently, a Physics-Guided Spatial Temporal Graph Neural Network (GNN) [13] 
was presented that overcome the limitations mentioned above and able to handle heter-
ogeneous loadings input. The GNN encoded the aero-hydrodynamic loadings with ge-
ometry and material properties, and combined with LSTM for predicting the tower 
forces 14 times faster than real-time. With the “baseline” model GATv2LSTM in [13], 
we presented a new architecture that compose of GNN-Encoder-Decoder-LSTM which 
can further accelerate the prediction by reducing the LSTM hidden layer parameter size 
substantially with the additional Encoder-Decoder and present the latent representation.  

3 Simulation in QBlade 
This study focuses on the FOWT OC4 5MW DeepCwind semisubmersible [14] as 

shown in Figure 1. The model file is openly available on QBlade website [5]. The 
metocean data is based on the West of Barra Scotland from LIFES50+ project [15]. 

This study refers to the Design Load Case DLC 1.2 in the technical specification 
IEC 61400-3-2 [16]. The sea state follows Pierson-Moskowitz spectrum with 
significant wave height 3.5m and period 10.68s. The hydrodynamic modeling is 
Potential Flow with Morison Drag. To capture the higher order hydrodynamics effect, 
vertical stretching for wave and the second-order full Quadratic Transfer Functions 
(QTF) are used. For sea current, the near surface current 0.88m/s with reference depth 
of 30m and subsurface 0.84m/s with power 1/7 are adopted. 

TurbSim [17] is used for modeling the turbulence wind with a mean wind speed of 
13.63m/s at hub height with turbulence Class IC and Kaimal model. The aerodynamic 
loading from the rotor is solved by the Unsteady Blade Element Momentum (UBEM) 
[18]. Øye dynamic stall and the tower shadow models are activated. A tower drag co-
efficient of 0.5 is used.  

Figure 2 (a) shows the simulation setting in QBlade and Figure 2(b) shows the dis-
cretized nodes and the critical tower bottom for the focus of this study.  Detailed GNN 
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is described in section 4 with Table 1 and 2. Figure 3 refers to the wind velocity at hub 
height and Figure 4 refers to the wave elevation time series that the FOWT system 
experiences.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 1. Geometric specification of OC4 5MW DeepCwind FOWT [14] 

Fig. 3. Wind velocity generated from TurbSim 

Fig. 4. Wave elevation profile time series data in QBlade 

Fig. 2. (a) QBlade simulation and (b) GNN discretized of OC4 5MW DeepCwind FOWT  

Wind turbulence shear profile from 
TurbSim Coordinate system 

Wave and sea current (direction to X) 
(a) (b) 

Critical 
node (tower 
bottom) for 
this study 

Axis (positive direction) 

Node type A 
Node type B 
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Edge type A 
Edge type B 
Edge type C 

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97626-1_7

https://dx.doi.org/10.1007/978-3-031-97626-1_7
https://dx.doi.org/10.1007/978-3-031-97626-1_7


 Discover the Tractable Latent Space of FOWT based on a Novel GNN-ED-LSTM 5 

4 Novel GNN-Encoder-Decoder-LSTM  
Table 1 and 2 summarize the node features and edge attribute of the GNN 

respectively as illustrated in Figure 2(b). 

Table 1. Node features inputs and node target outputs of the GNN 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Table 2. Edge attributes of the GNN 

 
 
 
 
Figure 5 illustrates the whole proposed architecture: firstly the node embedding 

from GNN is concatenated to the graph embedding of size 240 and compressed to the 
latent space vector with the encoder; then the latent vector is passed to LSTM and the 
predicted latent space vector is mapped to the node feature prediction with the decoder 
and Fully Connected (FC) layer. The activation functions of Rectified Linear Unit 
(ReLU) and Exponential Linear Unit (ELU) are tested with different combinations. 
Figure 5 refers to the optimum architecture of LSTM192ED128-128relu-elu32res. The 
procedure of Hyperparameter identification will be elaborated in section 5. 

 
 
 
 
 

 
 

 
 

 Node features and inputs Node target outputs 
Node type A 
(11 nodes) 

• Nodal mass 
• Node coordinates 
• Aerodynamic load 

• Internal forces and 
moment in X, Y and 
Z directions 

Node type B 
(1 node) 

• Lumped mass of hull 
structure 

• 6DOF displacement, 
velocity and 
acceleration 

• Wave elevation 
• Water kinematic 

velocity 

• 6DOF 
displacement, 
velocity and 
acceleration 

• Wave elevation 
• Water kinematic 

velocity 

Node type C 
(3 nodes) 

• Node coordinates 
• Wave elevation 
• Water kinematic 

velocity 

• Support reaction 
forces from 
mooring fairlead 

 Edge attributes 
Edge type A • Length 

• Stiffness (bending, axial and torsion) 
Edge type B and C • Length 

LSTM 

240 128 

Encoder-Decoder 

Latent vector size 

128 
ReLU ELU 

FC Projection FC Projection 

FC  

GNN Force  
prediction 128 

240 
128 

Fig. 5. GNN-Encoder-Decoder-LSTM architecture 
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The Graph Attention Network GATv2Conv [19] [20]  is adopted and the node 
embeddings are calculated in the following: 

𝑥𝑥𝑖𝑖′ = 𝛼𝛼𝑖𝑖,𝑖𝑖𝛩𝛩𝑠𝑠𝑥𝑥𝑖𝑖 + ∑ 𝛼𝛼𝑖𝑖,𝑗𝑗𝛩𝛩𝑡𝑡𝑥𝑥𝑗𝑗𝑗𝑗∈𝒩𝒩(𝑖𝑖)                          (1) 
The attention weight 𝛼𝛼𝑖𝑖,𝑗𝑗 is calculated as 

𝛼𝛼𝑖𝑖,𝑗𝑗 = exp (𝑎𝑎𝑇𝑇𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝛩𝛩𝑠𝑠𝑥𝑥𝑖𝑖+𝛩𝛩𝑡𝑡𝑥𝑥𝑗𝑗+𝛩𝛩𝑒𝑒𝑒𝑒𝑖𝑖,𝑗𝑗)
∑ exp (𝑎𝑎𝑇𝑇𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝛩𝛩𝑠𝑠𝑥𝑥𝑖𝑖+𝛩𝛩𝑡𝑡𝑥𝑥𝑘𝑘+𝛩𝛩𝑒𝑒𝑒𝑒𝑖𝑖,𝑘𝑘)𝑘𝑘∈𝒩𝒩(𝑖𝑖)∪{𝑖𝑖}

     (2) 

The node features inputs 𝑥𝑥𝑖𝑖 are defined in matrix [number of nodes, number of features] 
and edge attribute 𝑒𝑒𝑖𝑖,𝑗𝑗 in matrix [number of edges, number of features]. The inputs to 
GAT include node type A feature 𝑥𝑥𝐴𝐴 ∈ ℝ11×11, node type B feature 𝑥𝑥𝐴𝐴 ∈ ℝ1×20, node 
type C feature 𝑥𝑥𝐶𝐶 ∈ ℝ3×2, edge type A attributes 𝑒𝑒𝐵𝐵 ∈ ℝ10×4, edge type B attributes 
𝑒𝑒𝐵𝐵 ∈ ℝ1×1 and edge attributes type C 𝑒𝑒𝐶𝐶 ∈ ℝ3×1 as listed in Table 1 and 2. After the 
node embeddings are calculated with 1-hop neighbors for each edge type messaging 
passing, they are concatenated to form the whole graph embedding vector 𝑧𝑧 ∈ ℝ240. 

Long Short-Term Memory (LSTM) model is used for handling temporal dynamics: 
𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑖𝑖𝑖𝑖𝑧̃𝑧𝑡𝑡 + 𝑏𝑏𝑖𝑖𝑖𝑖 + 𝑊𝑊ℎ𝑖𝑖ℎ𝑡𝑡−1 + 𝑏𝑏ℎ𝑖𝑖)     (3a) 
𝑓𝑓𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑖𝑖𝑖𝑖𝑧̃𝑧𝑡𝑡 + 𝑏𝑏𝑖𝑖𝑖𝑖 + 𝑊𝑊ℎ𝑓𝑓ℎ𝑡𝑡−1 + 𝑏𝑏ℎ𝑓𝑓)       (3b) 
𝑔𝑔𝑡𝑡 = tanh (𝑊𝑊𝑖𝑖𝑖𝑖𝑧̃𝑧𝑡𝑡 + 𝑏𝑏𝑖𝑖𝑖𝑖 + 𝑊𝑊ℎ𝑔𝑔ℎ𝑡𝑡−1 + 𝑏𝑏ℎ𝑔𝑔)     (3c) 
𝑜𝑜𝑡𝑡 = tanh (𝑊𝑊𝑖𝑖𝑖𝑖𝑧̃𝑧𝑡𝑡 + 𝑏𝑏𝑖𝑖𝑖𝑖 + 𝑊𝑊ℎ𝑜𝑜ℎ𝑡𝑡−1 + 𝑏𝑏ℎ𝑜𝑜)      (3d) 

𝑐𝑐𝑡𝑡 = 𝑓𝑓𝑡𝑡 ⊙ 𝑐𝑐𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 ⊙ 𝑔𝑔𝑡𝑡         (3e) 
ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ⊙ tanh (𝑐𝑐𝑡𝑡)           (3f) 

Where 𝑧̃𝑧𝑡𝑡 is the input latent vector at time 𝑡𝑡, ℎ is the hidden state, 𝑊𝑊 are the weight 
matrix, 𝑏𝑏 are the bias, 𝑖𝑖𝑡𝑡, 𝑓𝑓𝑡𝑡, 𝑔𝑔𝑡𝑡, 𝑜𝑜𝑡𝑡are the input, forget, cell, and output gates, 
respectively. 𝜎𝜎 is the sigmoid function, ⊙ is the Hadamard product. A time window 
size 100s is used for the sliding window. 

The FC layer is used to map the output of LSTM to the node target prediction 
matrix 𝑦𝑦 in the format of [number of nodes, number of target features] for 𝑦𝑦𝐴𝐴𝜖𝜖ℝ11×6, 
𝑦𝑦𝐵𝐵𝜖𝜖ℝ1×20 and 𝑦𝑦𝐶𝐶𝜖𝜖ℝ3×3. Additionally, the residual skip connection, FC projection, is 
used to improve gradient flow for the deeper layers. The deep learning model is 
implemented in PyTorch [21] and PyTorch Geometric [22] and trained with 
Backpropagation ADAM optimizer [23] , weight decay 0.0001, learning rate 0.001 and 
epoch 100 and mean squared error (squared L2 norm). 731.5s of time series data is used 
for training and another unseen 731.5s of time series data for prediction and testing. 
The training data is preprocessed with z-score normalization. 
5 Results 
5.1 Validation of simulation training data  

A pitching decay test is used to benchmark the present QBlade simulation model 
for preparing Deep Learning model training data is aligned with the reported [24] 
QBlade model (QB) and the OpenFAST (OF) result as shown in Figure 4. 
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5.2 Deep learning model prediction results 

This section shows the prediction experiments on the neural network Hyperparame-
ters identification procedure e.g. hidden layer sizes and activation function of the pro-
posed GNN-Encoder-Decoder-LSTM and compares with the baseline model 
GATv2LSTM (without the Encoder-Decoder), against the “truth value” QBlade simu-
lation. This study will only reveal the critical tower bottom forces and moments as 
stated in Figure 7 to 15. The time series prediction of forces are shown in detail to 
illustrate the trend difference. The forces and moments for each architecture results are 
summarized in Table 3. An example of legend name LSTM192ED128-128relu-
elu32res means LSTM192[hidden size] ED128-128[Encoder-Decoder structure] relu-
elu[activation function in the Encoder-Decoder] 32[latent vector size] res[residual skip 
connection]. 
Study on latent space vector size. Based on the LSTM hidden size 100, the latent 
space vector size is varied from 10 to 32 with all fully connected layers attached with 
ReLU activation function. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig. 8. Tower bottom force Y prediction with varying latent vector size. 

Fig. 7. Tower bottom force X prediction with varying latent vector size. 

LSTM100ED128-128relu10 
LSTM100ED128-128relu20 
LSTM100ED128-128relu24  
LSTM100ED128-128relu28 
LSTM100ED128-128relu32 
QBlade simulation 

LSTM100ED128-128relu10 
LSTM100ED128-128relu20 
LSTM100ED128-128relu24  
LSTM100ED128-128relu28 
LSTM100ED128-128relu32 
QBlade simulation 
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Higher latent space size can preserve more information from the high dimensional 

vector. The latent size 32 balances the capacity for model complexity and prevents the 
noisy details of larger size so it provides better prediction to the QBlade simulation.   

Study on LSTM hidden size. Based on the optimal value latent space vector 32, the 
LSTM hidden size is varied from 100 to 192 with all fully connected layers attached 
with ReLU activation function. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9. Tower bottom force Z prediction with varying latent vector size. 

LSTM100ED128-128relu32 
LSTM128ED128-128relu32 
LSTM160ED128-128relu32 
LSTM192ED128-128relu32 
QBlade simulation 

Fig. 10. Tower bottom force X prediction with varying LSTM hidden size. 

LSTM100ED128-128relu10 
LSTM100ED128-128relu20 
LSTM100ED128-128relu24  
LSTM100ED128-128relu28 
LSTM100ED128-128relu32 
QBlade simulation 
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Increasing the LSTM hidden size can capture more nonlinearity and intricate temporal 
pattern, especially the mixture of low-frequency and high-frequency dynamics. The 
optimum number of 192, multiple of 8, also fits with the tensor core operation. Hence, 
it matches better with the QBlade simulation. 

Study on residual skip connection. Based on the optimal value latent space vector 32 
and LSTM hidden size 192, residual skip connection is applied for testing the effect of 
gradient flow. ELU consists of a small negative slope which can perform a better gra-
dient flow than ReLU in the inner layer. 

 
 
 

Fig. 11. Tower bottom force Y prediction with varying LSTM hidden size. 

LSTM100ED128-128relu32 
LSTM128ED128-128relu32 
LSTM160ED128-128relu32 
LSTM192ED128-128relu32 
QBlade simulation 

Fig. 12. Tower bottom force Z prediction with varying LSTM hidden size. 

LSTM100ED128-128relu32 
LSTM128ED128-128relu32 
LSTM160ED128-128relu32 
LSTM192ED128-128relu32 
QBlade simulation 
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LSTM192ED128-128relu32 
LSTM192ED128-128relu32res 
LSTM192ED128-128relu-elu32res 
GATv2LSTM (baseline) 
QBlade simulation 

Fig. 13. Tower bottom force X prediction with the effect of residual skip connection. 

Fig. 15. Tower bottom force Z prediction with the effect of residual skip connection. 

LSTM192ED128-128relu32 
LSTM192ED128-128relu32res 
LSTM192ED128-128relu-elu32res 
GATv2LSTM (baseline) 
QBlade simulation 

Fig. 14. Tower bottom force Y prediction with the effect of residual skip connection. 

LSTM192ED128-128relu32 
LSTM192ED128-128relu32res 
LSTM192ED128-128relu-elu32res 
GATv2LSTM (baseline) 
QBlade simulation 
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Figure 13 to 15 reveal the residual skip connection can improve the prediction in 
finer detailed variation with better flow of information and gradient, and 
LSTM192ED128-128relu-elu32 can produce precise result as the baseline 
GATv2LSTM against the “truth value” QBlade simulation. 

The prediction stage runs on the CPU 11th Gen Intel(R) Core(TM) i5-1145G7 @ 
2.60GHz   2.61 GHz. The first 100s data (time window) is excluded from the calculation 
of Real-Time factor so 631.5s is used for the reference value. A common performance 
metric for machine learning prediction is Percent Bias (PBIAS) defined as 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 100% ×
∑�𝑄𝑄𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠�

∑𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠
          (4) 

Where 𝑄𝑄𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  is the prediction and 𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠 is the reference from QBlade simulation. 
Table 3. Percent Bias and CPU execution wall time for the testing data set 

(631.5seconds) 

To conclude, most models shown in Table 3 can provide accurate prediction for the 
dominant modes force-aft (force X and moment Y) and side-side (force Y and moment 

 

Percent Bias (%)  

Real-
Time 
Fac-
tor 

Prediction 
model 

force X 
(N/N) 

force Y 
(N/N) 

force Z 
(N/N) 

moment 
X 

(Nm/Nm) 

moment 
Y(Nm/
Nm) 

moment 
Z(Nm/Nm) 

Wall 
time 
(s) 

631.5
/Wall 
time 

GATv2LS
TM (base-

line) 0.01 1.03 -0.11 0.27 -0.09 -9.79 51.5 12.3 
LSTM100

ED128-
128relu10 -0.08 2.01 0.15 0.60 -0.62 -53.13 11.6 54.4 
LSTM100 

ED128-
128relu20 -0.20 1.77 -0.57 0.48 -1.11 -66.08 12.3 51.3 
LSTM100 

ED128-
128relu24 1.31 2.30 -0.12 0.64 1.07 6.14 11 57.4 
LSTM100 
ED 128-

128relu32 -1.23 -3.31 -0.42 -1.25 -2.25 -10.86 10.4 60.7 
LSTM128

ED128-
128rel32 -0.33 2.76 -0.55 0.51 -1.20 32.67 14.5 43.6 

LSTM160
ED128-

128relu32 -0.85 4.80 -0.42 1.10 -1.58 -28.33 12.2 51.8 
LSTM192

ED128-
128relu32 -0.22 1.61 -0.46 0.50 -0.85 -26.46 13.3 47.5 
LSTM192

ED128-
128relu32r

es 0.62 -0.88 -0.03 -0.42 0.54 -26.99 13.2 47.8 
LSTM192

ED128-
128relu-
elu32res -0.49 -3.12 -0.26 -1.15 -1.14 -11.60 12.8 49.3 
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X) forces and moments with ±5%. With about 50 times faster than the real-time data. 
The large differences are evaluated for moment Z (torsion mode) for sorting the suitable 
candidates for further study, and they are LSTM100ED128-128relu24, 
LSTM100ED128-128relu32, LSTM192ED128-128relu32, LSTM192ED128-
128relu32res and LSTM192ED128-128relu-elu32res. The following section reveals 
the tractability of latent space vector comparing to the baseline model in high dimen-
sion, the detailed Singular Value Decomposition (SVD) analysis is used to demonstrate 
how the variance (structural energy) is preserved, and the MAC analysis is used to 
demonstrate how the mode shape is preserved. 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Figure 16 shows the LSTM192ED128-128relu-elu32res can preserve the most sin-
gular values up to mode 18 as the baseline model. MAC require two set of data in the 
same dimension. Therefore, Principal Component Analysis is applied to the baseline 
model vector to reduce the dimension to the same as the latent vector. As the basis of 
reduced dimension vector of the baseline model can be different from the latent vector 
produced from the encoder, Procrustes analysis (function scipy.spatial.procrustes [25]) 
is used to align both set of vectors without changing the mode shape, and then followed 
by MAC calculated as 

𝑀𝑀𝑀𝑀𝑀𝑀(𝜙𝜙,𝜓𝜓) = �𝜙𝜙𝑇𝑇𝜓𝜓�
2

�𝜙𝜙𝑇𝑇𝜙𝜙��𝜓𝜓𝑇𝑇𝜓𝜓�
          (5) 

Where 𝜙𝜙 is the eigenvector of latent space vector and 𝜓𝜓 is the eigenvector of baseline 
model vector after Procrustes analysis.  

Figure 17 to 21 show the improvement of capturing mode shapes from model 
LSTM100ED128-128relu24 to LSTM192ED128-128relu-elu32res with MAC=0.9 in-
dicate highly correlated results. Particularly Figure 20 and 21 show the significant im-
provement of skip residual connection from capturing 2 modes to at least 9 modes. This 
is because the high dimensional vector supplementing the information to the latent vec-
tor. 

 

Fig. 16. Singular value comparison 
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Fig. 17. MAC of LSTM100ED128-128relu24 model 
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Fig. 19. MAC of LSTM192ED128-128relu32 model 
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Fig. 20. MAC of LSTM192ED128-128relu32res model 
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Fig. 18. MAC of LSTM100ED128-128relu32 model 

Diagonal MAC Values 
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The disparity value of Procrustes analysis indicates similarity of two sets of mode shape 
data and smaller disparity means better fit.  Figure 21 shows that LSTM192ED128-
128relu-elu32res preserves the most system dynamics up to mode 13 with the smallest 
disparity of 0.112. In summary, LSTM192ED128-128relu-elu32res preserves the most 
dynamic properties of the high dimension vector of baseline model.  

6 Conclusion 
In this work, we present a novel GNN-Encoder-Decoder-LSTM for FOWT time se-

ries internal force prediction and provide a holistic analysis of the latent space vector 
characteristic comparing to the high dimensional vector. The addition of Encoder-De-
coder can accelerate the prediction time by 4 times compared with the baseline model 
with only minimal difference in accuracy, and it is also about 50 times faster than real-
time data set. Which is excellent for Digital Twin implementation. In terms of the qual-
ity of the latent vector from the Encoder-Decoder, the SVD and MAC analysis demon-
strate the preservation of variance energy and the mode shapes up to mode 13 with the 
optimum model LSTM192ED128-128relu-elu32res. This result aligns with the neural 
network hyperparameter experiment prediction results of time series data. Which 
means the latent vector is tractable as the high dimensional graph embedding vector. 

In future work, more loading combinations and scenarios will be included to extend 
the generalizability of the prediction model.   
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