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Abstract The inverse problem of estimating the refractive index in a
waveguide based on wave �eld measurement data is studied. A di�er-
entiable �nite-di�erence scheme for the parabolic wave equation is con-
structed. The desired function of spatial coordinates, corresponding to
the refractive index, is represented as a deep neural network. Optimiza-
tion problem with respect to unknown refractive index function is for-
mulated and solved. Automatic di�erentiation of the numerical scheme
is used for e�cient gradient computation. Numerical examples con�rm
that the proposed method outperforms the existing approaches to solving
underwater and tropospheric tomography problems.
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1 Introduction

Refraction has a decisive impact on wave propagation in large unbounded do-
mains such as troposphere [14] or underwater environments [9]. Tropospheric
refractive index may form waveguides that transmit radio signals for hundreds
of kilometers near the Earth's surface. Similarly, acoustic signals propagate in
the sea for hundreds and thousands of kilometers under the in�uence of the un-
derwater sound speed pro�le. Despite this, reliable methods for real-time mea-
surement or estimation of atmospheric refractivity parameters [21,20] or oceanic
parameters [19] have not yet been developed. The size of the region is too large
for realtime direct measurements, so inversion based on indirect measurements
seems the most promising. Mathematically, the complexity of the inversion prob-
lem lies in its nonlinearity and ill-posedness in the sense of Hadamard [6].

From the point of view of classical theory, nonlinear ill-posed problems are
rather hopeless for a reliable solution [25]. Even if a solution can be found, it
takes hours or days of extensive computations, i.e., the results become irrelevant
[7]. On the other hand, problems solved by modern machine learning (ML), in-
cluding scienti�c ML [24], are also ill-posed but are often successfully and quickly
solved by modern neural network architectures and optimization methods. This
suggests the use of ML tools in the problem of refractive index inversion.

Physics-informed machine learning models often su�er from a lack of in-
terpretability. The ML approach usually relies on data rather than laws and
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equations. However, high-quality data in physical problems is a rarity. A quite
successful attempt to overcome this issue is the method of physics-informed
neural networks (PINN) [15]. PINN allows incorporating physical laws into the
objective function, thereby increasing the accuracy and interpretability of the
results. PINN is suitable for solving both direct and inverse problems. One of
disadvantages of PINN is that it does not take into account the speci�cs of nu-
merical modeling of the processes it works with. In particular, this is evident in
wave propagation modeling in waveguides, where the main di�culty lies in the
numerical solution, as the computational domain is very large.

To account for the speci�cs of numerical implementation, one can substitute
numerical scheme for the original physical laws into the objective function. This
allows taking into account numerical features but requires di�erentiating the
numerical schemes. Di�erentiable numerical schemes have already shown their
e�ectiveness in problems of hydrodynamics [3,1], mechanics, thermodynamics
[26], and underwater acoustics [17].

In this work, for the �rst time, the unknown pro�le is sought in the form of
a deep neural network. The parabolic equation method is used as the numerical
scheme for the corresponding forward problem, which is equally well suited for
solving underwater acoustics problems [5] and tropospheric radio wave propaga-
tion [14]. This explains the title of the present paper. The idea of this research
is largely inspired by the works [4,12] on neural di�erential equations, which
proposed building models that simultaneously include di�erential equations and
neural networks. This approach allows taking into account wave dynamics using
strict wave equations, while poorly interpretable features such as refractive index
inhomogeneities are modeled and estimated using neural networks.

2 Mathematical formulation of the problem

This section discloses the relationship between the direct and inverse wave prop-
agation problems.

2.1 Direct problem and its solution

The wave process is modeled by the two-dimensional Helmholtz equation [14]

∂2ψ

∂x2
+
∂2ψ

∂z2
+ k2n2 (z)ψ = 0, (1)

where ψ (x, z) is the complex-valued two-dimensional distribution of the wave
�eld, n(z) is the refractive index of the medium, k = 2π/λ is the wavenumber, λ
is the wavelength. Depending on the speci�cs of a particular problem, function
ψ satis�es certain initial and boundary conditions.

It is assumed that the length (along the x coordinate) of the computational
domain signi�cantly exceeds the height (along the z coordinate), i.e., propagation
occurs in an elongated waveguide. Under these conditions, refractive index n (z)
has a decisive in�uence on the long range wave propagation.
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The problem of �nding wave �eld ψ (x, z) given the refractive index n (z),
initial and boundary conditions is called the direct one. It is generally well-
posed, i.e., has a unique solution. There are several methods for solving the direct
problem for the Helmholtz equation, but the parabolic equation method and its
generalization, called the one-way Helmholtz equation, best suit the speci�cs of
the problem being solved [14,5].

Ignoring backscattering, equation (1) can be formally rewritten in the one-
way form [18,8]

∂ψ

∂x
= i

√
∂2

∂z2
+ k2n2 (z)ψ.

Using the operator exponential, the step-by-step solution can be written as

u (x+∆x, z) = P (n)u (x, z) ,

u (x, z) = ψ (x, z) exp (−ikx) ,

P (n)u = exp

(
ik∆x

(√
1

k2
∂2

∂z2
+ n2 (z)− 1

))
u. (2)

Thus, the direct problem reduces to the numerical approximation of the op-
erator exponential (2). In this work, we use the �nite-di�erence rational ap-
proximation method [18]. Within the present research, it is essential that the
numerical approximation of (2) is implemented in a �nite number of sequential
steps. Indeed, as it is shown in [18], the entire step-by-step solution process es-
sentially consists of sequentially solving one-dimensional di�erential equations
of the form

[
1 + bi

(
1

k2
∂2

∂z2
+ n2 (z)− 1

)]
ui+1 (z) =

[
1 + ai

(
1

k2
∂2

∂z2
+ n2 (z)− 1

)]
ui (z) .

(3)
After discretization along the z variable, this equation reduces to a tridiagonal
system of linear algebraic equations, which is solved in linear time using the
tridiagonal matrix algorithm.

2.2 Inverse problem formulation

In the inverse problem, the refractive index n (z) is unknown. However, the
values of the wave �eld ψ at some points in space (xi, zi), i = 1..N are known.
We denote the vector of these measurements as v.

The complexity of the inverse problem lies in its ill-posedness in the sense
of Hadamard. It is unknown whether a solution exists and whether it is unique.
Indeed, there may be too few measurements, or they may be too noisy.
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Let G (n) denote operator that solves the direct problem at points (xi, zi),
i = 1..N for the refractive index n. Then the inverse operator G−1 (v), mapping
the wave �eld measurement data to the refractive index, will be the solution to
the inverse problem. We express the inverse operator G−1 (v) in terms of G (n)
and the functional minimization problem

G−1 (v) = argmin
n
Loss (G (n) ,v) , (4)

where

Loss (G (n) ,v) = ∥G (n)− v∥2 + γ

∥∥∥∥∂n∂z
∥∥∥∥2 . (5)

Indeed, the inverse problem can be viewed as �nding such a refractive index n (z)
that minimizes the di�erence between the measured �eld and the �eld predicted
by the direct model. This is what the �rst term of the objective functional
(5) is responsible for. The second term is responsible for regularization [25]. It
eliminates strongly oscillating solutions that formally minimize the functional
but have no physical meaning.

Note that this functional does not have any special properties such as con-
vexity or linearity, so its minimization is a highly non-trivial problem.

3 Refractive index inversion

As we saw in the previous section, the inverse problem of refractive index in-
version is formulated as a minimization problem of a functional that includes
solution to the direct problem. The space of functions is in�nite-dimensional,
so the �rst thing to do for the numerical minimization of functional (5) is to
determine the search space. Usually, vertical refractive index pro�le is sought
in the form of a �nite set of values on a given grid [27,10]. In this work, it is
proposed to estimate the refractive index in the form of a multilayer perceptron
with one input (height z), one output (real-valued refractive index), and several
hidden layers. Thus, the minimization problem reduces to �nding the optimal
value of a �nite number of neural network weights (θ).

There are essentially two large classes of solution methods: stochastic global
methods [23] and local methods [7] based on gradient descent. Global methods
are convenient because they do not require any additional information about the
minimized functional. A black box that outputs the value of the functional at
any point in the search space is su�cient. Unfortunately, even with the most
successful parameterization, the number of parameters to be determined is one
or several tens. Global methods converge extremely slowly, given that it is not
any but a speci�c global minimum that is being sought.

Local optimization methods, which use the gradient of the minimized func-
tion with respect to the unknown parameters, are signi�cantly more e�cient.
Following the gradient direction signi�cantly increases the convergence rate, at
least to a local minimum. This is the basis of all existing methods for training
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neural networks. They are successfully trained, although may have millions of
unknown parameters. The di�culty here is precisely the requirement of hav-
ing a gradient. The use of the �nite-di�erence approach is ine�cient due to the
catastrophic cancellation problem [2].

For the neural networks training, the automatic di�erentiation method [2]
is used. Its essence lies in representing the network as a computational acyclic
graph consisting of elementary operations. Although there may be quite a few
of them, sequential automatic application of di�erentiation rules allows e�cient
analytical computation of the gradient.

For a long time, this approach was limited to neural networks. A certain rev-
olution here was made by the JAX framework [22], which allowed representing
functions and algorithms of a very arbitrary form as a computational graph and,
accordingly, automatically di�erentiating them. At the same time, the program-
ming interface, as much as possible, repeats the widely used numerical modeling
libraries numpy and scipy.

Functional (5) is signi�cantly more complex than those usually used in ma-
chine learning, as it contains the operator of the direct problem solution. One
can, following the adjoint equation method [10,19], try to di�erentiate operator
G analytically. This leads to the need to derive and numerically solve a new
adjoint equation. There is low �exibility in choosing the representation of the
function to be determined within the adjoint method. A much more e�cient ap-
proach seems to be representing the numerical implementation of the operator
G as a computational graph using the JAX framework.

Note that numerical scheme (3) consists of a known sequence of elemen-
tary operations. Therefore, it can be represented as a computational graph. The
method is implemented within the PyWaveProp library and is freely available
[16].

The proposed solution is schematically presented in Fig. 1. nθ (z) is sought in
the form of a multilayer perceptron with a �nite unknown set of real parameters
θ (the nodes of the network). At the same time, nθ (z) is an argument of the oper-
ator G, the numerical implementation of which is an automatically di�erentiable
computational graph with respect to θ. In addition, the vector of �eld measure-
ments v is fed as input. This con�guration allows automatic computation of the
required gradient ∇θLoss.

The resulting gradient computation algorithm is used by one or another
local optimization algorithm to search for the optimal parameters θ. Following
most works on deep learning, including PINN, in this research we use the Adam
method [13] for optimization.

4 Numerical results and discussion

The general scheme of computational experiments is based on the inversion of
synthetic data. A typical refractive index pro�le is selected. Using the direct
problem solution method, the value at points corresponding to the location of
the receivers is computed. Random noise is added to these values. The resulting

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97626-1_6

https://dx.doi.org/10.1007/978-3-031-97626-1_6
https://dx.doi.org/10.1007/978-3-031-97626-1_6


measurements from 

receiver array

Differentiable step-by-step numerical scheme (implemented using JAX)

Refractive index 

in a form of MLP

Figure 1. Schematic description of the inversion algorithm.

noisy synthetic measurements are fed to the inversion algorithm, which estimates
the refractive index. At the end, the original and inverted pro�les are compared.

4.1 Tropospheric refractive index estimation

The schematic description of the tropospheric refractive index inversion problem
is shown in Fig. 2. A source with known parameters emits a radio signal received
by a vertical array of receivers. As the signal propagates between the source
and the receiver, it is in�uenced by the inhomogeneities of the tropospheric
refractive index. By analyzing the received signal, it is required to determine the
tropospheric refractive index.

In this work, only a monochromatic source emitting at a frequency of 3 GHz
is considered. The receiver array is located at a distance of 5 km from the source.
The array consists of 17 point receivers uniformly located at heights of 5-170 m.
The signal-to-noise ratio at the receivers is assumed to be 30 dB.

Unless otherwise speci�ed, refractive index pro�le is sought in the form of a
multilayer perceptron with 4 hidden layers of width 50. The Adam method with
a learning rate of 0.05 and regularization parameter γ = 10−3 is used.

Let us check the fundamental possibility of inversion for typical tropospheric
waveguides [14]: surface duct, surface-based duct, and elevated duct. It can be
seen from Fig. 3 that the proposed method successfully inverted four di�erent
typical tropospheric refractive index pro�les. At the same time, the method does
not require any prior information about the pro�le distribution.

Fig. 4 depicts the two-dimensional distribution of the electromagnetic �eld
computed for the original and inverted pro�les. The in�uence of the waveguide
e�ects on propagation near the Earth's surface is clearly observable. The elevated
waveguide focuses the �eld near the Earth's surface (up to 100 m), with zones
of strong signal and shadow alternating with each other. It can be seen that the
patterns for the original and inverted pro�les di�er slightly. For clarity, Fig. 5
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Figure 2. Tropospheric refractive index inversion. The white line indicates the (un-
known) refractive index pro�le.

shows a pointwise comparison of the amplitudes. Although the overall qualitative
and quantitative picture for the true and inverted pro�les is the same, there are
some local deviations that can exceed 20 dB. This should be taken into account
when processing the results of real experiments.

Now let us analyze the speed and dynamics of the optimization algorithm
convergence. Fig. 6 (left) shows the dependence of the minimized functional
value on the iteration number of the optimization algorithm. It can be seen
that the convergence does not depend signi�cantly on the type of waveguide.
The loss function decreases most rapidly up to about 100 iterations and then
decreases much more slowly. Fig. 6 (right) demonstrates the dependence of the
relative error between the true and inverted pro�les on the iteration number.
Interestingly, for the surface-based duct, the relative error continues to decrease
even when the loss function values practically stop decreasing.

Next, let us analyze how the width and depth of the multilayer perceptron
a�ect the e�ciency of the proposed algorithm. Fig. 7 shows the dependence of
the relative error between the true and inverted mixed pro�le for several di�erent
values of the depth and width of the network. It can be seen that in the single-
layer case, a lower accuracy was achieved in a reasonable number of iterations
than with multilayer networks. Fig. 8 demonstrates this visually. The inversion
errors of the single-layer network are clearly visible, and deviations reach 10 M-
units, while the multilayer network allows almost perfect inversion, even despite
the noise.

A completely logical question may arise: why use neural networks if one
could search for the unknown pro�le in the form of a simple piecewise linear or
piecewise constant function, as was done in all previous works [10,27]? Fig. 9
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Figure 3. Original pro�le and inversion result. (a) Surface duct (b) Elevated duct
(c) Surface-based duct (d) Combination of elevated and surface-based pro�les (mixed
pro�le).

0 20 40 60 80 100
Range (km)

0

50

100

150

200

250

He
ig
ht
 (m

)

0 20 40 60 80 100
Range (km)

−60 −40 −20

Figure 4. Distribution of the electromagnetic wave amplitude (20 log |ψ (x, z) |) in the
true (left) and inverted (right) surface-based ducts.
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Figure 5. Di�erence in amplitudes between the true and inverted surface-based ducts.
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Figure 6. Dependence of the loss function value (left) and relative error (right) on the
iteration number of the optimization algorithm.
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Figure 7. Dependence of the relative error between the true and inverted mixed pro�le
for depth (l) 1, 4, and 8, and width (w) 10, 50, and 100.
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shows a comparison of the convergence dynamics of the multilayer perceptron
and the piecewise linear function with 50 nodes. It can be seen that the multilayer
perceptron converged to the solution two orders of magnitude faster. At the same
time, the found solution turned out to be closer to the true one. It should also
be noted that the proposed approach allows easy use of any neural network
con�gurations and other representations of the desired function. At the same
time, changes in the method and its software implementation are minimal.

Table 1 provides a summary of the comparison of various con�gurations of the
desired function. It can be seen that the most preferred option for the considered
mixed pro�le was the use of a 4-layer perceptron with a layer width of 10. Single-
layer models either take too long to optimize or are unable to achieve adequate
accuracy. As the number of layers increases, the expressive power of the model
increases, which contributes to faster and more accurate convergence to the
exact solution. At the same time, excessive increase in the number of layers and
network width leads only to the complication of the model and its convergence
time but no longer leads to an increase in accuracy. Thus, there is some optimal
network topology in terms of accuracy and convergence speed, but the question
of how to quickly �nd it remains open.

It should be noted that previously proposed inversion methods [10,27] re-
lied heavily on the initial approximation. In fact, they work well only when the
initial approximation is close to the true value of the refractive index. The pro-
posed method, on the other hand, does not require any prior information about
the refractive index distribution, which makes this method signi�cantly more
universal.
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Figure 9. Dependence of the loss function value (left) and relative error (right) on the
iteration number for the multilayer perceptron and the piecewise linear function.
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Table 1. Convergence parameters of various refractive index models.

Method Number of iterations Inversion time (s) Error

MLP (l=1, w=10) 312 59 0.188

MLP (l=1, w=50) 71 23 0.207

MLP (l=1, w=100) 1477 400 0.068

MLP (l=4, w=10) 548 168 0.022

MLP (l=4, w=50) 304 376 0.038

MLP (l=4, w=100) 384 863 0.032

MLP (l=8, w=10) 385 165 0.0373

MLP (l=8, w=50) 168 519 0.044

MLP (l=8, w=100) 456 1885 0.0298

Piecewise linear (50 points) 10000 2169 0.13

4.2 Underwater sound speed determination

A similar problem in essence and importance arises in underwater acoustics. It is
required to determine the dependence of the sound speed in water on depth. The
schematic description of the problem is shown in Fig. 10. An acoustic wave source
is submerged underwater and emits an acoustic signal at a certain frequency. As
the signal propagates from the source to the hydrophone array, it is distorted
under the in�uence of sound speed inhomogeneities. The task is to determine the
vertical sound speed pro�le based on the acoustic pressure measurements at the
hydrophones. Although this problem has a completely di�erent physical nature
[18], it corresponds to the same mathematical model as the tropospheric inversion
problem. In both problems, there is a waveguide formed by the refractive index.
In both cases, wave propagation satis�es the Helmholtz equation (1).

Acoustic waveguides caused by inhomogeneous vertical strati�cation of sound
speed can facilitate the propagation of acoustic signals over hundreds and thou-
sands of kilometers or, conversely, contribute to their attenuation near the source.
Direct measurements of sound speed are often di�cult, so the problem of inver-
sion based on indirect data is very relevant. Fig. 11 shows the inversion results for
four typical sound speed pro�les in shallow water. An array of 15 hydrophones
was located at a distance of 3 km from the source. The signal frequency was
200 Hz. It can be seen that the proposed method successfully inverted all four
considered pro�les. As before, the method does not require any prior information
about the desired pro�les.

5 Conclusion

Unlike PINN, the proposed approach uses the existing well established numeri-
cal method for solving the direct problem, as it more reliable and e�cient. That
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Figure 10. Schematic description of underwater sound speed inversion.
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Figure 11. Original sound speed pro�le and inversion result.
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is, the method uses not only physical laws (�physics informed�) but also the
speci�cs of their numerical implementation, making it �numerical method in-
formed�. This approach seems signi�cantly more interpretable and numerically
e�cient.

The use of a deep neural network as representation of the desired refraction
index pro�le allows signi�cantly better �nding of the global minimum of the
posed optimization problem. The method does not require prior information
and works orders of magnitude faster than global optimization methods such as
simulated annealing or genetic algorithms. Apparently, this is achieved due to
the greater expressive power of the deep networks. It may seem counterintuitive
that a neural network with hundreds of parameters �nds a solution better than
a simple piecewise linear approximation. It would seem that it should simply
over�t. Nevertheless, this does not happen, and a deeper network shows better
results. The theoretical aspects of this curious and useful result remain to be
clari�ed.

Meta-parameters sometimes have to be manually tuned, which complicates
the use of this method in applied problems. It will be burdensome and time-
consuming for a hydroacoustic engineer or radio physicist to select the arti�cial
parameters. Therefore, an actual direction for further research is the application
of autoML [11] and the selection of the optimal neural network automatically.
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