
Tensorial Implementation for Robust Variational
Physics-Informed Neural Networks

Askold Vilkha1[0000−0001−9272−9082], Carlos Uriarte2[0000−0002−6962−6883],
Paweł Maczuga1[0000−0002−5111−6981], Tomasz Służalec1[0000−0001−6217−4274],

and Maciej Paszyński1[0000−0001−7766−6052]

1AGH University of Krakow, Poland
2Basque Center for Applied Mathematics, Bilbao, Spain

maciej.paszynski@agh.edu.pl

Abstract. Variational Physics-Informed Neural Networks (VPINN) train
the parameters of neural networks (NN) to solve partial differential equa-
tions (PDEs). They perform unsupervised training based on the physical
laws described by the weak-form residuals of the PDE over an underlying
discretized variational setting; thus defining a loss function in the form
of a weighted sum of multiple definite integrals representing a testing
scheme. However, this classical VPINN loss function is not robust. To
overcome this, we employ Robust Variational Physics-Informed Neural
Networks (RVPINN), which modifies the original VPINN loss into a ro-
bust counterpart that produces both lower and upper bounds of the true
error. The robust loss modifies the original VPINN loss by using the in-
verse of the Gram matrix computed with the inner product of the energy
norm. The drawback of this robust loss is the computational cost related
to the need to compute several integrals of residuals, one for each test
function, multiplied by the inverse of the proper Gram matrix. In this
work, we show how to perform efficient generation of the loss and train-
ing of RVPINN method on GPGPU using a sequence of einsum tensor
operations. As a result, we can solve our 2D model problem within 350
seconds on A100 GPGPU card from Google Colab Pro. We advocate us-
ing the RVPINN with proper tensor operations to solve PDEs efficiently
and robustly. Our tensorial implementation allows for 18 times speed up
in comparison to for -loop type implementation on the A100 GPGPU
card.

Keywords: Robust Variational Physics Informed Neural Network, GPGPU,
Parallelization of tensor operations

1 Introduction

Recently, there has been a growing interest in designing and training Deep Neural
Networks (DNN) for solving challenging Partial Differential Equations (PDEs).
The most popular methods for training the DNN solutions of PDEs are Physics
Informed Neural Networks (PINN) [1–3], and Variational Physics Informed Neu-
ral Networks (VPINN) [4]. Since their introduction in 2019, they have gained

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97626-1_5

https://dx.doi.org/10.1007/978-3-031-97626-1_5
https://dx.doi.org/10.1007/978-3-031-97626-1_5

2 A. Vilkha et al.

exponential growth in the number of papers and citations. It is an attractive
alternative for solving PDEs, in comparison with traditional solvers such as the
Finite Element Method. With the introduction of modern stochastic optimizers
such as ADAM [5] they easily find high-quality minimizers of the loss functions
employed.

Physics-Informed Neural Network, proposed in 2019 by Prof. Karniadakis,
revolutionized the way in which neural networks find solutions to boundary-
value problems described by means of PDEs [1]. In the PINN method, the neu-
ral network is treated as a function approximating the solution of a PDE. After
computing the necessary differential operators, the neural network and its ap-
propriate differential operators are inserted into the PDE. The residuum of the
PDE and the boundary conditions are assumed as the loss function. The learning
process consists of sampling the loss function at different points by calculating
the PDE residuum and the boundary conditions. PINNs have been successfully
applied to solve a wide range of problems, from fluid mechanics [2, 3], in particu-
lar, Navier-Stokes equations [6], wave propagation [7, 8], phase-field modeling [9],
biomechanics [10], quantum mechanics [11], electrical engineering [12], problems
with point singularities [13], uncertainty qualification [14], dynamic systems [15,
16], or inverse problems [17, 18], among many others.

Prof. Karniadakis has also proposed Variational Physics Informed Neural
Networks VPINN [4]. VPINN uses the idea of a variational formulation in which
the PDE is averaged using the integration over a given domain with prescribed
distributions, called the test functions. The relation between PINN and VPINN
is similar to the relation between finite difference and finite element methods
(FDM/FEM). In the first class of methods, the continuous PDE is considered
in the strong form at the set of selected points. In the second class of methods,
the PDE is considered in the weak form, averaged using a family of distributions
called the test functions. The VPINN method has found several applications,
from Poisson and advection-diffusion equations [19], non-equilibrium evolution
equations [20], solid mechanics [21], fluid flow [22], and inverse problems [23, 24],
among others.

In this paper, we focus on the VPINN method. We show that the loss func-
tions employed by the VPINN method are not robust. The loss function of
VPINN can significantly differ from the true error. Thus, we employ the robust
loss proposed in the RVPINN method [25]. The authors in [25] show that the
robust loss proposed there is a lower bound for the true error. It is also an upper
bound up to some oscillatory term.

The drawback of this robust loss is the computational cost related to the need
to compute several integrals of residuals, one for each test function, multiplied
by the inverse of the proper Gram matrix. In this paper, we focus on model
Laplace problems. As it is shown in [25], for this kind of problem, the Gram
matrix has to be computed in the weighted H1

0 inner product. In this paper, we
select the trigonometric test functions defined over the entire domain. These test
functions result in the diagonal Gram matrix, as well as its inverse. We show

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97626-1_5

https://dx.doi.org/10.1007/978-3-031-97626-1_5
https://dx.doi.org/10.1007/978-3-031-97626-1_5

Tensorial Implementation for RVPINN 3

how to perform efficient generation of the loss on GPGPU using a sequence of
einsum tensor operations.

Using our parallel tensor operations designed for RVPINN, we can solve our
model 2D PDEs within 350 seconds on A100 GPGPU card from Google Colab
Pro. Our parallel implementation allows for 18 times speed up in comparison to
for -loop type implementation on the A100 GPGPU card executed using Google
Colab Pro.

2 Neural-network framework

To numerically approximate PDEs, we consider a DNN function with input
x = (x1, . . . , xd) and output uNN (x; θ), where θ ∈ RS represents the trainable
parameters. We employ a fully-connected Feed-Forward Neural Network (NN)
composed of L layers. Each layer l in the NN consists of a set of neurons. The
output of layer l, with l = 1, . . . , L− 1, is given by:

z(l) = σ(w(l)z(l−1) + b(l)), (1)

where σ is a tanh activation function, w(l), b(l) are the weights and biases,
respectively, associated with the layer l, and z(0) = x is the input to the first
layer. The final layer L is innactivated:

uNN (θ) = w(L)z(L−1) + b(L). (2)

Using ADAM optimization algorithm [5], the NN weights and biases are learned.
We denote the manifold of different realizations of the neural network functions
as UNN .

3 Numerical results for VPINNs

In this section we solve two model two-dimensional problems by using VPINN
[4] method. The goal of this section is to show the lack of robustness of the
VPINN loss. For that, we illustrate the discrepancy between the VPINN loss
function and the true error. By the true error we mean the relative error in the
energy-norm defined by

∥uNN − uEXACT ∥H1
0

∥uEXACT ∥H1
0

, (3)

where ∥u∥H1
0
=

∫
Ω
∇u(x) · ∇u(x) dx is the norm of the underlying trial space

H1
0 = H1

0 (Ω). Besides its theoretical foundations described in [25], this energy
norm gives a good estimate how the derivatives of the NN solution approximate
the derivatives of the exact solution.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97626-1_5

https://dx.doi.org/10.1007/978-3-031-97626-1_5
https://dx.doi.org/10.1007/978-3-031-97626-1_5

4 A. Vilkha et al.

3.1 Laplace model problem with sin-sin solution

Given Ω = (0, 1)2 ⊂ R2 we seek the solution of the model problem with manu-
factured solution

−∆u = f, (4)

with homogeneous Dirchlet boundary conditions that we enforce on the NN in
a strong way, following the ideas presented in [26]. In this subsection, we select
the solution

u(x1, x2) = sin(2πx1)sin(2πx2), (5)

presented in Figure 1. In order to obtain this solution, we consider the source

f(x1, x2) = −∆u(x1, x2) = −8π2sin(2πx1)sin(2πx2). (6)

Fig. 1: Solution to the first problem.

We consider the weak form of the PDE, obtained by integration by parts
with selected test functions v ∈ V = H1

0 (Ω). We also assume, that the solution
u is approximated by the neural network u ≈ uNN (θ) ∈ UNN . Namely, find
uNN (θ) ∈ UNN such that

b(uNN (θ), v) :=

∫
Ω

∇uNN (x) · ∇v(x) dx (7)

=

∫
Ω

f(x) v(x) dx =: l(v), ∀v ∈ V, (8)

where x is an abbreviation for (x1, x2).
This weak formulation can equivalently be read as vanishing the following

residual form:

r(uNN (θ), v) := b(uNN (θ), v)− l(v) = 0, ∀v ∈ V. (9)

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97626-1_5

https://dx.doi.org/10.1007/978-3-031-97626-1_5
https://dx.doi.org/10.1007/978-3-031-97626-1_5

Tensorial Implementation for RVPINN 5

For the test discretization setting, we define the finite-dimensional space
VM ⊂ V

VM = span({vm}Mm=1) (10)

of trigonometric test functions vm = sin (m1πx) sin (m2πy) with m = (m1,m2)
and 1 ≤ m1 ≤ M1 and 1 ≤ m2 ≤ M2. Thus, M = M1 M2.

Fig. 2: First problem. VPINNs approximation using strong imposition of bound-
ary conditions, 30×30 trigonometric test functions, 400×400 integration points
for training, and 400× 400 integration points for the true error. Convergence of
the loss function and the convergence of the true relative error as measured in
the energy norm.

In this way, the original VPINN loss function (see [4, 27]) is defined as the
result of adding up all the squared residual contributions for each test basis
function as follows:

LOSS(θ) =
M∑

m=1

{r (uNN (θ), vm)}2 . (11)

We perform numerical integration to approximate each residual contribution
employing Monte Carlo integration, i.e.,

r(uNN (θ), vm) ≈

1

K

K∑
k=1

∇uNN (xk) · ∇vm(xk)− f(xk) sm(xk), (12)

where K is the total number of integration points.
For the VPINN approximation we use strong imposition of boundary con-

ditions, 30 × 30 trigonometric test functions, 400 × 400 integration points for

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97626-1_5

https://dx.doi.org/10.1007/978-3-031-97626-1_5
https://dx.doi.org/10.1007/978-3-031-97626-1_5

6 A. Vilkha et al.

training, and 400 × 400 integration points for computing the true error for the
convergence plot. Figure 2 show the convergence of the VPINN minimization.
We can see from this figure that the plot of the true error ∥uNN − uEXACT ∥ is
far from the square root of the loss (as well as from the loss itself). Here uNN is
the neural network solution, uEXACT is the exact solution (that is usually not
known in the real problems). Ideally, we would like these two plots coincide.

3.2 Laplace model problem with sin-exp solution

Following model problem (4), we consider the solution

u(x1, x2) = −exp(π(x1 − 2x2)) sin(2πx1) sin(πx2), (13)

whose source term is

f(x1, x2) = −π2exp(π(x1 − 2x2))sin(2πx1)(4cos(πx2). (14)

This exact solution is presented in Figure 3.

Fig. 3: Solution to the second problem.

We employ the same weak formulation as above but with different right-
hand side, same test discretization setting, and same VPINN loss function. For
the VPINNs approximation we use strong BCs imposition, 30× 30 spectral test
functions, 400× 400 integration points for training, 400× 400 integration points
to compute the truth error for the convergence plot. The convergence of the
VPINN is presented in Figure 4. We can read from this figure, that the plot of
the true error ∥uNN −uEXACT ∥ does not coincide at all with the square root of
the loss (or with the the loss itself). Here uNN is the neural network solution,
uEXACT is the exact solution (that is usually not known in the real problems).
Ideally, we would like these two plots to coincide.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97626-1_5

https://dx.doi.org/10.1007/978-3-031-97626-1_5
https://dx.doi.org/10.1007/978-3-031-97626-1_5

Tensorial Implementation for RVPINN 7

Fig. 4: Second problem. VPINNs approximation: strong BCs imposition, 30 ×
30 spectral test functions, 400 × 400 integration points for training, 400 × 400
integration points for the true error. Convergence of the loss function and the
convergence of the true relative error as measured in the energy norm.

3.3 Summary of VPINN results

The convergence of training with ADAM optimizer [5] is presented in Figures 2
and 4. We can see from these Figures that the loss functions are far from the
true error computed between the approximated solution uNN and the known
exact solutions. Thus, the VPINN loss is not robust. Changing the number of
neurons or layers, improving the quadrature as in [28], or changing the training
rate, does not help to make this loss robust. Still, the VPINN loss allows us to
obtain the correct solutions presented in Figures 1 and 3, but looking at the loss
function convergence in Figures 2 and 4 we cannot see what is the true error of
the trained solution. Thus, we do not know what is the quality of the trained
solution. This is especially true if we do not know the exact solution, which is
the case in practical problems.

4 Numerical results for RVPINNs

In this section, we present how to modify the originally proposed VPINN loss
function in [4, 27] to obtain its robust counterpart proposed in [25]: instead of
considering a single residual contribution for each selected test basis function,
we have to test all the residual contributions against each other. Moreover, such
testing has to be consistently weighted via the corresponding Gram matrix.

We emphasize that simply avoiding crossed multiplications of residual terms
and Gram-matrix coefficients does not guarantee robustness during training, i.e.,
lower and upper bounds for the true error during loss minimization, as seen in
the VPINN experiments of Figures 2 and 4. We refer to [25] for details.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97626-1_5

https://dx.doi.org/10.1007/978-3-031-97626-1_5
https://dx.doi.org/10.1007/978-3-031-97626-1_5

8 A. Vilkha et al.

Following a general test-space discretization VM spanned by basis functions
{vm}Mm=1, the robust version of the VPINN loss function is as follows:

LOSS(θ) =

M∑
m,n=1

{r(uNN (θ), vm)}G−1
m,n {r(uNN (θ), vn)} .

One might argue that original VPINNs is a simplification of RVPINNs when the
Gram matrix is the identity.

In our discretization setting, it is easy to check that our trigonometric basis
functions are orthogonal with respect to the inner product in H1

0 (Ω), producing
a corresponding diagonal inverse of the Gram matrix as follows:

G−1
m1m2,n1n2

=

{
4

(m2
1+m2

2)π
2 , if m1 = n1,m2 = n2,

0, otherwise,
(15)

Here, Gm1m2,n1n2
= (vm1m2

, vn1n2
)H1

0
denotes the Gram matrix. This reduces

our additive complexity of the RVPINN loss function to

LOSS(θ) =
∑

m1,m2

G−1
m1m2

{r(uNN (θ), vm1,m2
)}2 , (16)

where, by abuse of notation, G−1
m1m2

denotes the diagonal of the inverse of the
Gram matrix given by the coefficients in (15).

4.1 Laplace model problem with sin-sin solution

For the first model problem, the loss function (16) is robust. This time, the square
root of the loss function is equal to the true error, as it is presented in Figure
5. This indicates that the robust loss accurately reflects the error between the
neural network solution uNN and the exact solution uEXACT , namely ∥uNN −
uEXACT ∥. This is true even when the exact solution is unknown. Thus, we know
when to stop the training to get a good quality solution.

For the RVPINNs approximation we use strong BCs imposition, 20 × 20
spectral test functions, 200 × 200 integration points for training, 1000 × 1000
integration points to compute the truth error for the convergence plot. The
convergence of the VPINN is presented in Figure 4.

4.2 Laplace model problem with sin-exp solution

For the second model problem, the loss function (16) is also robust. In contrary
to the VPINN, illustrated in Figure 4, in the RVPINN, the square root of the
loss function is a good estimate of the true error, as it is presented in Figure 6.
For the VPINNs approximation we use strong BCs imposition, 20× 20 spectral
test functions, 200× 200 integration points for training, 1000× 1000 integration
points to compute the truth error for the convergence plot.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97626-1_5

https://dx.doi.org/10.1007/978-3-031-97626-1_5
https://dx.doi.org/10.1007/978-3-031-97626-1_5

Tensorial Implementation for RVPINN 9

Fig. 5: First problem. RVPINNs approximation: strong BCs imposition, 20× 20
spectral test functions, 200 × 200 integration points for training, 1000 × 1000
integration points for truth error. Convergence of the loss function and the con-
vergence of the true relative error as measured in the energy norm.

Fig. 6: Second problem. RVPINNs approximation: strong BCs imposition, 20×20
spectral test functions, 200 × 200 integration points for training, 1000 × 1000
integration points for truth error. Convergence of the loss function and the con-
vergence of the true relative error as measured in the energy norm.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97626-1_5

https://dx.doi.org/10.1007/978-3-031-97626-1_5
https://dx.doi.org/10.1007/978-3-031-97626-1_5

10 A. Vilkha et al.

5 Tensor implementation for (R)VPINN

The RVPINN method with trigonometric test functions requires the addition
of several residual terms and multiplied by the coefficients of the inverse of the
Gram matrix in the loss function.

Although we can easily implement this sheme using component-by-component
operations over a few number of for -type loops, it should be noted that such an
approach is highly inefficient in interpreted programming languages like Python,
which is where neural-network-based models are nowadays majorly developed.
In this way, an efficient tensor workflow implementation consists of properly or-
ganizing operation functions from GPGPU-developed libraries like TensorFlow,
PyTorch, or JAX. Trying to design a flowchart with operations outside these
libraries typically produces disproportionately inefficient execution times. We
considered PyTorch as our coding platform.

5.1 Linear algebra with Einstein summation

Our loss function consists of a combination of numerical integration, Eq. (12),
and the residual summation of Eq. (16) as follows:

∑
m

G−1
m

{
1

K

K∑
k=1

∇uNN (xk) · ∇vm(xk)− f(xk) vm(xk)

}2

.

where m = (m1,m2) and xk = (x1k, x2k).
This summation expression involves the appropriate combination of tensors.

These operations have a user-friendly implementation on tensor-oriented plat-
forms that follow the Einstein summation convention.

In the following, we describe and support with graphics the implementation
of our loss evaluation.

We start from the operation constructing 3D tensors. From now on, x, t,
n and m replace x1, x2, n, and m, respectively. The einsum function prevents
representing the indexes of each axis by more than one character during codifi-
cation.
x_times_n = torch.einsum("xt,n->xtn",

x.reshape(n_x, n_t), n)
t_times_m = torch.einsum("xt,m->xtm",

t.reshape(n_x, n_t), m)
Now, we construct a 4D tensor with values of two-dimensional test functions,

from two 3D tensors.
test_x = torch.sin(math.pi*x_times_n)
test_t = torch.sin(math.pi * t_times_m)
test = torch.einsum("xtn,xtm->xtnm",

test_x, test_t)
Next, we construct the derivatives of the test functions along x.

test_x_dx = torch.pi *

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97626-1_5

https://dx.doi.org/10.1007/978-3-031-97626-1_5
https://dx.doi.org/10.1007/978-3-031-97626-1_5

Tensorial Implementation for RVPINN 11

torch.einsum("n,xtn->xtn", n,
torch.cos(torch.pi*x_times_n))
We also construct a 4D tensor with values of derivatives of two-dimensional

test functions with respect to x, out of two 3D tensors.
test_dx = torch.einsum("xtn,xtm->xtnm",

test_x_dx, test_t)
Next we compute derivatives of the test functions with respect to t.

test_t_dt = torch.pi *
torch.einsum("m,xtm->xtm", m,
torch.cos(torch.pi*t_times_m))
We also construct a 4D tensor with values of derivatives of two-dimensional

test functions with respect to t, out of two 3D tensors.
test_dt = torch.einsum("xtn,xtm->xtnm",

test_x, test_t_dt)
Finally, we construct the first part of the loss function, a 2D tensor, out of

the Neural Network and the derivatives of test functions with respect to x.
loss1 = dx * dt * epsilon *

torch.einsum("xt,xtnm->nm",
dpinn_dx, test_dx)
We also construct in the analogous way the second part of the loss function,

a 2D tensor, out of the Neural Network and the derivatives of test functions with
respect to t.
loss2 = dx * dt * epsilon *

torch.einsum("xt,xtnm->nm",
dpinn_dt, test_dt)
The last part of the loss function is constructed out of the right-hand side

2D tensor and the 4D tensor representing the test functions.
loss3 = dx * dt *

torch.einsum("xt,xtnm->nm", rhs, test)
We sum up all the loss contributions

loss = loss1 + loss2 - loss3
we take the second power and multiply by the Gram matrix.

loss = loss**2 * self.G
and we return the sum of all the obtained loss values.

return loss.sum()

6 Numerical experiments

6.1 Google ColabPro comparison

We perform 20,000 iterations with 100 × 100 integration points, 20 × 20 basis
functions, 2 layers of the neural network with 200 neurons each. Using our tenso-
rial implementation, we can solve the experiments conducted in Sections 3 and
4 within 350 seconds on a A100 GPGPU card from Google Colab. Execution
times in a implementation using for -type loops takes 108 minutes. We have 18
times speed up the training process using tensor magic.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97626-1_5

https://dx.doi.org/10.1007/978-3-031-97626-1_5
https://dx.doi.org/10.1007/978-3-031-97626-1_5

12 A. Vilkha et al.

6.2 CYFRONET supercomputing center experiment

To investigate further the scalability of RVPINN we have executed our model
problems on two GPUs, both NVIDIA A100-SXM4-40GB with a total Memory
of 39.56 GB each, 108 multiprocessors each, with CUDA Capability: 8.0. The
timing for growing number of training points is presented in Figure 7

Fig. 7: RVPINNs approximation of the first and second problem, for 20×20 test
functions, for growing number of integration points for training (from 50× 50 =
2500, 100× 100 = 10000, 150× 150 = 22500, and 200× 200 = 400000.

We can conclude that the 50× 50 points are enough for both problems. For
the first problem we need 20,000 iterations, which takes less than 450 seconds, for
the second problem we need 40,000 iterations which takes less than 650 seconds.

7 Conclusions

Robust Variational Physics-Informed Neural Networks (RVPINNs) are a pivotal
advancement in addressing the inherent unrobust nature of Variational Physics-
Informed Neural Networks (VPINN). By recalibrating the VPINN loss function

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97626-1_5

https://dx.doi.org/10.1007/978-3-031-97626-1_5
https://dx.doi.org/10.1007/978-3-031-97626-1_5

Tensorial Implementation for RVPINN 13

to provide a good estimation of the true error, RVPINN offers a more reliable
and comprehensive estimation of solution accuracy. In addition, it is critical to
implement in terms of tensor algebra in order to exploit GPGPU power during
training. A typical implementation in terms of for -type loops is inefficient in a
tensor workflow, such as in (R)VPINNs. Our tensorial implementation allows
for 18 times speed up in comparison to for -loop type implementation on a A100
GPGPU card from Google Colab. The future work may involve extension of the
method to other classical problems solved by finite element method [29, 30], and
including adaptive algorithms [31–34] for the test space.

Acknowledgements

This Project has received funding from the European Union’s Horizon Europe
research and innovation programme under the Marie Sklodowska-Curie grant
agreement No. 101119556.

Carlos Uriarte is supported by: PID2023-146678OB-I00 funded by MICIU /
AEI / 10.13039 / 501100011033 and by FEDER, EU; PID2023-146668OA-I00
funded by MICIU /AEI / 10.13039 / 501100011033 and by FEDER, EU; the
BCAM Severo Ochoa accreditation of excellence CEX2021-001142-S funded by
MICIU / AEI / 10.13039 / 501100011033; and the BERC 2022-2025 program
funded by the Basque Government.

References

1. M. Raissi, P. Perdikaris, G. E. Karniadakis, Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving non-
linear partial differential equations, Journal of Computational physics 378 (2019)
686–707.

2. S. Cai, Z. Mao, Z. Wang, M. Yin, G. E. Karniadakis, Physics-informed neural
networks (PINNs) for fluid mechanics: A review, Acta Mechanica Sinica 37 (12)
(2021) 1727–1738.

3. Z. Mao, A. D. Jagtap, G. E. Karniadakis, Physics-informed neural networks for
high-speed flows, Computer Methods in Applied Mechanics and Engineering 360
(2020) 112789.

4. E. Kharazmi, Z. Zhang, G. E. Karniadakis, Variational physics-informed neural
networks for solving partial differential equations, arXiv preprint arXiv:1912.00873
(2019).

5. D. P. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv preprint
arXiv:1412.6980 (2014).

6. J. Ling, A. Kurzawski, J. Templeton, Reynolds averaged turbulence modelling
using deep neural networks with embedded invariance, Journal of Fuild Mechanics
807 (2016) 155–166. doi:10.1017/jfm.2016.615.

7. M. Rasht-Behesht, C. Huber, K. Shukla, G. E. Karniadakis, Physics-informed neu-
ral networks (pinns) for wave propagation and full waveform inversions, Journal of
Geophysical Research: Solid Earth 127 (5) (2022) e2021JB023120.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97626-1_5

https://dx.doi.org/10.1007/978-3-031-97626-1_5
https://dx.doi.org/10.1007/978-3-031-97626-1_5

14 A. Vilkha et al.

8. P. Maczuga, M. Paszyński, Influence of activation functions on the convergence of
physics-informed neural networks for 1d wave equation, in: J. Mikyška, C. de Mu-
latier, M. Paszynski, V. V. Krzhizhanovskaya, J. J. Dongarra, P. M. Sloot (Eds.),
Computational Science – ICCS 2023, Springer Nature Switzerland, Cham, 2023,
pp. 74–88.

9. S. Goswami, C. Anitescu, S. Chakraborty, T. Rabczuk, Transfer learning enhanced
physics informed neural network for phase-field modeling of fracture, Theoretical
and applied fracture machanics 106 (2020). doi:10.1016/j.tafmec.2019.102447.

10. M. Alber, A. B. Tepole, W. R. Cannon, S. De, S. Dura-Bernal, K. Garikipati,
G. Karniadakis, W. W. Lytton, P. Perdikaris, L. Petzold, E. Kuhl, Integrating
machine learning and multiscale modeling-perspectives, challenges, and opportu-
nities in the biologica biomedical, and behavioral sciences, NPJ Digital Medicine
2 (2019). doi:10.1038/s41746-019-0193-y.

11. H. Jin, M. Mattheakis, P. Protopapas, Physics-informed neural networks for quan-
tum eigenvalue problems, in: 2022 International Joint Conference on Neural Net-
works (IJCNN), 2022, pp. 1–8. doi:10.1109/IJCNN55064.2022.9891944.

12. R. Nellikkath, S. Chatzivasileiadis, Physics-informed neural networks for
minimising worst-case violations in dc optimal power flow, in: 2021
IEEE International Conference on Communications, Control, and Comput-
ing Technologies for Smart Grids (SmartGridComm), 2021, pp. 419–424.
doi:10.1109/SmartGridComm51999.2021.9632308.

13. X. Huang, H. Liu, B. Shi, Z. Wang, K. Yang, Y. Li, M. Wang, H. Chu, J. Zhou,
F. Yu, B. Hua, B. Dong, L. Chen, A universal pinns method for solving partial
differential equations with a point source, Proceedings of the Fourteen International
Joint Conference on Artificial Intelligence (IJCAI-22) (2022) 3839–3846.

14. Y. Yang, P. Perdikaris, Adversarial uncertainty quantification in physics-
informed neural networks, Journal of Computational Physics 394 (2019) 136–152.
doi:10.1016/j.jcp.2019.05.027.

15. F. Sun, Y. Liu2, H. Sun, Physics-informed spline learning for nonlinear dynamics
discovery, Proceedings of the Thirtieth International Jint Conference on Artificial
Intelligence (IJCAI-21) (2021) 2054–2061.

16. J. Kim, K. Lee, D. Lee, S. Y. Jhin, N. Park, Dpm: A novel training
method for physics-informed neural networks in extrapolation, Proceedings
of the AAAI Conference on Artificial Intelligence 35 (9) (2021) 8146–8154.
doi:10.1609/aaai.v35i9.16992.
URL https://ojs.aaai.org/index.php/AAAI/article/view/16992

17. S. Mishra, R. Molinaro, Estimates on the generalization error of physics-informed
neural networks for approximating a class of inverse problems for PDEs, IMA
Journal of Numerical Analysis 42 (2) (2022) 981–1022.

18. L. Lu, R. Pestourie, W. Yao, Z. Wang, F. Verdugo, S. G. Johnson, Physics-informed
neural networks with hard constraints for inverse design, SIAM Journal on Scien-
tific Computing 43 (6) (2021) B1105–B1132. doi:10.1137/21M1397908.

19. E. Kharazmi, Z. Zhang, G. E. Karniadakis, hp-VPINNs: Variational
physics-informed neural networks with domain decomposition, Com-
puter Methods in Applied Mechanics and Engineering 374 (2021) 113547.
doi:https://doi.org/10.1016/j.cma.2020.113547.
URL https://www.sciencedirect.com/science/article/pii/S0045782520307325

20. S. Huang, Z. He, B. Chem, C. Reina, Variational onsager neural net-
works (vonns): A thermodynamics-based variational learning strategy for non-
equilibrium pdes, Journal of the mechanics and physics of solids 163 (2022).
doi:10.1016/j.jmps.2022.104856.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97626-1_5

https://dx.doi.org/10.1007/978-3-031-97626-1_5
https://dx.doi.org/10.1007/978-3-031-97626-1_5

Tensorial Implementation for RVPINN 15

21. C. Liu, H. A. Wu, A variational formulation of physics-informed neural net-
work for the applications of homogeneous and heterogeneous material proper-
ties identification, International Journal of Applied Mechanics 15 (08) (2023).
doi:10.1142/S1758825123500655.

22. Y. Kim, H. Kwak, J. Nam, Physics-informed neural networks for learning fluid flows
with symmetry, Korean Journal of Chemical Engineering 40 (9) (2023) 2119–2127.
doi:10.1007/s11814-023-1420-4.

23. C. Liu, H. Wu, cv-pinn: Efficient learning of variational physics-informed neu-
ral network with domain decomposition, Extreme Mechanics Letter 63 (2023).
doi:10.1016/j.eml.2023.102051.

24. S. Badia, W. Li, A. F. Martin, Finite element interpolated neural networks for
solving forward and inverse problems, Computer Methods in Applied Mechanics
and Engineering 418 (A) (2024). doi:10.1016/j.cma.2023.116505.

25. S. Rojas, P. Maczuga, J. Muñoz-Matute, D. Pardo, M. Paszyński, Ro-
bust variational physics-informed neural networks, Computer Meth-
ods in Applied Mechanics and Engineering 425 (2024) 116904.
doi:https://doi.org/10.1016/j.cma.2024.116904.
URL https://www.sciencedirect.com/science/article/pii/S0045782524001609

26. L. Sun, H. Gao, S. Pan, J.-X. Wang, Surrogate modeling for fluid flows
based on physics-constrained deep learning without simulation data, Com-
puter Methods in Applied Mechanics and Engineering 361 (2020) 112732.
doi:https://doi.org/10.1016/j.cma.2019.112732.
URL https://www.sciencedirect.com/science/article/pii/S004578251930622X

27. E. Kharazmi, Z. Zhang, G. E. Karniadakis, hp-vpinns: Variational physics-informed
neural networks with domain decomposition, Computer Methods in Applied Me-
chanics and Engineering 374 (2021) 113547.

28. S. Berrone, C. Canuto, M. Pintore, Variational physics informed neural networks:
the role of quadratures and test functions, Journal of Scientific Computing 92 (3)
(2022). doi:10.1007/s10915-022-01950-4.

29. L. Demkowicz, Computing with hp-adaptive finite elements, Vol. 1, Wiley, 2006.
30. L. Demkowicz, J. Kurtz, D. Pardo, M. Paszynski, W. Rachowicz, A. Zdunek, Com-

puting with hp-ADAPTIVE FINITE ELEMENTS: Volume II Frontiers: Three Di-
mensional Elliptic and Maxwell Problems with Applications (1st ed.), Chapman
and Hall/CRC, 2007.

31. A. Paszyńska, M. Paszyński, E. Grabska, Graph transformations for modeling hp-
adaptive finite element method with triangular elements, in: M. Bubak, G. D. van
Albada, J. Dongarra, P. M. A. Sloot (Eds.), Computational Science – ICCS 2008,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2008, pp. 604–613.

32. M. Paszyński, A. Paszyńska, Graph transformations for modeling parallel hp-
adaptive finite element method, in: R. Wyrzykowski, J. Dongarra, K. Karczewski,
J. Wasniewski (Eds.), Parallel Processing and Applied Mathematics, Springer
Berlin Heidelberg, Berlin, Heidelberg, 2008, pp. 1313–1322.

33. M. Paszyński, R. Grzeszczuk, D. Pardo, L. Demkowicz, Deep learning driven self-
adaptive hp finite element method, in: M. Paszynski, D. Kranzlmüller, V. V.
Krzhizhanovskaya, J. J. Dongarra, P. M. A. Sloot (Eds.), Computational Science
– ICCS 2021, Springer International Publishing, Cham, 2021, pp. 114–121.

34. A. Paszyńska, M. Paszyński, K. Jopek, M. Woźniak, D. Goik, P. Gurgul,
H. AbouEisha, M. Moshkov, V. Calo, A. Lenharth, D. Nguyen, K. Pingali, Quasi-
optimal elimination trees for 2d grids with singularities, Scientific Programming (1)
(2015) 303024.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97626-1_5

https://dx.doi.org/10.1007/978-3-031-97626-1_5
https://dx.doi.org/10.1007/978-3-031-97626-1_5

