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Abstract. In this paper, we investigate the application of a reinforce-
ment learning algorithm known as the Dueling Double Deep Q-Network
to discover bus scheduling strategies and compare them against conven-
tional approaches. In particular, we look into real-time control strategies
where buses may choose to stay or leave at bus stops. We explore both
waiting time and travel time as the optimization objectives. The results
for uniform bus frequency show that average waiting time can be re-
duced by allowing buses to stay longer at stops with higher passengers’
arrival rate but at the cost of increased average travel time. This is also
supported by our analytical calculation on a theoretical bus loop model.
We then apply our method to a model based on a real world bus loop
in Nanyang Technological University. The results highlight the potential
benefit of reinforcement learning methods to find novel strategies that
can be better than conventional approaches.

Keywords: Bus scheduling · Reinforcement Learning · Complex Sys-
tems.

1 Introduction

Recently, the machine learning technique of reinforcement learning (RL) has
been successful in tackling computational problems that are NP-hard. For exam-
ple, self-RL had become a demonstrably state-of-the-art approach in discovering
novel solutions in board games like Chess and Go [1, 2], which are NP-hard. In
fact, DeepMind’s self-RL algorithm known as AlphaZero [3] contributed new the-
oretical insights into chess playing after only four hours of self-play, even though
humans developed extensive theories and principles in chess over centuries. An-
other class of NP-hard problem where RL finds success is the protein folding
problem. Here, AlphaFold uncovered millions of intricate 3D protein structures
which closely match laboratory determined experimental structures, leading to
the team developing AlphaGO to win the Nobel Prize in Chemistry in 2024.

Bus scheduling is also a NP-hard problem. A network of buses picking-up and
delivering commuters at bus-stops is in fact a complex system whose dynamics
have been analyzed with its bunching behavior being recognized as a synchro-
nization phenomenon [4]. Bus bunching is a form of operational inefficiency as it
increases the waiting and travel time of the commuters, leading to a drop in the
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quality of service of the buses. Bus operators had tried to address the bunching
problem with different strategies, such as holding [5], stop-skipping [6], dead-
heading [7], limiting boarding [8], and dispatching buses with wide doors [9]. In
addition, models are also created as a test bed to simulate intervention strategies
to overcome the inefficiencies of bus bunching [10]. Recently, research exploring
the use of self-RL to overcome the bunching problem interestingly uncovered two
new strategies: the no-boarding strategy [11–13], and the semi-express bus con-
figuration [14, 15]. For the no-boarding strategy, the bus may leave the bus stop
even though there is somebody wishing to board. RL found that a combination
of no-boarding and holding strategies creates a staggered bus configuration that
avoids bus bunching and minimizes the average waiting time of commuters. The
semi-express bus configuration, on the other hand, consists of a combination of
normal buses (which pick up and deliver commuters at all bus stops) and express
buses (which pick up and deliver commuters at selected bus stops). Such semi-
express bus configuration has already been observed in bus networks and it is
found to lower the average waiting time of commuters relative to the operation
of purely normal buses. It is surmised that the efficiency of the semi-express bus
configuration results from its intrinsic chaotic behavior.

In this paper, we investigate into an advanced RL algorithm known as the
Dueling Double Deep Q Network (D3QN) to yield bus scheduling strategies that
go beyond our previous approaches [11–13]. In particular, we base our evaluation
by minimizing the average travel time of the commuters. This differs from our
earlier approach and other works where optimization is performed according
to bus headway. We compare our results with the case where the buses adopt
the holding strategy. The reason for using the holding strategy as a basis of
comparison results from its robustness and consistency in granting bus schedules
that nearly achieve the optimal efficiency in bus operations.

2 Literature Review

To schedule buses, bus system operators perform planning, control, and oper-
ation on the buses after processing diverse sources of historical and real-time
information. Their aim is to determine an optimal schedule for buses, where
travel time are minimized, fleet utilization is maximized, and commuters face
minimal waiting time. To achieve this goal, there is a need for accurate demand
and traffic prediction, optimization of route and timetable, and a fleet manage-
ment system that is efficient.

Our research focuses on the active real-time decision aspect of this opti-
mization process, instead of the passive decisions which are only relevant over a
longer time horizon, such as frequency of bus operations, timetabling of buses,
and drivers’ scheduling and rostering. Specifically, we look into real-time control
strategies where buses may choose to stay or leave at bus stops. This is made
possible recently with real-time data from Automated Passenger Counter System
(APC), Automated Vehicle Location System (AVL), Geographical Positioning
System (GPS), and Automated Fare Collection System (AFC) [16]. Although
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techniques such as Integer Programming, Mixed-Integer Linear Programming,
Genetic Algorithms, Simulated Annealing, Particle Swarm Optimization, Ant
Colony Optimization, etc have been used to yield the optimal schedules, the
advent of novel machine learning techniques have given rise to a more flexible
approach to derive these optimal schedule in real-time [17]. In particular, we de-
sire to determine the best bus scheduling strategies that would minimize either
the waiting time or the travel time of the commuters.

In the literature, the machine learning techniques that relate to bus schedul-
ing in real-time performs travel time prediction of the buses. Understanding
the travel time of the buses would allow the inference of the travel time of the
commuters and their waiting time. For instance, travel time predictions were per-
formed using the k-nearest neighbor and random forest methods with GPS data
when the bus travels between consecutive bus stops with traffic intersections in
between [18]. When the road traffic exhibits high variability conditions, such as
adverse weather, traffic junctions, diverse vehicular types, a Kalman filter cum
support vector regression approach becomes applicable [19]. In another approach
that predicts bus travel time, projection pursuit regression, support vector re-
gression, random forest, together with dynamic weighting and dynamic weighting
with selection in the integration step, are employed with data from AVL [20].
From another perspective, prediction of bus arrival time is also relevant. In this
context, the techniques of artificial neural network and linear regression are uti-
lized with a traffic density matrix to perform the prediction [21]. Alternatively,
multilayer perceptron and a deep neural network implemented with PyTorch
and TensorFlow could be used to predict the arrival time of buses at bus stops
[22]. Finally, models capable of estimating travel and arrival time of buses can
be built through linear regression, artificial neural network, and long short term
memory network model with the usage of historical data from AVL systems, bus
routes, and bus stop information as inputs [23].

One of the most successful machine learning techniques for bus scheduling
is reinforcement learning. The decision outcome from it invariably relieves bus
bunching and gives a staggered configuration that is optimal [24]. It is also
applicable for real-time bus scheduling through the dynamical optimization of
online schedule which leads to shorter commuters’ waiting time and lower oper-
ating cost [25, 26]. RL has also been used to optimize the holding durations of
each bus by means of a multi-agent framework when the bus system adopts the
holding strategy [27]. A model that incorporates reinforcement learning in this
sense was built to carry out dynamic holding control in a noisy environment,
where the buses are modeled as agents that minimize headway deviations. The
use of multi-agent reinforcement learning improves real-time operations com-
pared with previous works which are focused on centralized control. This model
adopts a hierarchical approach such that on top of the bus agents, other agents
are needed to coordinate, manage and interface the agents with the environment
[28]. In another piece of work, deep RL was applied to maintain bus headway
at a prescribed value through holding the bus. The authors used Double Deep
Q-learning to minimize deviations from a target headway, bus travel time, and
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holding time by combining these quantities in a customized cost function. The
action is holding the bus at a bus stop dynamically [29]. A recent improvement
in dynamic bus control employs proximal policy optimization (PPO) [30] and a
joint action tracker to exploit the multi-agent nature of the problem [31]. The
technique was found to compare favorably against simpler methods.

A further development in Deep Q-learning techniques comes in the form of
D3QN which integrates the Dueling Network Architecture with Double Deep Q-
Learning [32]. The combination reduces overestimation bias and improves learn-
ing efficiency. Whilst D3QN has been explored in bus scheduling by deciding on
the departure time of buses in the timetable [26], it has yet to be investigated
on its efficacy in the determination of optimal dynamic bus control strategies,
which is of principal interest in this paper.

3 Approaches

3.1 Dueling Double Deep Q-Network

The Dueling Double Deep Q-Network (D3QN) is an advanced RL architecture
designed to improve the performance and stability of the standard Deep Q-
Network (DQN) [32]. It combines three key techniques: Dueling Network Archi-
tecture, Double Q-Learning, and Deep Q-Learning.

Deep Q-Learning uses the DQN algorithm which is a RL algorithm im-
plemented with neural networks to approximate the Q-value function Q(s, a).
Q(s, a) gives the expected return for taking an action a in a state s. The network
learns to predict the Q-values by minimizing the error between the predicted and
target Q-values.

Because the same Q-network is used to select and evaluate actions, Deep Q-
Learning can be plagued by overestimation bias. To address this issue, Double
Q-Learning employs two separate networks where one is used for selection and
the other evaluation. Specifically, Double Q-Learning uses a Policy Network as
the primary network to choose the action, while it uses a Target Network to
evaluate the Q-value of the chosen action as follows:

y = r + γQtarget (s
′, arg maxaQpolicy(s

′, a)) . (1)

Furthermore, the Q-value is computed for every action in the output layer
in DQN. This, however, may not lead to good decision making. The Dueling
Network Architecture improves this by splitting the evaluation of the Q-value
function into two separate streams in the network. One stream estimates the
Value Function V (s), which denotes how good it is to be in state s, independent
of the action. The second stream estimates the Advantage Function A(s, a),
which denotes the relative benefit of each action a in state s, compared to other
actions. The two calculations are combined as follows to give the Q-value function
of D3QN:

Q(s, a) = V (s) +

(
A(s, a)− 1

|A|
∑
a′

A(s, a′)

)
. (2)
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3.2 The Holding Strategy

The holding strategy is a bus scheduling technique employed to improve service
reliability and manage the adherence of headway, i.e., the spacing between buses.
The idea is to have the buses wait at certain control points (usually the bus stops)
so as to prevent them from running too early or too close to the preceding bus.
Thus, the strategy minimizes bus bunching and serves to maintain a consistent
schedule for the commuters.

To implement the holding strategy, holding points need to be defined along
the route where buses are instructed to wait. In addition, bus locations and
headway are monitored in real-time using GPS or other tracking systems. In-
formation from these devices allows the bus to know the gap ahead with the
previous bus, and the gap behind with the following bus. The bus would then
decide how long to wait by avoiding (a) being too close to the previous bus and
(b) leaving a large gap with the following bus. This decision depends on a tar-
get interval between buses (which could be computed in real-time) the system
aims to maintain. The consequence is a minimization of waiting time for the
commuters at the bus stops.

The advantage of the holding strategy is a reduction of irregular service
by preventing bus bunching. It improves service reliability by distributing the
buses evenly along the route. Its key disadvantage is an increase in in-vehicle
travel time for commuters who are already onboard. To be effective, it requires
accurate real-time data and communication systems. It may become ineffective
when subjected to delays due to traffic congestion.

4 Methods

4.1 Modeling and Simulation

We model a bus loop system as an isometric (distance-preserving) map on a unit
circle, where the location along the loop can be denoted by a phase angle from
0◦ to 360◦. The arrival of passengers at each bus stop is assumed to follow a
Poisson process corresponding to a specified arrival rate. Each bus has a natural
frequency (rev/s) with which it travels the loop. After dropping all alighting
passengers at a bus stop, each bus can choose an action: either stay or leave.
The alighting and boarding rate is assumed to be 1 passenger per second. The
simulation advances in discrete time steps with a 1 second simulation time step.

In a naive approach, after all the passengers alight at the bus stop, the bus
picks up all the passengers wanting to board the bus and then simply leaves if
there are no more passengers wanting to board. This is the approach in which bus
bunching commonly occurs. In the holding strategy, after dropping all alighting
passengers and picking up all boarding passengers, the bus has to stay or hold if
its phase headway with the bus behind it is greater than the perfectly staggered
phase, 360◦/Nbus, where Nbus is the number of buses in the loop. Otherwise,
the bus just leaves. In our simulation, once a bus decides to stay/hold, we im-
plement a 5 s holding duration before the bus checks its headway again. If a
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passenger arrives within this duration, the passenger can board the bus. In the
RL approach, the buses still have to drop all alighting passengers but can choose
to stay or leave afterward, even when there are passengers wishing to board.
However, once a bus decides to stay, we impose the condition that it must pick
up all passengers wishing to board before making the decision to stay or leave
again. Here, we also implement a 5 s holding duration.

4.2 Reward Function

Suppose that a decision for an action is required at time t and, after the decision
is made, the next time a decision is required again is at time t′. The reward
corresponding to an action at given the state st at time t is calculated according
to a continuous-time discounted future reward function [33] given by

R(st, at) =

∫ t′

t

e−β(τ−t)rτ dτ, (3)

where rτ is the instantaneous reward at simulation time τ and β is the decay
rate of the discount factor e−β(τ−t). The instantaneous reward rτ is a function
of the elapsed time from each passenger’s perspective, counted from the time of
arrival, which is given by

rτ = −
∑
p

(
τ − tarrivalp

)k
(4)

where the sum is taken over all passengers in the bus loop system. There is
a negative sign in the reward because the optimization goal is to minimize,
not maximize, either the waiting time or travel time. k ≥ 0 is an exponent
that controls the scaling of the reward with respect to passengers’ elapsed time.
k = 0 gives uniform reward regardless of the length of each passenger’s elapsed
time, whereas k > 0 penalizes longer passenger’s elapsed time. We obtain the
best results using k = 0 for optimization of average waiting time and k =
1 for optimization of average travel time. For waiting time optimization, the
counting of a passenger’s elapsed time ends when the passenger boards, whereas
for travel time optimization, the counting ends when the passenger alights at
the destination stop.

4.3 State Representation

The state of the system encompasses information about the bus stops and buses.
For optimization of average waiting time, bus stop information includes the
elapsed time of the earliest passenger arriving and still waiting at each stop. For
optimization of average travel time, bus stop information includes the number of
passengers waiting at each stop. There are Nstop entries for bus stop information,
where Nstop is the number of bus stops.

For each bus, three types of information are included, and each of these
information has Nstop entries: whether the bus is going to a bus stop or currently
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at a bus stop (binary), its phase headway, and the number of passengers in the
bus going to each bus stop. Although the headway for each bus is a single
value, we find that the RL algorithm learns better when it is paired with the
information of whether the bus is going to or currently at a bus stop. So, for the
Nstop headway entries (each entry representing a bus stop), a headway entry can
only be nonzero if the bus is going to or currently at a bus stop corresponding
to that entry.

The ordering of the buses in the state description follows certain rules depend-
ing on the scenarios discussed in the following. The first scenario is one in which
the buses have approximately identical natural frequencies. In this scenario, the
ordering of the buses in the state description follows the actual ordering of the
buses in the loop. The first bus in the state description is always the bus requir-
ing the decision. The second one is the bus in front of the first bus in the loop,
the third one is the bus in front of the second one, and so on. There are only two
nodes in the output layer of the neural network, corresponding to the actions
that this first bus can take. This implies that these buses follow a collective
strategy, i.e., given similar situation or circumstances, the different buses make
the same decision.

The second scenario is one in which there is frequency detuning, where the
buses have different natural frequencies. In this scenario, the ordering of the
buses in the state description is fixed, regardless of the actual ordering of the
buses in the loop. The buses individually follow their own strategies, instead of
a single collective strategy as in the previous scenario. Therefore, in the output
layer of the neural network, there should be Nbus pairs of nodes, where each pair
corresponds to each bus’s set of actions. Thus, for the bus requiring the decision,
the relevant Q-values are contained in the pair of nodes associated with it.

5 Results and Discussion

5.1 Uniform Bus Frequency

Reinforcement Learning Results We applied our reinforcement learning
methods to a simple case of 4 bus stops and 3 buses with identical frequencies.
Two bus stops are located at 0◦ and 30◦, each with passenger arrival rate of
0.04/s, and the other two are located at 180◦ and 210◦, each with passenger
arrival rate of 0.02/s. It is assumed that all passengers are traveling to the stop
antipodal to their origin stop. The frequency for all the buses is 1 mHz, so that
without stopping, each bus can complete the loop in about 17 minutes. The
results are summarized in Table 1. The results for the naive approach (where
bus bunching occurs) and the holding strategy are also shown for comparison.

The averages are obtained from 100 simulation realizations with random
initial condition. For each realization, the simulation is run for an initial period
of 10,000 s first to smooth out any transient behavior before measurement is
taken within the next 10,000 s. The different approaches considered include
the naive approach (in which bus bunching occurs), the holding strategy, RL
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Table 1. The average waiting time (AWT), average time spent traveling in a bus
(ABT), and average travel time (ATT) for various approaches over 100 simulation
realizations. RL-WT and RL-TT are reinforcement learning methods minimizing the
waiting time and travel time, respectively. RL-WT-extended 1 and 2 allow the buses
to learn to hold for a longer period of time. RL-WT-extended 2 allows the buses to
hold even longer than RL-WT-extended 1, with a maximum holding duration of 200 s.

Approach AWT (s) ABT (s) ATT (s)
Naive (bus bunching) 527± 24 540± 1 1073± 27
Holding strategy 171± 3 569± 3 741± 5
RL-WT 169± 3 569± 3 739± 4
RL-WT-extended 1 150± 4 693± 5 842± 4
RL-WT-extended 2 143± 4 755± 7 899± 7
RL-TT 174± 3 541± 2 717± 4
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(e) RL-WT-extended 2
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(f) RL-TT

Fig. 1. Plots of phase headway (top) and position (bottom) vs time of the buses for the
(a) naive approach, (b) holding strategy, (c) RL-WT, (d) RL-WT-extended 1, (e) RL-
WT-extended 1, and (f) RL-TT. Dashed line on the top figures indicates the perfectly
staggered phase headway of 120◦. For bunched buses in (a), phase headway may ‘jump’
between 0◦ and 360◦ due to buses overtaking each other.

methods minimizing waiting time (RL-WT, RL-WT-extended 1 and 2), and RL
method minimizing travel time (RL-TT). In RL-WT-extended 1 and 2, when
the action to stay/hold is selected during the ε-greedy exploration, it also has
a chance to execute this action multiple number of times consecutively (this
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number of times is uniformly distributed with a specified maximum number of
times). This allows for the buses to learn to hold for a longer period of time.
RL-WT-extended 2 allows the buses to hold even longer than RL-WT-extended
1, with a maximum holding duration of 200 s. It is observed that the RL-WT-
extended methods result in shorter average waiting time compared to the holding
strategy, but at the cost of much longer average travel time. On the other hand,
RL-TT approach has similar performance to the holding strategy in terms of
both the average waiting and travel times. The holding strategy and the RL
methods clearly perform better than the naive approach.

The plots of the phase headway and position against time of the buses are
shown in Fig. 1. As expected, the phase headway for the holding strategy is
very close to the perfectly staggered phase of 120◦. The RL-WT and RL-TT
methods also exhibit phase headway near 120◦. The plots for position for the
RL-WT-extended methods show that the buses execute longer holding at the
bus stops with higher passengers’ arrival rate (located at 0◦ and 30◦). By doing
so, the buses are able to reduce the average waiting time for the passengers at
these stops considerably and, as a consequence, reduce the overall global average
waiting time. Another consequence of this behavior is that the phase headway
can deviate significantly from the perfectly staggered phase, as shown in Fig. 1(d)
and (e). However, we find that staying longer at particular stops does not help
in reducing the average travel time and may in fact be detrimental to it. We
provide an analytical explanation for this in the next section.

Analytical Results Here, we consider a simple theoretical model of a bus loop
system in which the buses have identical frequencies, the arrival of passengers
is assumed to be continuous instead of discrete, and there is no fluctuation in
the arrival rate. We also consider the staggered time-headway among the buses.
At a bus stop, each bus drops all alighting passengers first and then picks up all
waiting passengers until the bus stop is empty. Afterward, the bus can stay at
the bus stop for an additional amount of time to pick up arriving passengers.
However, the bus may only stay until the next bus arrives, such that only one
bus can be at a bus stop at any point in time. Let the total time spent by a bus
at stop i be τi and the time required for the bus from leaving stop i to reaching
stop j in one loop be Ti,j . The period of a bus completing a loop is then

T =

Nstop∑
i=1

(τi + Ti,i+1) =

Nstop∑
i=1

τi

+ T ∗, (5)

where T ∗ =
∑

i Ti,i+1 is the time spent by a bus moving on the road and the
index i ∈ {1, 2, . . . , Nstop} denoting the i-th bus-stop is periodically bounded (so
that i = Nstop + 1 = 1).

If there are Nbus buses in the loop following the staggered time-headway
strategy, then the time interval between a bus leaving a bus stop and the next
bus leaving the same stop is T/Nbus. All passengers arriving within this time
interval will be picked up by the next bus. Let the passenger arrival rate at stop
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i be ri. Within the time interval from 0 to T/Nbus, a small passenger element,
dni = ri dt, arrives at stop i at time t and subsequently boards the next arriving
bus. Since the bus leaves at time T/Nbus, the time interval between dni arriving
and the bus leaving is given by T/Nbus − t. Therefore, the sum of elapsed time
for all passengers for this stage is

∆t1 =
∑
i

∫ T
Nbus

0

(
T

Nbus
− t

)
ri dt =

1

2

(
T

Nbus

)2∑
i

ri. (6)

Next, the passengers travel in the bus to their destination stops. Let the pas-
senger origin-destination probability from stop i to stop j be cij (cii = 0 and∑

j cij = 1). Then the total number of passengers arriving at stop i within time
interval T/Nbus who want to travel to stop j is Nij = ricijT/Nbus. Noting that
the travel time from origin stop i to destination stop j is precisely Ti,j defined
earlier, the sum of elapsed time for all passengers for this stage is therefore

∆t2 =
∑
ij

NijTi,j =
T

Nbus

∑
ij

ricijTi,j . (7)

Lastly, at a destination stop j, the total number of passengers alighting is
∑

i Nij .
Assuming an alighting/boarding rate of l, the amount of time it takes to drop
all alighting passengers is

∑
i Nij/l and the small alighting passenger element is

dn = l dt. Therefore, the sum of elapsed time for all passengers for this stage is

∆t3 =
∑
j

∫ ∑
i Nij/l

0

t l dt =
∑
j

l

2

(∑
i Nij

l

)2

=
1

2l

(
T

Nbus

)2∑
j

(∑
i

ricij

)2

.

(8)
Finally, the average travel time for all the passengers can be calculated from
ATT = (∆t1 +∆t2 +∆t3)/N , where N =

∑
ij Nij = (T/Nbus)

∑
i ri is the total

number of passengers picked up by a bus in one loop. After substituting ∆t1,
∆t2, and ∆t3, and some algebraic manipulation, ATT can be expressed as

ATT =
T

2Nbus

[
1 +

∑
j (
∑

i ricij)
2

l
∑

i ri

]
+

∑
ij ricijTi,j∑

i ri
. (9)

The task now is to find the appropriate values of T and Ti,j ’s in Eq. (9) which
minimize ATT. These quantities are linear functions of τi’s, which are adjustable.
The relation between T and τi is given in Eq. (5). As for Ti,j , since its definition is
the travel time of a bus from stop i to stop j, it also includes the total time spent
at bus stops in between i and j. For example, T1,4 = T1,2 + τ2 + T2,3 + τ3 + T3,4.
Here, T1,2, T2,3, and T3,4 cannot be decomposed any further as they are simply
times spent purely on the road. So, the values of τi’s need to be analyzed next.

The total time a bus spends at stop i, τi, can be broken down into three parts.
First, once the bus arrives at the stop, it drops all

∑
j Nji alighting passengers

with a rate of l. The total time spent for this part is

τ
(1)
i =

1

l

∑
j

Nji =
T

lNbus

∑
j

rjcji. (10)
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Next, the bus starts emptying the bus stop by picking up passengers. Recall
that the time interval between a bus leaving the stop and the next bus leaving
the same stop is T/Nbus. Therefore, the time interval between a bus leaving
and the next bus arriving is given by T/Nbus − τi. During this time interval
plus an additional time τ

(1)
i defined above, passengers do not board yet and bus

stop i keeps receiving passengers with a rate of ri. The number of passengers
accumulated at the stop after this time is then ri×(T/Nbus−τi+τ

(1)
i ). Once the

bus starts picking up passenger with the rate of l (with the stop still receiving
passengers with a rate of ri), the number of passengers at the stop reduces by a
rate of l − ri. The amount of time it takes to empty the bus stop is then

τ
(2)
i =

ri
l − ri

(
T

Nbus
− τi + τ

(1)
i

)
=

ri
l − ri

 T

Nbus

1 +
1

l

∑
j

rjcji

− τi

 .

(11)
After stop i is empty, the bus may stay at the stop for an additional amount
of time si. We can now calculate the total time a bus spends at stop i as τi =

τ
(1)
i + τ

(2)
i +si which, after substitution and some algebraic manipulation, yields

τi =
(
1− ri

l

)
si +

T

lNbus

ri +
∑
j

rjcji

 . (12)

Taking the sum of τi over all stops and noting that
∑

i τi = T −T ∗ from Eq. (5)
and

∑
i cji = 1 yields, after simplification, the expression

T

lNbus
=

T ∗ +
∑

i

(
1− ri

l

)
si

lNbus − 2
∑

i ri
. (13)

Substituting this back into Eq. (12) yields

τi =
(
1− ri

l

)
si +

T ∗ +
∑

j

(
1− rj

l

)
sj

lNbus − 2
∑

j rj

ri +
∑
j

rjcji

 . (14)

This is τi expressed in terms of si and other constants. More specifically, τi is
a linear function of si’s. Setting si = 0 for all i simultaneously minimizes τi for
all i, which in turn minimizes T , Ti,j ’s, and, consequently, ATT as well. From
Eqs. (13) and (14), the minimum values of τi and T are

τi,min =
T ∗

lNbus − 2
∑

j rj

ri +
∑
j

rjcji

 , (15)

Tmin =
lNbusT

∗

lNbus − 2
∑

i ri
. (16)

The optimal condition of si = 0 implies that the buses should not stay unneces-
sarily longer at the bus stops. In fact, staying longer can be detrimental to the
average travel time, which also agrees with the results in the previous section.
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We can use the parameters from the scenario of 3 buses serving 4 bus stops in
the previous section to estimate the optimal average travel time. Inserting these
parameters into Eqs. (15) and (16) yields τ1,min = τ2,min = τ3,min = τ4,min ≈
21.74 s and Tmin ≈ 1087 s. Using Eq. (9), we obtain ATT ≈ 709 s. Despite the
relative simplicity of this idealized model, its result is remarkably close to the
holding strategy and the RL methods minimizing the travel time presented in
Table 1 in the previous section. This is because in the scenario analyzed here, the
time spent by each bus at the bus stops are much shorter than the time spent
moving on the road. So, stopping at the bus stops should not appreciably change
the phase difference between the buses. As a result, maintaining staggered time
headway becomes similar to maintaining staggered phase headway.

5.2 Detuned Bus Frequency

We also applied our RL-TT method to a model based on a real world bus loop
in Nanyang Technological University (NTU): the shuttle bus Blue route which
consists of 12 reasonably staggered bus stops. Its measured parameters can be
found in [4, 14]. In particular, here we consider the lull period of the afternoon
on the weekdays with two detuned buses serving the loop with frequencies of
0.93 mHz and 1.39 mHz. The passengers’ arrival rates for the 12 stops are 0.001,

Table 2. The average waiting time (AWT), average time spent traveling in a bus
(ABT), and average travel time (ATT) for various approaches over 100 simulation
realizations. RL-TT is reinforcement learning method minimizing the travel time.

Approach AWT (s) ABT (s) ATT (s)
Naive (bus bunching) 449± 67 584± 5 1026± 67
Holding strategy 333± 5 704± 7 1041± 11
RL-TT 359± 10 581± 7 944± 15
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(c) RL-TT

Fig. 2. Plots of phase headway (top) and position (bottom) vs time of the buses for
the (a) naive approach, (b) holding strategy, and (c) RL-TT. Dashed line on the top
figures indicates the perfectly staggered phase headway of 120◦. Bus 1 is the slower
bus. For bunched buses in (a), phase headway may ‘jump’ between 0◦ and 360◦ due to
buses overtaking each other.
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0.023, 0.015, 0.005, 0.016, 0.040, 0.018, 0.035, 0.024, 0.030, 0.007, and 0.010. All
passengers are assumed to be traveling to the stop antipodal to their origin stop.

The results using the naive approach, holding strategy, and RL-TT method
are shown in Table 2 and Fig. 2. The holding strategy yields a better average
waiting time but surprisingly no improvement in the average travel time com-
pared to the naive approach. On the other hand, the RL-TT method improves
average travel time by around 8% over the naive approach and around 10%
over the holding strategy. It also improves the average waiting time by around
22% over the naive approach. Interestingly, using the RL-TT method, it can be
observed from Fig. 2(c) that the buses may become temporarily bunched be-
fore they quickly unbunch. Obviously, in this case the buses do not maintain a
perfectly staggered phase headway of 180◦. Perhaps unintuitively, allowing this
temporary bunching turns out to yield a better average travel time.

6 Conclusion

We have explored the application of RL with the D3QN architecture to the bus
loop system. For identical buses, waiting time optimization may result in better
average waiting time compared to the holding strategy by allowing the buses
to stay longer at stops with higher passengers’ arrival rate, but at the cost of
much longer average travel time. Using a theoretical model of a bus loop system,
we also analytically proved that staying longer at any particular stops does not
help in reducing the average travel time. This may not be a worthy trade-off
considering the purpose of a transportation system is to move commuters to
their destinations, preferably as quickly as possible. On the other hand, with
travel time optimization, the buses managed to learn a close approximation of
the holding strategy, maintaining headway near the perfectly staggered phase.

For detuned buses optimizing travel time, using the conditions of the NTU
shuttle bus Blue route which consists of 12 reasonably staggered bus stops served
by two buses, the buses surprisingly learned to allow temporary bunching to
achieve better average travel time than both the holding and naive strategies,
and also better average waiting time than the naive approach. The results high-
lights the potential benefit of RL methods to find novel strategies beyond just
maintaining a target headway that are better than conventional approaches.

Finally, we found in our case that if the commuter inflow rate into the system
is higher than the maximum delivery rate of the buses, unbounded growth of
waiting commuters will occur which can only be solved by adding more buses.
Therefore, we considered the scenario in which the Poissonian commuter inflow
rate is comfortably lower than the maximum delivery rate. In this case, the buses
may never be full and the bus capacity can effectively be treated as unlimited.

The weakness of our RL approach is the scaling problem. For a system with
large number of buses and bus stops, we observe slow computation time and it
becomes harder to converge to an optimal strategy. We intend to find ways to
tackle this issue as our future work. In addition, since our approach is only based
on the decision of each bus to stay or leave at bus stops, we believe our approach
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is general and thus also applicable for non-loop services. We will look into its
application in bus line services and expanding to the city-scale bus network.
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