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Abstract. In recent years, the interplay between machine learning
(ML) and cheminformatics has driven advancements in bioactivity
prediction. However, the challenge of model explainability remains a
significant barrier to adopting these approaches in drug discovery. This
study addresses critical shortcomings in existing modeling techniques
by examining the assumptions of feature independence and contribution
additivity that are the foundation of traditional explainability methods.
We investigate fingerprint-based and molecular graph models within
quantitative structure-activity relationship modeling. While these
models demonstrate impressive predictive performance, they offer
limited actionable insights for medicinal chemists. To assist researchers
in developing useful and interpretable activity prediction models,
we propose a new benchmark based on the pharmacophore concept,
commonly used in preliminary compound filtering. Furthermore, we
introduce PharmacoScore, a novel evaluation metric designed to assess
whether ML-based explanations prioritize essential pharmacophore
components over non-critical features. Our findings highlight a cru-
cial misalignment between ML model explanations and established
pharmacophore principles, revealing a pressing need for innovative
interpretability strategies in cheminformatics. This work not only offers
a valuable resource but also sets the stage for future research, enhancing
the transparency of ML in drug discovery.

Keywords: explainable artificial intelligence · machine learning · chem-
informatics · bioactivity prediction · pharmacophores.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97626-1_2

https://dx.doi.org/10.1007/978-3-031-97626-1_2
https://dx.doi.org/10.1007/978-3-031-97626-1_2


2 A. Sułek et al.

1 Introduction

Explainable artificial intelligence (XAI) is a rapidly expanding field, mostly due
to the need for understanding predictions of machine learning (ML) models
in high-risk applications such as medical image analysis, fraud detection, and
autonomous vehicle decision-making. [1] In drug discovery, XAI methods help
medicinal chemists identify novel therapeutic molecules with improved bioac-
tivity, which is the most crucial property in the early stages of drug discovery.
Bioactivity refers to the effect that a compound has on the organism, usually
caused by the activation or suppression of the selected protein targets. Nowa-
days, ML models are employed to predict bioactivity from the chemical structure
to expedite the search for new potent molecules and reduce the cost related to
unsuccessful experimental trials. Explainability techniques provide additional in-
sights about model predictions that can be leveraged by medicinal chemists to
propose more effective molecular designs. [4]

In bioactivity prediction, simple ML models were classically used to predict
the activity of small molecules within a series of compounds sharing the same
core, e.g. by fitting a multiple linear regression to a few molecular descriptors.
This process is called quantitative structure-activity relationship (QSAR) mod-
eling. [4] Currently, more advanced ML models are utilized for predicting activity
across more diverse compound libraries obtained from large databases. One of the
predominant approaches is applying models like random forest (RF) or support
vector machines (SVM) to predict activity from molecular descriptors or finger-
prints, which are feature vector representations. The other approach uses graph
neural networks (GNN) that work directly on chemical structures represented
as molecular graphs. [13] Inspired by current advancements in natural language
processing (NLP), text representations like SMILES are sometimes used. [9]
All of these techniques are purely ligand-based and provide an alternative to
more computationally demanding structure-based methods like molecular dock-
ing. However, the quality of predictions of such methods depends on the quality
of the training data, and most of these models fail to generalize to novel chemi-
cal spaces, providing accurate predictions primarily for the compounds close to
the training dataset. [7] That is also why XAI methods should be employed to
better understand the knowledge gained by these models and avoid overfitting
to certain chemical structures.

Many XAI methods for molecules have been adopted from other domains,
such as computer vision and NLP, where they proved to produce explanations
that are effective and comprehensible for the users. However, the adaptation
of these methods to the molecular domain is not always straightforward and
can provide misleading insights if applied or interpreted incorrectly. For exam-
ple, Local Interpretable Model-agnostic Explanations (LIME) [10] and SHapley
Additive exPlanations (SHAP) [6] are explainability methods used for feature
vector representations, but these techniques assume the features are indepen-
dent, which is rarely held for typical molecular representations like calculated
descriptors or fingerprints. [2,5] Additionally, LIME assumes that model behav-
ior is locally linear, which may not be true for bioactivity prediction models
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Fig. 1: Overview of our benchmark. ML methods predict compound activity, but
only inherently interpretable models or post-hoc XAI techniques can identify
the atoms that are significant for predictions. With our new PharmacoScore
metric, we compare atom-based explanations against fragments that match a
pharmacophore model used for data labeling.

due to so-called activity cliffs, which are pairs of similar molecules with huge
differences in activity. SHAP assumes that predictions can be decomposed into
a sum of effects attributable to each feature, but this may also be inaccurate
for highly non-linear relations between compound structure and its activity. In
the context of molecular graphs, saliency map techniques like Class Activation
Mapping (CAM) [18] and Vanilla Gradients (VG) have been adopted from com-
puter vision due to similarities in image and graph convolutions. [1] However,
these methods are not particularly effective for elucidating how individual atoms
contribute to the final prediction. For example, CAM explains predictions by
multiplying atom activations after the last graph layer, which may not provide
any meaningful signal due to the graph oversmoothing problem of GNNs.

We hypothesize that effective QSAR models, to accurately predict activity
across diverse datasets of compounds, must be capable of identifying more
general features that ensure binding to their macromolecular targets. One
such category of features is a pharmacophore, which describes key points in
three-dimensional space that will improve binding when a molecule matches that
description. [15] Cyclin-dependent kinases (CDKs), a well-known class of anti-
cancer drug targets, exemplify this by possessing a distinctive pharmacophore.
For instance, CDK4/6 inhibitors, when combined with endocrine therapy,
have become a milestone in managing hormone receptor-positive breast cancer
(HR+BC). [3] However, the latest data revealed that the aberrant CDK2 plays
a key role in driving resistance to CDK4/6 in HR+BC. Their ATP-competitive
ligands typically contain a heterocyclic core with a hinge-binding motif and a
hydrophobic component in the gatekeeper sub-pocket. [9]

To confirm that models can learn these high-level features, XAI methods can
be applied since the models should prioritize these key features over more fine-
grained structural modifications. We introduce a new dataset and an evaluation
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metric based on pharmacophores to facilitate the testing of bioactivity prediction
model generalization and the robustness of XAI methods (Figure 1). The dataset
includes a primary collection of 2,131 molecules with experimentally measured
CDK2 activity, along with 2,252 for CDK4 and 679 for CDK6, extended by
an additional test set of generated decoy compounds. To simplify the complex
problem of predicting activity, we propose a proxy task in which molecules are
labeled by matching their structure to a pharmacophore hypothesis constructed
from our activity dataset. Through this new benchmark, we make the following
observations.

1. The evaluated XAI methods produce inconsistent explanations on our
dataset that fail to highlight only the structures that should directly affect
the predicted label.

2. Many commonly used ML models, such as RF, XGB, MLP, and GNN, face
challenges in effectively learning the concept of a pharmacophore.

3. Activity-trained models share some common XAI patterns with pharma-
cophore-trained models, but they also reveal that activity data does not
always align with the pharmacophore hypothesis.

2 Related work

The emergence of GNNs has prompted the creation of explainability methods
for graph data. GNN-Explainer [16] is a model-agnostic approach designed to
provide explanations for predictions made by GNNs. It does this by identifying
a subgraph and node features that are most important for a given prediction.
The approach formulates explanation generation as an optimization problem,
where the goal is to find a compact subgraph that maximizes mutual informa-
tion with the original model’s prediction. SubgraphX [17] is an explainability
method designed for GNNs that generates subgraph-based explanations in a
self-interpretable manner. Instead of focusing on individual nodes or edges like
traditional attribution-based methods, SubgraphX identifies the most influential
subgraphs that contribute to the model’s predictions. It employs a Monte Carlo
Tree Search strategy to efficiently explore possible subgraphs and rank them
based on their contribution to the final prediction. Unlike post-hoc methods that
approximate model behavior, SubgraphX provides more stable and meaningful
explanations by maintaining structural integrity within graphs. This makes it
particularly effective for tasks in chemistry, biology, and social network analysis,
where understanding group-wise interactions is critical.

In parallel, intrinsically interpretable graph-based models are being proposed.
For example, ProGReST [11] achieves interpretability by integrating prototype
learning, soft decision trees, and GNNs. This architecture enables predictions to
be explained through learned prototypical parts, which serve as reference points
for molecular structures. Unlike post-hoc explainability methods, ProGReST is
inherently interpretable, as it directly links its decision-making process to iden-
tifiable molecular substructures. Additionally, the model ensures interpretability
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through tree-based reasoning, where each decision node is associated with mean-
ingful prototypes that can be analyzed and validated by experts.

Various reports highlight the use of XAI in drug discovery projects. Wong
et al. [14] present a novel model that combines GNNs with explainable graph
algorithms to uncover chemical substructures linked to antibiotic activity. By in-
tegrating explainability, the model allows researchers to interpret the key molec-
ular features driving antibiotic properties, paving the way for a more rational and
efficient approach to antibiotic discovery. The EvoGradient [12] model com-
bines explainable deep learning with virtual evolution to predict and optimize
antimicrobial peptides (AMPs) in drug discovery. Utilizing LSTM, Transformer,
and gradient-based analysis, the model achieves high predictive performance
in AMP classification and potency prediction. EvoGradient outperforms tradi-
tional models by identifying key amino acids linked to bioactivity. However, like
attention-based models, its explanations are sparse, highlighting broad regions
rather than specific antimicrobial features. The BiLAT model [9], leveraging
BiLSTM and Transformer-based encoding layers, achieves high predictive per-
formance for CDK activity, surpassing traditional ML methods in identifying
the CDK2 hinge motif, though its explanations remain sparse, highlighting large
molecular regions.

3 Methods

This section summarizes the ML modeling techniques and explainability meth-
ods employed in this study. Following this, we address the dataset construc-
tion, detailing how the pharmacophore hypothesis was created for labeling our
dataset. Lastly, we outline the evaluation metrics established in our bench-
mark. The code and data are available at https://github.com/AdamSulek/
pharmacoscore-benchmark.

3.1 Activity prediction models

We trained XGBoost (XGB), Random Forest (RF), and a multilayer perceptron
(MLP) on the RDKit-generated ECFP fingerprint (radius 2, 2048-bit), and a
graph neural network (GNN) with one-hot encoded atomic descriptors using
PyTorch Geometric. Models were tuned using grid search and selected based on
validation ROC AUC. The final evaluation was done on a separate test set.

3.2 Explainability methods

For model explainability, we employed SHAP explanations using the SHAP pack-
age for the RF, XGB, and MLP models. Additionally, we used vanilla gradient
explanations for MLP and GNN models and Grad-CAM for GNN [8]. From
each explanation for fingerprint-based models, we identified the top 5 most im-
portant features and then determined which atoms contributed to these bits per
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molecule using atom fragment mappings. As a result, the top 5 bits often corre-
sponded to more than 5 unique atoms. In contrast, for GNN models, we directly
selected the top 5 most important nodes, which always corresponded to exactly
5 atoms. These identified atoms were then used for visualization, sparsity score
calculations, pharmacophore-type matching, and PharmacoScore computation.

3.3 Dataset construction

This study employed three datasets profiling compound activity (IC50 and/or
Ki) against CDK2 (1432 active, 699 inactive, 1 µM cutoff), CDK4 (1102 active,
1150 inactive, 1 µM cutoff), and CDK6 (307 active, 372 inactive, 100 nM cut-
off). All compound data originated from the ChEMBL database. Data was split
into training, validation, and test sets using Bemis-Murcko scaffold-based split-
ting to ensure structural dissimilarity between sets. This work introduces a new
CDK pharmacophore-based benchmark dataset. To vary the dataset’s difficulty,
we used a five-element pharmacophore for CDK2 and three-element pharma-
cophores for CDK4 and CDK6. Molecules matching the pharmacophore were
labeled ’1’, others ’0’, yielding 1057/1074 (pos/neg) for CDK2, 2071/181 for
CDK4, and 638/41 for CDK6. We added a second test set to better assess ma-
chine learning models’ understanding of pharmacophores. The updated dataset
includes positive examples reused from the prior test set and newly generated
negative examples, where we slightly altered the molecular structures while pre-
serving their overall shapes. Our modifications involved random substitutions
of hydrogen donors and acceptors with carbon atoms, removal of aromaticity
in the rings, adjustments to the length of the linkers connecting the rings, and
replacement of hydrophobic groups with polar ones.

3.4 Pharmacophore model preparation

The pharmacophore models were created with Maestro Schrödinger Release
2021-2, based on the structures of human protein complexes CDK2 (PDB ID:
2A4L), CDK4 (PDB ID: 9CSK) and CDK6 (PDB ID: 5L2I). Atom types, hydro-
gens, and charges were assigned using the Protein Preparation Wizard. OPLS4
and PROPKA optimized the complex’s structure and hydrogen bond network.
A starting set of pharmacophores was produced with the Phase module, us-
ing the ligand-receptor complex and the CDKs ATP-binding site cavity as a
basis. For each instance, pharmacophores were generated using the automated
E-Pharmacophore method, with a feature limit of ten. A subset of pharma-
cophores was created using the top features from the initial set of automatically
generated pharmacophores. These features focused on ATP-binding pocket inter-
actions, particularly Hinge Region contacts. The optimal pharmacophore model
for discriminating activity from inactive compounds was determined through
application of the Hypothesis Validation tool to a curated dataset. Phase con-
siders a molecule aligned only if all pharmacophore points match corresponding
features within a 2Å range and generates a single best-fit conformation for each
ligand.
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3.5 Evaluation

The performance of bioactivity prediction models is conducted using standard
classification metrics: ROC AUC, accuracy, and F1-score. The explanations are
evaluated using the sparsity and fidelity metrics, defined as follows:

Sparsity =
1

N

N∑
i=1

|mi|
ni

, Fidelity =
1

N

N∑
i=1

(1(yi = f(xi))− 1(yi = f(x̄i))) ,

where N is the number of testing examples, ni is the number of atoms in the
i-th example, mi ∈ {0, 1}ni is an explanation for the i-th example, |mi| denotes
the number of non-zero elements of mi, xi is the input representation of i-th
molecule, yi is its label, 1 is the indicator function, and x̄i is the masked input
where important atoms are removed.

We implement two additional metrics to measure the agreement between the
ground-truth explanations and model explanations. Feature detection accuracy
is defined as the percentage of testing examples in which a particular pharma-
cophoric feature is detected as important, i.e., at least one atom of this feature
overlaps with the model explanation. We also introduce PharmacoScore (Ph-
Score), an evaluation metric designed to test whether the whole pharmacophore
is prioritized over other atoms in a molecule. It is defined as the ROC AUC
between the explained atom importances and binary ground-truth atom labels.

4 Results

We trained ML models on our activity dataset. In the following sections, we
first explore the quality of predictions. Second, we check if these models can
distinguish decoys, which are molecules with small structural changes that break
the given pharmacophoric structure. Next, we introduce a new evaluation metric
based on pharmacophore alignment to test XAI methods on our dataset. Finally,
we compare predictions of models trained on our proxy pharmacophore data with
those trained on the original activity data.

4.1 Prediction of compound activity

Four ML models were trained on our dataset that was labeled by finding
molecules that match the predefined pharmacophore. RF, XGB, and MLP are
three models trained on ECFP fingerprints. GNN is a model trained on the
molecular graph representation. All neural networks were trained for 20 epochs
using the Adam optimizer. The best set of hyperparameters for each model was
found using a random search with 32 randomly sampled hyperparameter sets.

Table 1 shows the performance of ML models in predicting both experimental
activity and pharmacophore matching. The results indicate that models trained
on the pharmacophore matching task achieve higher ROC AUC scores compared
to those trained on the activity prediction task. This suggests that the pharma-
cophore task may be more straightforward or better defined, potentially due to
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Table 1: Model performance measured on the testing set.

Target Model experimental activity pharmacophoric labels
AUC Accuracy F1-score AUC Accuracy F1-score

CDK2

RF 0.824 0.625 0.641 0.888 0.778 0.778
XGB 0.813 0.611 0.648 0.900 0.775 0.783
MLP 0.800 0.602 0.630 0.865 0.789 0.810
GNN 0.713 0.637 0.628 0.826 0.724 0.734

CDK4

RF 0.918 0.858 0.886 0.939 0.933 0.961
XGB 0.912 0.860 0.889 0.944 0.931 0.959
MLP 0.892 0.824 0.856 0.930 0.931 0.961
GNN 0.916 0.862 0.895 0.904 0.929 0.965

CDK6

RF 0.807 0.800 0.830 0.964 0.911 0.952
XGB 0.803 0.785 0.820 0.878 0.933 0.963
MLP 0.804 0.748 0.785 0.927 0.911 0.952
GNN 0.769 0.704 0.733 0.919 0.975 0.983

the more homogeneous structural relationships inherent in pharmacophore data.
In contrast, activity prediction may involve more complex factors, such as mixed
or non-competitive enzyme inhibition, which could introduce greater variability
and challenge model performance. Furthermore, methods utilizing fingerprint-
based representations consistently outperform GNNs that rely on simple one-hot
encoding of atom features. The models demonstrate strong generalizability across
all metrics, ROC AUC, accuracy, and F1-score.

4.2 Model performance in decoy detection

Overly optimistic results from evaluating molecular property prediction mod-
els on random test sets may arise from the similarity of compounds within a
given chemical series. To assess the generalizability of these models, a stratified
sampling technique is sometimes employed, grouping compounds with identical
chemical scaffolds within the same subset. This approach might also fail if the
chemical series includes scaffold modifications.

We propose a more challenging test to learn if the evaluated models discover
our pharmacophore hypothesis instead of memorizing molecular fragments in
active compounds. Therefore, we create decoy molecules for each test molecule
that fit our pharmacophore model. Decoys are used to introduce small struc-
tural modifications that should hinder binding to the biological target, removing
the critical pharmacophoric features. This new testing set with generated close
negatives is used to evaluate our models, and their results are shown in Table 2.

For most types of modifications generated, the accuracy of predictions is gen-
erally similar. However, in about 50% of CDK2 cases, models make errors when
the distance between aromatic rings is altered. Although all models highly rec-
ognized both aromatic rings (Table 3), changing the length of the linker between
the rings did not significantly affect the model predictions. As a result, the pre-
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Table 2: Model performance tested on the decoy dataset.
CDK2 CDK4 CDK6

Model AUC Accuracy F1-score AUC Accuracy F1-score AUC Accuracy F1-score
RF 0.715 0.621 0.482 0.661 0.434 0.586 0.826 0.448 0.618
XGB 0.732 0.631 0.504 0.687 0.484 0.602 0.852 0.630 0.702
MLP 0.635 0.505 0.436 0.568 0.418 0.583 0.580 0.459 0.623
GNN 0.585 0.514 0.416 0.532 0.533 0.612 0.530 0.525 0.650

dictions remained positive despite the absence of pharmacophore matching due
to the incorrect distance in three-dimensional space.

The degraded performance on the testing set can often be attributed to the
models making predictions for the molecules coming from outside the training
distribution. This is not the case for our decoy dataset because all molecules
are close analogs of positive examples in the original dataset, which is depicted
in Figure 2. The mean Tanimoto distance between decoys and unmodified com-
pounds is less than 0.33. The differences are subtle, often replacing only one
atom or changing aromaticity of a ring, which is also depicted in the figure.

0.0 0.2 0.4 0.6 0.8 1.0
Tanimoto distance

0

20

40

60

C
ou

nt original compound aromaticity removed

hydrophobic group
replaced

hydrogen bond donor
removed

Fig. 2: Tanimoto distance between CDK2 pharmacophore-matching compounds
and their decoys, with example decoys shown on the right.

4.3 Assessment of model explanations

By matching and aligning molecules with our pharmacophore hypothesis, we
obtain ground-truth labels to evaluate XAI methods. In this experiment, we first
test whether our models recover parts of the pharmacophore hypothesis and then
employ our PharmacoScore metric to quantify the amount of the pharmacophore
that is learned and correctly attributed by the XAI methods.

Table 3 shows the percentages of recovered pharmacophoric features by each
explainability method. Additionally, sparsity is reported to account for different
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numbers of atoms highlighted by each method. A higher sparsity value—meaning
more atoms are considered important in the explanation—correlates with a
higher percentage of correctly covering all important atoms, while not penal-
izing models for incorrectly marking non-important atoms as important. The
central aromatic group (aromatic 1), located near the HBA and HBD groups,
was generally easier to identify across all models. Additionally, a high sparsity
value is often linked to the presence of five or six atoms within a pharmacophore
point, making it more likely that the model will highlight at least one of them.

Table 3: Ability of the models to detect specific CDK2 pharmacophoric features.
Method Sparsity HBA HBD Aromatic 1 Aromatic 2 Hydrophobic
RF+SHAP 22% 32% 36% 79% 41% 32%
XGB+SHAP 21% 22% 40% 78% 57% 24%
MLP+SHAP 23% 25% 41% 88% 47% 38%
MLP+VG 23% 25% 41% 88% 47% 38%
GNN+GradCAM 16% 18% 10% 52% 42% 47%
GNN+VG 16% 8% 6% 47% 18% 42%

Most XAI methods do not provide guidance on how to select important
atoms. Instead, they assign each atom an importance weight. This allows us to
rank all atoms and measure the model’s ability to prioritize the pharmacophore
correctly using our PharmacoScore. Table 4 presents the agreement between pre-
dicted atom attributions and the ground-truth pharmacophore label. Moreover,
we report the fidelity of the XAI technique, which measures how crucial the
highlighted structure is to the model prediction. Low fidelity scores in MLP and
GNN may suggest that poor alignment with the true pharmacophore may result
from errors in the explanation method.

PharmacoScore is a challenging metric, with standard models often struggling
to accurately mark the pharmacophore atoms, despite being able to classify the
entire molecule label. While the top 5 important fragments frequently highlight
some of the pharmacophore atoms, standard models tend to mark atoms ran-
domly, assigning high importance to non-relevant side fragments in the global
explanations. As a simple baseline, we labeled all aromatic atoms as 1 and oth-
ers as 0, achieving a score of 0.75 for a 5-point pharmacophore containing two
aromatic groups. This high score reflects the prevalence of aromatic fragments,
some of which include HBA or HBD atoms that contribute to the CDK2 phar-
macophore. The ’all aromatic’ baseline can serve as a reference point for future
PharmacoScore evaluations. Notably, PharmacoScore performs better for 3-point
pharmacophores, where approximately 50% of atoms are labeled as 1.

We visualize some of the explanations in Figure 3. The GNN models, which
exhibited the lowest sparsity due to the selection of the top 5 nodes that ac-
counted for an average of 16% of the molecule, were able to recognize hydropho-
bic fragments at a level close to 40%, demonstrating their effectiveness in iden-
tifying these key components. In models trained on fingerprints, the sparsity
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Table 4: Ability of the models to prioritize pharmacophore over less important
molecular substructures. The model named "all aromatic" is a simple baseline
where all aromatic atoms are marked as important.

CDK2 CDK4 CDK6
Method Fidelity Ph-Score Fidelity Ph-Score Fidelity Ph-Score
all aromatic - 0.75 - 0.67 - 0.60
RF+SHAP 0.20 0.54 0.18 0.53 0.17 0.69
XGB+SHAP 0.30 0.53 0.53 0.51 0.82 0.62
MLP+SHAP 0.09 0.49 0.00 0.51 0.01 0.56
MLP+VG 0.05 0.51 0.01 0.53 0.01 0.64
GNN+GradCAM 0.14 0.41 0.35 0.49 0.27 0.54
GNN+VG 0.06 0.48 0.33 0.49 0.23 0.51

was higher, caused by the presence of several atoms within a single fingerprint
feature. The models frequently predicted the NH group between aromatic rings
as interacting with the HBD, which often resulted in correct predictions (e.g.,
CHEMBL482211). However, in some molecules (CHEMBL115220), this atom
was not the actual interacting group. The models also struggled with molecules
containing three aromatic rings (CHEMBL232735), failing to identify the key
rings. The RF and XGB models highlighted all three aromatic rings, while the
MLP model marked only two, ignoring one key aromatic ring. However, in many
cases, fingerprint and SHAP produce similar XAI results.

Fig. 3: Example explanations of XAI techniques applied in our proxy pharma-
cophore prediction problem. Pharmacophore atoms are highlighted: HBA in or-
ange, HBD in green, hydrophobic in yellow, and aromatic in pink. Important
atoms identified by Grad-CAM (GCN) and SHAP (RF, XGB, MLP) are shown
in pink, highlighting key regions influencing model predictions.
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4.4 CDK2 inhibitors case study

To validate the usefulness of our benchmark in real-world scenarios, we com-
pare the insights derived from the model trained on the experimental data with
those from our proxy pharmacophore-based labels. Figure 4 illustrates the differ-
ences between explanations of XGB models trained on experimental and phar-
macophoric labels. The model trained on experimental labels fails to identify
HDA atoms in CHEMBL361833 and the aromatic ring in CHEMBL4297488.
However, in some cases, predictions fully align, as observed for CHEMBL497854
and CHEMBL3655766. The overall consistency in highlighting similar structural
features can be partly explained by the high precision of the pharmacophore hy-
pothesis (73%) and the notable correlation between the label sets (accuracy 56%
and precision 54% for compounds with matching labels).

Fig. 4: Comparison of explainability-based pharmacophore classification model
and activity classification model against the reference label. The plot illustrates
how both models align with the ground truth, highlighting differences in their
ability to capture key pharmacophore features.

Interestingly, some misclassification of the activity model can be attributed
to finding pharmacophoric features, which is shown in Figure 5. In the HBD
modification, new fragments are highlighted as important, but fragments com-
mon with the original molecule prediction are still visible, hence the false positive
(FP) prediction. In the HBA modification, the key pharmacophore fragment was
removed, so the model does not highlight this fragment as important. However,
the presence of remaining important fragments still results in a positive predic-
tion despite the lack of pharmacophore matching. In the example of hydrophobic
modification, the original prediction was positive, and the hydrophobic point was
not crucial for the positive classification. Therefore, after modifying this site,
the prediction remained positive. However, correct prediction of the distance
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between aromatic rings is crucial to solving the pharmacophore matching issue.
The modification of ring distance shows that the model does not recognize the
correct distance, still highlighting both aromatic rings as important despite the
reduction of the distance and the lack of pharmacophore matching.

Fig. 5: Visualization of FP cases by the XGB model, showing positive true la-
bels, positive predictions, and modification-based predictions. SHAP explana-
tions highlighting key atoms in the model’s predictions.

4.5 Limitations

Although the proposed benchmark spotlights crucial problems with the com-
monly used QSAR models and XAI techniques, it has limitations that should be
considered when drawing conclusions in more general drug discovery setups.

Multiple pharmacophores. The proposed proxy activity labeling considers
only one pharmacophore per target. In reality, molecules can have different bind-
ing modes that affect their target. Moreover, some molecules can bind alloster-
ically to a different part of the target protein, making the pharmacophore con-
structed on a set of typical orthosteric ligands uninformative. Nevertheless, the
labels produced using only one pharmacophore prove to be challenging for some
models, and more complex models should be used only after this benchmark is
solved.

3D prediction models. This benchmark does not consider 3D models because
they require one particular molecular conformation as input. However, the con-
formation that matches our pharmacophore might differ from the lowest-energy
conformation that can be computed using force-field methods. It is possible
that models that use 3D descriptors might be better at understanding high-level
pharmacophoric features, which we leave as future work.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97626-1_2

https://dx.doi.org/10.1007/978-3-031-97626-1_2
https://dx.doi.org/10.1007/978-3-031-97626-1_2


14 A. Sułek et al.

5 Conclusions

In this study, we introduced a novel benchmark dataset alongside a new metric,
PharmacoScore, to evaluate the explainability of ML models in cheminformat-
ics. Our findings reveal that commonly used classification and regression models,
despite their strong performance in traditional tasks, face significant challenges
in aligning with the interpretability requirements of pharmacophore-based mod-
eling. Pharmacophores present a notable difficulty for ML models, as even minor
structural modifications—such as those introduced by decoys—lead to a signif-
icant drop in performance, with ROC AUC scores decreasing about 0.2. This
decline highlights the critical need for models that can reliably predict bioactiv-
ity for compounds with small modifications, a capability essential for hit-to-lead
optimization in drug discovery. Moreover, our results demonstrate that typical
explainability methods are not well-suited for bioactivity prediction tasks, as
they often fail to accurately identify pharmacophoric interaction sites. This un-
derscores a fundamental gap in the applicability of current ML approaches to
cheminformatics, where interpretability is as crucial as predictive accuracy. By
providing a benchmark and a robust evaluation framework, we aim to inspire the
development of more interpretable and chemically meaningful models, ultimately
advancing the field of computational drug discovery.
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