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Abstract. The paper presents an algorithm based on the quasi-gasdynamic
approach for the solution of unsteady compressible flows over a wide
range of Mach numbers. It is implemented on the AMReX open plat-
form, which uses adaptive mesh refinement technology to facilitate par-
allelization of computations on GPU architectures. To validate its ef-
fectiveness, the developed solver is applied to the numerical simulation
of the shock-vortex interaction problem with flow parameter values of
Mv = 0.9 and Ms = 1.5. Cross-validation to assess its performance is
conducted with OpenFOAM-based solvers, specifically rhoCentralFoam
and QGDFoam. Schlieren fields are used to evaluate oscillations of the
numerical schemes and algorithms, while resolution capabilities of the
algorithm are assessed by comparing density fields in five cross-sections
with the reference values.

Keywords: Shock-vortex interactions · Compressible flow · Quasi-gas
dynamic equations · OpenFOAM · AMReX.

1 Introduction

The increasing complexity of physical processes modelling has made paralleliza-
tion of computations on GPUs and integration of adaptive mesh refinement
(AMR) technology essential [1]. GPUs, capable to solve massively parallel prob-
lems, offer a significant advantage in accelerating the computation of complex
aerohydrodynamic problems. At the same time, AMR has emerged as a promis-
ing method to solve problems with complex and dynamic nature of aerohydro-
dynamic flows. The ability to automatically adjust mesh resolution in regions of
interest not only improves simulation accuracy, but also optimises computational
resources by allocating higher resolution only where necessary.

The Quasi-Gasdynamic (QGD) algorithm based on the regularised equa-
tions [2] allows modelling of compressible ideal gas flows over a wide range of
Mach numbers, from subsonic to supersonic. The QGD equations, which differ
from the Navier-Stokes equations, include additional terms proportional to the
small parameter τ , which depends on the size of the computational cell and local
sound velocity. In particular, the universality of the algorithm for all types of
flows distinguishes it. This numerical algorithm was implemented in OpenFOAM
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[3–6] and showed high efficiency in modelling complex unsteady flows and flows
with strong discontinuities [7, 8]. While this algorithm has shown high efficiency
in modelling unsteady flows and flows with strong discontinuities, it tends to be
slower than the alternatives due to its numerical specificity.

To address this challenge, the use of AMR technology and the potential for
GPU computations parallelization offers a solution to speed up calculations and
reduce expended resources. Currently, the most suitable free platform to achieve
this goal is AMReX [9, 10], which has demonstrated higher computational ef-
ficiency compared to OpenFOAM [11]. Moreover, as of 2023, AMReX is part
of the Linux Foundation’s High-Performance Software Foundation [12], which
means it will receive significant support and development.

The rest of the paper is structured as follows: Section 2 describes the mathe-
matical model underlying QGD. Section 3 describes the implementation of QGD
in AMReX by demonstrating the numerical algorithm and the structure of the
AmrQGD solver. Section 4 presents the formulation of the shock-vortex inter-
action problem. Section 5 shows the computational results in AmrQGD and
OpenFOAM-based cross-validation with three solvers. The performance study
of the algorithms is presented in section 5.3. Section 6 contains a paper with the
main conclusions.

2 Mathematical model

The regularized gas dynamics equations in the form of continuity, momentum,
total energy and state equations are used for the implementation of the AmrQGD
solver in AMReX:

∂ρ

∂t
+∇ · jm = 0, (1)

∂(ρu)

∂t
+∇ · (jm ⊗ u) +∇p = ∇ · σ̂, (2)

∂(ρE)

∂t
+∇ · (jmE) +∇ · q = ∇ · (σ̂u) , (3)

p = ρRT, (4)

where ρ is density; jm is mass flux density; u is the velocity vector; p is pressure;
E = e+ |u|/2 is total energy, e is the specific internal gas energy; σ̂ is the viscous
stress tensor, q is heat flux; ⊗ is the direct tensor product.

The presence of additional QGD terms w, σ̂QGD, qQGD proportional to the
small parameter τ is the main difference of quasi-gasdynamic equations:

jm = ρ(u−w), q = qNS + qQGD, σ̂ = σ̂NS + σ̂QGD (5)

w =
τ

ρ
(div (ρu⊗ u) +∇p) , qQGD = −τρu((u · ∇)e+ p(u · ∇)/ρ)

σ̂QGD = τu⊗ (ρ(u · ∇)u+∇p) + τ Î((u · ∇)p+ γp∇u)
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τ = α
∆h

c
+

µd

p
; c =

√
γRT (6)

where ∆h is the local step size of the spatial mesh; c is the local speed of sound; α
is the tuning parameter of the algorithm; µd is the dynamic viscosity coefficient;
R is the specific gas constant. Viscosity coefficient µ = µd + τpScQGD, where α
and ScQGD are the tuning parameter of the related numerical algorithm.

A detailed description of the derivation and characteristics of these equations
is given in, e.g. [2, 5].

3 QGD implementation in AMReX

The AMReX software package allows us to use ready-made logic to refine mesh
into levels with a corresponding change in time step (Fig. 1a,b), and also pro-
vides the possibility of transferring the computations to the GPU, which makes
the computations much less time-consuming compared to OpenFOAM. On this
basis, the implementation of the numerical algorithm based on the QGD equa-
tions in AMReX will significantly reduce the computational cost and increase
the computational speed for problems in a wide range of Mach numbers.

a) b) c)

Fig. 1. QGD implementation in AMReX: a) Scheme of adaptive mesh refinement by
levels; b) Scheme of adaptive time step refinement at each level of the computational
mesh; c) Scheme of the numerical QGD template implemented in AmrQGD.

3.1 Numerical algorithm based on QGD in AMReX

Figure 1c shows the structure of the template for the QGD equations, which,
unlike classical approaches, requires all surrounding cells. A two-dimensional
(2D) numerical algorithm is currently implemented:

1. Discretization of ρ, ux, vy, p is carried out by the central differences method:

ρA =
ρi,j + ρi+1,j

2
, ρE =

ρi,j + ρi+1,j + ρi,j−1 + ρi+1,j−1

4
(7)

2. Calculation of the sound speed, the parameter τ , the QGD part w;
3. Calculation of mass flux density jm;
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4. The continuity equation is solved (the parameter with the hat is the variable
value at the new time step):

ρ̂i,j = ρi,j −
∆t

∆x
(jmA − jmB)−

∆t

∆y
(jmC − jmD) (8)

5. The viscosity coefficient, the Reynolds viscous stress tensor and its QGD
analogue are considered;

6. Calculation of the momentum equations:

ûx
i,j = ρi,ju

x
i,j −∆t

(
jmAu

x
A − jmBu

x
B

∆x
+

jmCu
x
C − jmDux

D

∆y
+

pA − pB
∆x

)
+∆t

(
σxx
A − σxx

B

dx
+

σyx
C − σyx

D

∆y

)
(9)

ûy
i,j = ρi,ju

y
i,j −∆t

(
jmAu

y
A − jmBu

y
B

∆x
+

jmCu
y
C − jmDuy

D

∆y
+

pC − pD
∆y

)
+∆t

(
σyy
C − σyy

D

∆y
+

σxy
A − σxy

B

∆x

)
(10)

7. Calculation of the temperature, heat transfer coefficient, specific internal
energy, heat fluxes and enthalpy

HA =
(ux

A)
2 + (uy

A)
2

2
+ γ

pA
ρA(γ − 1)

8. Calculation of the energy balance equation:

Êi,j = Ei,j −∆t

(
jmAHA − jmBHB

∆x
+

jmCHC − jmDHD

∆y
+

qA − qB
∆x

+
qC − qD

∆y

)
+∆t

(
σxx
A ux

A − σxx
B ux

B

∆x
+

σyy
C uy

C − σyy
D uy

D

∆y

+
σxy
A uy

A − σxy
B uy

B

∆x
+

σyx
C ux

C − σyx
D ux

D

∆y

)
(11)

9. Pressure definition:

p̂i,j = (γ − 1)

(
Êi,j − ρ̂i,j

(ûx
i,j)

2 + (ûy
i,j)

2

2

)
(12)

3.2 Solver structure

Figure 2 shows the structure of the developed QGD numerical algorithm in
AMReX.
The QGD/Source folder contains the solver sources:
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Implementation of the QGD algorithm using AMR and GPU 5

Fig. 2. Structure of the AmrQGD solver in AMReX. Black colour - AMReX kernel;
Blue - case location folder including its initial and boundary conditions; Green - solver
sources location.

• AmrQGD.H - the main solver class AmrQGD is declared in the file. It
inherits from the AmrLevel class defined in the AMReX core;

• AmrQGD.cpp - the main solver class AmrQGD is implemented in this file;
• main.cpp - numerical algorithm;
• QGD_advance.cpp - quasi-gasdynamic equations are implemented in this

file;
• QGD_fillBC.cpp - the file describes the boundary conditions;
• QGD_init.cpp - initial conditions are set in this file;
• QGDLevelBld.cpp - the description of mesh refining.

The QGD/Exec folder contains statements of calculation tasks:

• inputs - the file where the calculation parameters are set;
• vortexShock_fillBC.cpp - a file containing the boundary conditions;
• vortexShock_init.cpp - file containing the initial conditions.

It is also worth noting that at each level it is not necessary to refine the whole
mesh, but only some parts of it (Fig. 1a,b). For this purpose, the errorEst method
is defined in the AmrQGD.cpp file. This method takes a reference to the
tags instance of the TagBoxArray container. Each mesh cell is defined, which
is marked for partitioning if it meets some condition (criterion). The remaining
cells that do not meet the condition are not subject to partitioning.

Solver is available on GitHub [13]

4 Problem statement

To demonstrate features and advantages of the developed AmrQGD solver, it has
been decided to choose a problem with complex unsteady flow, a good example
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of which is a strong vortex-shock wave interaction. The complexity lies in the
fact that the vortex passing through the shock is strongly deformed and actually
splits into two coupled vortices, generating a large number of compression waves,
which leads to numerical instability of the calculations.

Studies of the shock-vortex interaction problem were carried out for more
than 70 years and include experimental [14, 15] and theoretical studies [16, 17].
In recent years, this problem was widely used to demonstrate the correctness
of high-order methods [18–20]. In particular, this problem was used to evaluate
algorithms based on QGD [21] equations, and our problem formulation is also
consistent with this work. The reference values are taken from [22], where they
were obtained by a high-order method.

The geometry of the calculation area is a rectangle of size 2× 1 m (Fig. 3a).
Gas parameters are: γ = 1.4, R = 1, Cp = 3.5. At the initial moment of time the
stationary shock wave Ms = 1.5 is located vertically at x = 0.5 m, to the left of
it at the point with coordinates (0.25, 0.5) m there is a vortex with inner radius
a = 0.075 m and outer radius b = 0.175 m, Mv = 0.9, vmax = Mv

√
γ.

Flow conditions before the shock (x < 0.5):

(ρ, ux, vy, p, T )left = (1, Ms
√
γ, 0, 1, p/(ρR)) (13)

Stationary shock conditions:

ρleft
ρright

=
uright

uleft
=

2 + (γ − 1)M2
s

(γ + 1)M2
s

,
pleft
pright

= 1 +
2γ

γ + 1
(M2

s − 1), vright = 0 (14)

The domain’s initial conditions:

(ρ, ux, vy, p, T ) =

{
(1, 1.77482, 0, 1, 1) x < 0.5

(1.862, 0.953146, 0, 2.45833, 1.32022) x ≥ 0.5
(15)

The initial conditions in the vortex zone are shown in Figure 3b. The condition
for the angular velocity of the vortex is calculated by the formula for vortex
velocity vθ:

vθ(r) =


vm

r
a r ≤ a

vm
a

a2−b2

(
r − b2

r

)
a < r ≤ b

0 r > b

(16)

where r =
√

(x− 0.25)2 + (y − 0.5)2 - radius from the vortex center. Then in
the projection on the OX and OY axes: ux(r) = uleft − vθ(r)sin(θ), vy(r) =
vleft + vθ(r)cos(θ)
The temperature inside the vortex is set as:

T (r) =



T (b)− γ−1
Rγ

v2
m

a2

(
a2−r2

2

)
−

−γ−1
Rγ v2m

a2
√
a2−b2

(
b2−a2

2 − 2b2ln b
a − b4

2

(
1
b2 − 1

a2

))
r ≤ a

T (b)− γ−1
Rγ v2m

a2
√
a2−b2

(
b2−r2

2 − 2b2ln b
r − b4

2

(
1
b2 − 1

r2

))
a < r ≤ b

0 r > b

(17)
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Density and pressure inside the vortex are:

ρ(r) = ρleft

(
T (r)

Tleft

) 1
γ−1

, p(r) = pleft

(
T (r)

Tleft

) γ
γ−1

(18)

a)
b)

Fig. 3. Problem statement: a) Geometry of the computational domain; b) Initial con-
ditions on the line Y = 0.5 m in the vortex location region (a = 0.075 m, b = 0.175 m).

Boundary conditions:
• Smooth wall conditions are placed at the top and bottom (zero gradient for

pressure and density, slip condition for velocity).
• Left (inlet): Conditions correspond to the initial parameters for x < 0.5.
• Right (outlet): Smooth boundary conditions (zero gradient).

The numerical Schlieren value fields are used to visualize the calculation
Sch ⊂ (0.05; 2.4): Sch = ln(1+∇ρ)

ln(10)

The density values on five lines are also compared (Fig. 3a), the reference
values are taken from [22], obtained in this work by the higher order method on
a mesh of 12800× 6400.

5 Results and discussion

The vortex-shock wave interaction problem is numerically modelled on 1
400 ,

1
800 ,

1
1600

meshes along the OY axis and different Courant numbers. The results of the cal-
culations are presented for the moment tend = 0.7.
The following software packages and solvers are used for further cross-validation:
• rhoCentralFoam solver for compressible flows based on the central Kurganov-

Tadmor schemes [23], implemented in OpenFOAM. The upwind [24] (1st

order) and Van Leer [25] (2nd order) numerical schemes are used.
• QGDFoam [4] solver for flows over a wide range of Mach numbers, imple-

mented in OpenFOAM and based on the QGD equations. [2]
• A new QGD-based equation solver AmrQGD implemented on AMReX soft-

ware.
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5.1 OpenFOAM (rhoCentralFoam and QGDFoam)

Figure 4 shows numerical Schlieren fields for OpenFOAM based solvers as a
function of mesh cell size. Parameters of the numerical algorithm α = 0.1,
ScQGD = 0.1 are used for the QGDFoam, these parameters are defined in the
paper [21] where this problem is considered.

a1) b1) c1)

a2) b2) c2)

Fig. 4. Numerical Schlieren with ∆t = 10−5s and tend = 0.7s.

a1) b1) c1)

a2) b2) c2)

Fig. 5. Numerical Schlieren on a 1/800 mesh. (a1, b1, c1) - Van Leer; (a2, b2, c2) -
QGDFoam. (a1, a2)-Co = 0.01 (∆t = 0.5·10−5s); (b1, b2) - Co = 0.1; (c1, c2) - Co = 0.2.

It can be seen that the upwind scheme does give an unacceptable solution
even on a 1/1600 mesh, but the Van Leer and QGD schemes resolve the flow most
correctly. However, when investigating different values of the time step (Fig. 5),
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it is found that the Van Leer scheme is oscillatory, the QGD approach gives an
acceptable solution at the Courant number Co = 0.2, while to obtain a non-
oscillatory solution using the Van Leer scheme, the Courant number Co = 0.01
is required.

a) b)

c) d)

Fig. 6. Comparison of the density field plots on the lines (Fig.3): a) Line 1; b) Line 3;
c) Line 4; d) Line 5. tend = 0.7s.

The density plots in Figure 6 show that the upwind scheme does not resolve
the vortex structure, making it inapplicable in the context of the problem, while
the Van Leer and QGD schemes correctly resolve the vortex structure and its
features.

5.2 AmrQGD features
The QGD algorithm has two tuning parameters α and ScQGD, in [21] it was
noted that the best choice for this problem is α = 0.1 and ScQGD = 0.1, how-
ever these recommendations were given for numerical implementation based on
the OpenFOAM package, so additional study is required for the newly developed
solver. Figure 7 a gives the initial simulation result, which shows that the solu-
tion is free from numerical oscillations only at ScQGD = 0.5, but the solution is
viscous due to the large value of ScQGD. In order to reduce oscillations, a local
variation of the ScQGD number (variable varSc) is introduced, which is equal
to 1 on the stationary shock when varSc = true. Figure 7 b shows the effect of
the additional viscosity on the shock. It can be seen that this approach signifi-
cantly reduced numerical oscillations after the vortex passes the shock, and an
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acceptable solution is obtained when α = 0.1, ScQGD = 0.1, which is similar
to the numerical algorithm implemented in OpenFOAM. It is likely that the
numerical implementation of the QGD algorithm in OpenFOAM automatically
includes numerical limiters, resulting in less oscillations, while the numerical
implementation in AMReX does not include limiters.

a) b)

Fig. 7. Numerical Schlieren in QGD AMReX on a 1/1600 mesh with α = 0.1 and
ScQGD = 0.1, tend = 0.7s : a) Dynamic Schmidt - off ; b) Dynamic Schmidt - on,

a) b) c)

Fig. 8. Numerical Schlieren in QGD AMReX with α = 0.1, ScQGD = 0.1: a) 1/400; b)
1/800; c) 1/1600.

a) b)

Fig. 9. Example of adaptive mesh refinement: a) by blocks; b) by cells.

The influence of the adaptive mesh refinement function (number of levels
namr) on the results obtained in AmrQGD is shown in figures (8-10). The adap-
tation is performed on the density gradient, i.e. if the gradient (the difference
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a)
b)

c) d)

e) f)

Fig. 10. Comparison of density values on five reference lines: a) Numerical Schlieren
field and five reference lines; b) Line 1; c) Line 2; d) Line 3; e) Line 3; d) Line 4; f)
Line 5; tend = 0.7s.

of the density values in the centers of neighboring cells divided by the distance
between them) is greater than 0.0003, the mesh cell is split into 4 and the time
step in each of them is reduced by half compared to the time step on the previous
equation of the computational cell. Figure 8a shows the flow structure without
splitting, on a mesh of 1/400. Figure 8b has a level of adaptation (namr = 1),
i.e. in a given region the mesh is equivalent to 1/800. In figure 8c there are 2
levels of adaptation (namr = 2), corresponding to the mesh 1/1600 in the vortex
resolution zone and reflected shock waves. Figure 9 shows the partitioning of the
computational domain into blocks according to the density gradient criterion
(fig. 9a) and the refinement of the computational mesh in these blocks (fig. 9b).

To demonstrate the capability of the developed numerical algorithm, a sim-
ulation of the flow with local mesh refinement corresponding to a mesh size of
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1/6400 was performed (Fig. 10). The use of AMR technology allows the calcu-
lation for such a mesh refinement to be performed within 6 hours on 24 cores.
Such a calculation on a stationary grid in the OpenFOAM package would have
been mush more computationally expensive.

5.3 Solving performance

A cluster of 12 Intel(R) Xeon(R) CPU 5160 @ 3.00GHz core nodes is used
to evaluate the performance of the selected algorithms. Measurements are per-
formed on an orthogonal mesh of 1/1600 on the OY axis with ∆t = 10−5 s. and
tend = 0.01 s. (Tab. 1). Where AmrQGD (off) means that there is no mesh adap-
tation, and AmrQGD (on) that two levels of adaptation are on. It can be seen
that on 12 cores, AmrQGD (namr = 2) computes 9 times faster than upwind, 15
times faster than Van Leer, 32 times faster than QGDFoam and 4.5 times faster
than AmrQGD on a 1/1600 stationary mesh. As the number of cores increases,
the speedup difference decreases, due to both the non-ideal parallelization of the
algorithm in AmrQGD and the fact that the algorithm reaches its lower bound
on the number of cells per core (which is about twenty thousand cells per CPU
core).

The study of GPU computing performance is conducted on the NVIDIA
GeForce RTX 2060 card based on the TU106 processor. It is found that the
computing time on one CPU core plus GPU is 4.8 times faster than on one CPU
core and 1.4 times faster than on four CPU cores.

Table 1. Calculation time on the 1/1600 mesh is ∆t = 10−5 s and tend = 0.01 s.

CPU Cell per CPU upwind vanLeer QGDFoam AmrQGD (off) AmrQGD (on)
12 426.7k 1317.23 2124.01 4597.02 636 143
24 213.3k 642.82 1060.39 2297.98 422 88
48 106.7k 338.25 544.53 1160.61 217 62
96 53.3k 173.05 286.46 595.18 127 63
192 26.7k 86.74 130.16 318.27 81 65

Table 2. Algorithms parallelization efficiency [%]. Computation mesh 1/400 ∆t =
10−5 s and tend = 0.01 s

CPU Cell per CPU upwind vanLeer QGDFoam AmrQGD (off) AmrQGD (on)
1 320k - - - - -
2 160k 83 87 89 81 60
4 80k 78 81 86 79 47
8 40k 64 67 67 61 45
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a)
b)

Fig. 11. Solving performance: a) Speedup of various algorithms on CPU; b) relative
AMR speedup on GPU.

6 Conclusion

A new two-dimensional quasi-gasdynamic solver AmrQGD based on AMReX
with the possibility of adaptive mesh refinement and parallelization of compu-
tations to graphics kernels is developed and described.

Cross-validation of the OpenFOAM and AMReX software packages, as well
as the different upwind, Van Leer and QGD algorithms, the latter being imple-
mented in two software packages simultaneously. It is found that the upwind
algorithm does not give an acceptable solution on a reasonable grid and time
step. The Van Leer algorithm gives an acceptable solution on a grid of 1/1600 and
a time step of ∆t = 10−5 s, corresponding to a Courant number of Co = 0.03.
A comparable result is given by the QGD algorithm implemented in QGDFoam
and AmrQGD, with a Courant number of Co = 0.2.

When the performance of the algorithms is examined on an orthogonal grid
of 1/1600 on the axis of the OY and with a time step ∆t = 10−5 s, it is found that
AmrQGD on 12 cores with two levels of adaptation is 15 times faster than Van
Leer, 32 times faster than QGDFoam and 4.5 times faster than AmrQGD on a
stationary mesh. However, because AMReX is designed to handle large numbers
of computational cells, the parallelization efficiency of QGD in AMReX decreases
as the number of cells per core decreases. It is found that adding a GPU to the
computation in AmrQGD can speed up the computation by up to 4.8 times.

It is planned to extend the presented AMReX QGD solver to three-dimensional
flows, to optimize the parallelization of the numerical algorithm and to test it
on a wide range of validation tasks in the future.

Acknowledgments. This work was supported by Moscow Center of Fundamental and
Applied Mathematics, Agreement with the Ministry of Science and Higher Education
of the Russian Federation, No. 075− 15− 2022− 283

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63783-4_8

https://dx.doi.org/10.1007/978-3-031-63783-4_8
https://dx.doi.org/10.1007/978-3-031-63783-4_8


14 Ivan But et al.

References

1. Shalf John. "The future of computing beyond Moore’s Law." Philo-
sophical Transactions of the Royal Society A 378.2166 (2020).
https://doi.org/10.1098/rsta.2019.0061

2. Elizarova T.G. Quasi-gas-dynamic Equations. Springer Berlin Heidelberg, (2009).
https://doi.org/10.1007/978-3-642-00292-2

3. Jacobsen N.G., Fuhrman D.R., and Fredsøe J. "A wave generation toolbox for the
open-source CFD library: OpenFoam®." International Journal for numerical meth-
ods in fluids 70.9 (2012). https://doi.org/10.1002/fld.2726

4. QGDSolvers, https://github.com/unicfdlab/QGDsolver Last accessed 19 Apr. 2024
5. Kraposhin M.V. et al. "Development of a new OpenFOAM solver us-

ing regularized gas dynamic equations." Computers & Fluids 166 (2018).
https://doi.org/10.1016/j.compfluid.2018.02.010

6. Kraposhin M.V., Ryazanov D.A., and Elizarova T.G. "Numerical algorithm
based on regularized equations for incompressible flow modeling and its im-
plementation in OpenFOAM." Computer Physics Communications 271 (2022).
https://doi.org/10.1016/j.cpc.2021.108216

7. Epikhin, A.S., Elizarova, T.G. Numerical simulation of underexpanded supersonic
jets impingement on an inclined flat plate. Thermophys. Aeromech. 28, 479–486
(2021). https://doi.org/10.1134/S0869864321040028

8. Melnikova, Valeriia G., Andrey S. Epikhin, and Matvey V. Kraposhin. 2021.
"The Eulerian–Lagrangian Approach for the Numerical Investigation of an Acous-
tic Field Generated by a High-Speed Gas-Droplet Flow" Fluids 6, no. 8: 274.
https://doi.org/10.3390/fluids6080274

9. Zhang Weiqun et al. "AMReX: a framework for block-structured adap-
tive mesh refinement." The Journal of Open Source Software 4.37 (2019)
https://doi.org/10.21105/joss.01370

10. Zhang Weiqun, et al. "AMReX: Block-structured adaptive mesh refinement for
multiphysics applications." The International Journal of High Performance Com-
puting Applications 35.6 (2021) https://doi.org/10.1177/10943420211022811

11. Andrey Epikhin and Ivan But. "Numerical Simulation of Supersonic Jet Noise
Using Open Source Software." International Conference on Computational Sci-
ence. Cham: Springer Nature Switzerland, (2023). https://doi.org/10.1007/978-3-
031-36030-5_24

12. TheLinuxFoundation, https://www.linuxfoundation.org/press. Last accessed 19
Apr. 2024

13. AmrQGDSolvers , https://github.com/unicfdlab/AmrQGDSolvers. Last accessed
19 Apr. 2024

14. Hollingsworth W.A. "A schlieren study of the interaction between a vortex and
a shock wave in a shock tube." British Aeronaut. Research Council Rept. 17,985
(1955).

15. Dosanjh D.S. and Weeks T.M. "Interaction of a starting vortex as well
as a vortex street with a traveling shock wave." AIAA journal 3.2 (1965).
https://doi.org/10.2514/3.2833

16. Ribner H. S. "The sound generated by interaction of a single vortex with a shock
wave." University of Toronto. (1959).

17. Dosanjh D.S. and Weeks T.M. "Sound generation by shock-vortex interaction."
AIAA Journal 5.4 (1967). https://doi.org/10.2514/3.4045

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63783-4_8

https://dx.doi.org/10.1007/978-3-031-63783-4_8
https://dx.doi.org/10.1007/978-3-031-63783-4_8


Implementation of the QGD algorithm using AMR and GPU 15

18. Rault A., Chiavassa G., and Donat R. "Shock-vortex interactions
at high Mach numbers." Journal of Scientific Computing 19 (2003)
https://doi.org/10.1023/A:1025316311633

19. Rodionov A.V. "Simplified artificial viscosity approach for cur-
ing the shock instability." Computers & Fluids 219 (2021).
https://doi.org/10.1016/j.compfluid.2021.104873

20. Kundu Abhishek and Gautam Biswas. "Analysis of multipolar vortices in the in-
teraction of a shock with a strong moving vortex." Computers & Fluids 248 (2022).
https://doi.org/10.1016/j.compfluid.2022.105686

21. Kirushina M.A., Elizarova T.G. and Epikhin A.S. "Simulation of Vortex Interaction
with a Shock Wave for Testing Numerical Algorithms." Mathematical Models and
Computer Simulations 15.2 (2023) https://doi.org/10.1134/s2070048223020072

22. 5th International workshop on hight-order CFD methods,
https://how5.cenaero.be/ Last accessed 29 Feb 2024

23. Kurganov A., and Tadmor E. "New high-resolution central schemes for nonlinear
conservation laws and convection–diffusion equations." Journal of computational
physics 160.1 (2000). https://doi.org/10.1006/jcph.2000.6459

24. Swanson R.C., and Turkel E. "On central-difference and upwind schemes."
Journal of computational physics 101.2 (1992). https://doi.org/10.1016/0021-
9991(92)90007-L

25. Van-Leer B. "Towards the ultimate conservative difference scheme. II. Monotonic-
ity and conservation combined in a second-order scheme." Journal of computational
physics 14.4 (1974). https://doi.org/10.1016/0021-9991(74)90019-9

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63783-4_8

https://dx.doi.org/10.1007/978-3-031-63783-4_8
https://dx.doi.org/10.1007/978-3-031-63783-4_8

