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Abstract. Turbulent flows play important roles in many flow-related
phenomena that appear in various fields. However, despite numerous
studies on turbulence, the nature of turbulence has not yet been fully
clarified. Direct numerical simulation (DNS) of incompressible homoge-
neous turbulence in a periodic box is currently a powerful method for
studying turbulent flows. However, even modern world-class supercom-
puters do not have sufficient computational resources to carry out DNS
at very high Reynolds number (Re). Memory capacity constraints are
particularly severe. Therefore, we have developed an out-of-core DNS
(ooc-DNS) code that uses storage to overcome memory limitations. The
ooc-DNS code can reduce memory usage by up to a quarter and allows
DNS at a higher Re, which would be impossible under normal usage due
to memory limitations. When implementing the ooc-DNS code, however,
it is crucial to accelerate file input/output (I/O) because the I/O time
for storage accounts for a large percentage of the execution time. In this
paper, we evaluate the I/O performance of the ooc-DNS code when using
a file system called the Lightweight Layered I/O Accelerator of the su-
percomputer Fugaku. We also evaluate the impact of the I/O cache and
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its size on I/O performance and show that the I/O processing can be
accelerated by using the cache and optimizing its size. Finally, by taking
on I/O cache size when executing the ooc-DNS code with 8, 1923 grid
points, the I/O speed and overall execution speed are increased by 2.4
times and 1.9 times compared to that without the I/O cache.

Keywords: Direct numerical simulation · Turbulent flows · Out-of-core
implementation · Fugaku · I/O cache.

1 Introduction

Turbulent flows are ubiquitous and play important roles in flow-associated phe-
nomena that appear in various fields of science and technology. Despite numerous
studies of turbulence, however, the nature of turbulence has not yet been fully
clarified.

In turbulent flows, eddies of various spatial and temporal scales coexist. They
non-linearly interact with each other to produce complex motions, so that a small
difference in initial conditions can result in unpredictable different motions of
individual eddies in turbulent flows. However, it is conceivable that statistically
universal laws may exist in these seemingly completely unpredictable complex
flows, independent of differences in boundary and initial conditions.

Direct numerical simulation (DNS) of turbulence in a periodic box is a suit-
able method by which to study the homogeneous isotropic equilibrium state of
turbulence on small scales at sufficiently high Reynolds numbers. Direct numer-
ical simulation of box turbulence is highly accurate under the simplest possible
conditions and allows DNS of turbulence flows at higher Reynolds numbers. In
fact, many DNSs have been conducted and have contributed to the development
of turbulence theory [7, 8], beginning with Orzag’s DNS in 1969 [12].

However, even modern world-class supercomputers do not have sufficient
computational resources to carry out DNSs of box turbulence at high Re. Figure
1 shows the trend in supercomputer computational performance and memory
capacity and that the computational performance has increased approximately
11,574 times in eighteen years, while the memory capacity has increased only
approximately 509 times. This fact suggests that memory capacity constraints
will eventually become more severe. For example, a double precision DNS with
32, 7683 grid points using the developed code requires at least 5.6 PiB of memory.
However, there is no supercomputer in Japan that has this amount of memory
capacity. Therefore, we have developed an out-of-core DNS (ooc-DNS) code such
that a DNS with a large number of grid points can be executed [9, 15]. The ooc-
DNS code saves arrays containing variables to files on external storage devices.
In fact, the code reduces memory usage by up to a quarter and allows DNS
at higher Re, which would be impossible under normal usage due to memory
limitations. When executing the ooc-DNS code on the supercomputer Fugaku,
however, the file input/output (I/O) time accounts for a large percentage of the
total execution time because the I/O speed is much slower than the computation
speed.
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Fig. 1: Performance and memory capacity trends for computers listed in TOP500 [3].
The solid orange line represents the first-place performance in the TOP500.
The blue dashed line represents the memory capacity of the computers that
are ranked first in the TOP500 [2, 6, 10, 11, 13, 14].

The purpose of this paper is to accelerate I/O processing and reduce the I/O
time when ooc-DNS is executed on Fugaku, and we focus on the I/O cache in
compute node (CN)-cache provided by a file system called Lightweight Layered
I/O Accelerator (LLIO). Specifically, we evaluate the impact of the I/O cache
size on I/O performance. We also evaluate the I/O performance of the ooc-DNS
code when executed on Fugaku.

In the remainder of this paper, Section 2 describes the ooc-DNS code. Section
3 describes the architecture of Fugaku. In Section 4.1, we evaluate the perfor-
mance of Fugaku’s CN-cache using the IOR benchmark program [1]. In Section
4.2, we evaluate the performance of the CN-cache by using a benchmark pro-
gram that simulates the behavior of ooc-DNS. In Section 4.3, we evaluate the
performance of the CN-cache using the ooc-DNS code with 2, 0483 and 4, 0963

grid points. In Section 4.4, we implement the ooc-DNS code with 8, 1923 grid
points and confirm that optimizing the CN-cache size increases the I/O speed
and overall execution speed. Conclusions are given in Section 5.

2 Out-of-core Direct Numerical Simulation Code

2.1 Direct Numerical Simulation Code Implementation

We consider a cube with side length 2π and periodic boundary conditions as a
computational domain. Within this computational domain, we consider homo-
geneous isotropic turbulence according to the Navier-Stokes equations under the
incompressible condition with unit density, as follows

∇ · u = 0, (1)
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∂u

∂t
+ (u · ∇)u = −∇p+ ν∇2u+ F , (2)

where u = (u1, u2, u3), F = (F1, F2, F3), p, and ν are the velocity, external force,
pressure, and kinematic viscosity, respectively.

Discretizing Eqs. (1) and (2) using the Fourier spectral method on the dis-
cretized grid points that divide a cube into N equal parts in each direction leads
to ordinary differential equations for the Fourier coefficient ûl of the velocities
in real space, which are represented as

dûl

dt
+ ν||l||22ûl = −( ̂(u · ∇)u)l + l · l · (

̂(u · ∇)u)l
||l||22

(1 ≤ l1, l2, l3 ≤ N). (3)

Here,

( ̂(u · ∇)u)l = il1
∑

l=k+k′

ûkûk′ + il2
∑

l=k+k′

v̂kûk′ + il3
∑

l=k+k′

ŵkûk′ . (4)

where l = (l1, l2, l3), k = (k1, k2, k3), and k′ = (k′1, k
′
2, k

′
3) are the wave numbers

in Fourier space, and the hat symbol denotes the Fourier coefficient. The ordinary
differential equations are time evolved using the four-stage fourth-order Runge-
Kutta-Gill (RKG) method.

Equations (4) are computed using a transform method based on the three-
dimensional fast Fourier transform (3D-FFT). Aliasing errors introduced by the
transform method are completely eliminated by the phase shift method and
cutting modes larger than

√
2N
3 [5].

The original parallel code was developed for two-dimensional domain de-
composition with Message Passing Interface (MPI) for data distribution, and
the 3D-FFT parallelized by pencil decomposition is used in the implementation.
Figure 2 illustrates how the computational domain is divided into pencils.

𝑘ଵ

𝑘ଷ
𝑘ଶ

Fig. 2: Pencil domain decomposition in spectral space

2.2 Out-of-core Implementation Concept

When carrying out DNS of box turbulence using our code by the spectral and
RKG methods, a total of 18 variables are required, including the velocity field
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in each direction in spectral space, intermediate variables in the RKG method,
the velocity field in real space, and two variables for the 3D-FFT.

The ooc-DNS code divides each array containing the variables into several
subarrays and stores them in separate files. In addition, the code holds only as
much memory as the size of one file for each subarray. Figure 3 illustrates how
arrays to be stored in storage are divided within a process. When assigning or
referencing variables stored in the files, they are processed one file at a time using
arrays in memory that are prepared for the size of one file. Figure 4 describes how
to change the original code to the ooc-DNS code using a Fortran-like description.
The rank of the array variable is 3, and the last rank is partitioned into the
number of files at declaration. Then, a loop is added to repeatedly read each
portion of the variables, perform calculations, and write updated values to the
file.

𝑘ଵ

𝑘ଷ
𝑘ଶ

Pencil domain decomposition 
in spectral space

Variables divided in the process 
that are stored in storage

Fig. 3: Illustration of array division within the process

real(kind=8) :: a(n, m, NN)
real(kind=8) :: b(n, m, NN)

do k = 1, NN
do j = 1, m

do I = 1, n
a(i, j, k) = … b(i, j, k)

end do
end do

end do

real(kind=8) :: a(n, m, NN/nf)
real(kind=8) :: b(n, m, NN/nf)

do F  = 1, nf

read b(:,:,:) from the #F file.

do k = 1, NN/nf
do j = 1, m

do I = 1, n
a(i,j,k) = … b(i,j,k)

end do
end do

end do

write a(:,:,:) to the #F file.

end do

Fig. 4: Pseudo kernel of the out-of-core direct numerical simulation (ooc-DNS) code
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This method processes data that is too large to fit into the physical memory
of a computer and allows for easy configuration of which of the 16 variables will
be stored in storage. The two variables for the 3D-FFT are all placed in memory
as in the original code because the 3D-FFT is performed more frequently.

Although the additional file I/O time increases the computation time, this
implementation reduces the memory required to execute the code by up to a
quarter and allows for the execution of DNSs with a size that was not possible
by the original code.

3 Fugaku Architecture

The Fugaku is installed at RIKEN Center for Computational Science (R-CCS)
in Kobe, Japan [11]. The system is built on the A64FX ARM v8.2-A, which
uses scalable vector extension instructions with a 512-bit implementation. The
A64FX processor is a many-core ARM CPU with 48 compute cores and two
or four assistant cores used by the operating system. The memory capacity of
one node is 32 GiB, of which approximately 5 GiB is reserved for the system.
Table 1 provides a further hardware breakdown. There are a total of 158,976
compute nodes, with one compute node for every 16 compute nodes serving as
both a storage I/O (SIO) node and a compute node. The SIO node is connected
to a first-layer storage and performs file I/O for this storage (Fig. 5). The group
of 16 compute nodes is referred to as the SIO group. Each SIO group has a
non-volatile memory express solid state drive (NVMe SSD) with a capacity of
approximately 1.6 TiB.

Table 1: Specifications of supercomputer Fugaku
Total peak performance 488 PFlops
Total memory 4.85 PiB
Number of nodes 158,976
node Interconnect Tofu Interconnect D

CPU FUJITSU Processor A64FX
Performance 3.072 TFlops
Number of cores 48
Memory 32 GiB
Memory bandwidth 1,024 GB/s
L1D/core cache 64 KiB, 4 way

256 GB/s (load), 128 GB/s (store)
L2/CMG cache 8 MiB, 16 way
L2/node cache 4 TB/s (load), 2 TB/s (store)
L2/core cache 128 GB/s (load), 64 GB/s (store)
I/O PCIe Gen3×16

Figure 6 shows that the storage system consists of three primary layers.
The first-layer storage consists of NVMe SSDs controlled by LLIO. The second-
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CN CN CN CN

CN CN CN CN

CN CN CN CN

CN & 
SIO CN CN CN

SSD by LLIO

Fig. 5: Lightweight Layered I/O Ac-
celerator (LLIO) configuration
diagram. Here, CN indicates a
compute node and CN&SIO in-
dicates a compute node with a
storage I/O function.

Cloud Storage

Disk Device by FEFS

SSDs by LLIO

CN

1st layer

2nd layer

3rd layer

Fig. 6: Layered storage in supercom-
puter Fugaku

layer storage consists of multiple hard disk drives controlled by a Lustre-based
global file system called the Fujitsu Exabyte File System (FEFS). The total
capacities of the first- and second-layer storages are approximately 15.9 PiB
and 150 PiB, respectively. The third-layer storage consists of commercial cloud
storage services.

The LLIO provides three storage areas in the first-layer storage: a file cache
area for the second-layer storage, a shared temporary area for compute nodes
assigned a job, and a local temporary area for each compute node. The local
temporary area has the largest bandwidth of these three areas [4].

The LLIO also provides an I/O cache function in compute nodes in order to
accelerate the I/O from/to the first-layer storage. This function uses a portion of
the compute node memory as an I/O cache, called the CN-cache. The CN-cache
area is allocated in the size specified by the user in the memory area, and the size
on one compute node that can be specified ranges from 4 MiB to 32 GiB. When
this size is not specified explicitly, it is the default size of 128 MiB. Therefore,
if there is remaining memory capacity out of the capacity that is used by a user
program, then the CN-cache size can be increased accordingly. For example, if
a program that uses 25 GiB of memory per compute node, considering that the
system uses approximately 5 GiB of memory as previously stated, the remaining
2 GiB can be allocated as the CN-cache. Figure 7 illustrates the memory usage
for one compute node in this example.

The CN-cache can be enabled and used without any modifications to the code
or compiling the code again against specific libraries that overload read and write
posix calls. The CN-cache size can just be set as an environment variable when
executing the program.
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CN-cache, 2 GiB

System, 5 GiB

User program, 25 GiB

Fig. 7: Example of memory usage for one compute node on supercomputer Fugaku

The CN-cache function allows data to be cached during read and write oper-
ations. Hereinafter, caching during read operations is referred to as “read cache”
and caching during write operations is referred to as “write cache”.

The purpose of the read cache is to store data that has been read from
the first-layer storage into the CN-cache. This results in the acceleration of the
input processing. The decision to use the read cache can be made by the user
through a specified parameter. Similarly, the write cache is used to store data
that is to be written to the first-layer storage in the CN-cache, resulting in the
acceleration of the output processing. A threshold value can be specified for the
write cache to determine whether it should be used. The write cache is used
when the data size to be written is less than or equal to the specified threshold.
It is important to note that the read cache is always enabled in this paper, and
the write cache threshold is consistently set to the same size as the CN-cache
size, unless otherwise stated.

In this paper, we use the first-layer storage for storing temporary files, mea-
sure the I/O time when the size of the CN-cache is changed, and evaluate its
performance.

4 Evaluation of Compute Node (CN)-cache Performance

In this section, we evaluate the CN-cache performance from three perspectives.
First, we evaluate the performance of the CN-cache using IOR [1], a benchmark
program for measuring parallel file system performance. Next, we evaluate the
performance using a simple program similar to the I/O kernel of the ooc-DNS
code. Finally, we evaluate the performance using the ooc-DNS code.

The CN-cache performance is evaluated by varying the CN-cache size. When
the CN-cache performance of 0 MiB is measured, the read cache is set to disabled
and the write cache threshold is to 0 MiB.
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4.1 Performance Evaluation of the I/O Cache with IOR

There are more than 30 options that can be specified when executing an IOR
program. Considering the I/O kernel behavior of the ooc-DNS code, we specified
those options as shown in Table 2. Just as the ooc-DNS code divides a 512 MiB
variable into 32 segments, the IOR code divides a 512 MiB block-sized file into
32 segments. However, the parameter “fsyncPerWrite” is set to 1 when the CN-
cache size is 0 MiB. In contrast, “fsyncPerWrite” is set to 0 when the CN-cache
size is not 0 MiB.

Table 2: Description of options and contents specified in IOR
Parameter Value Description
repetition 10 number of repetitions of test
fsync 1 performs fsync upon POSIX file close
SegmentCount 32 number of segments
intraTestBarriers 1 uses barriers between open, write/read, and close
blockSize 512 MiB -
transferSize 16 MiB -
fsyncPerWrite 0 or 1 performs fsync after each POSIX write

The IOR program was executed using 4,608 MPI processes on 1,152 compute
nodes, with four processes per node. The sizes of the CN-cache were set to 0,
4, 16, 32, 64, 128, 192, 256, and 1,024 MiB. Figure 8 shows the bandwidth of
first-layer storage in one SIO group, calculated based on the results of the IOR
execution. The read and write bandwidths are depicted in orange and blue,
respectively. The read and write bandwidths for the CN-cache size of 0 are
depicted by the symbol “■” in the same figure.

It is found that the actual read and write bandwidths for the first-layer
storage in one SIO group are approximately 4,500 MiB/s and 1,900 MiB/s,
respectively. The values are nearly identical to those measured by Akimoto et
al. [4]

The highest write bandwidth with the CN-cache size of 1,024 MiB is obtained
because the data is transferred together in larger sizes. Since the CN-cache of 4
MiB is not used for transferring data of 16 MiB, the bandwidths with CN-cache
sizes of 0 MiB and 4 MiB are approximately the same.

The read and write bandwidths are lowest when the CN-cache size is between
16 MiB and 32 MiB because the CN-cache size is too small to transfer the data
continuously. However, the bandwidths gradually increase as the CN-cache size
increases. Processing takes longer due to the lack of free CN-cache area, and
increasing the CN-cache size improves the bandwidths.
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Fig. 8: Measurements of bandwidth per the storage I/O (SIO) group, the first-layer
storage, using IOR

4.2 Performance Evaluation of the I/O Cache with a Simple
Program Similar to the Ooc-DNS Code

In the ooc-DNS code, if variables in files are referenced and assigned, then the
sequence of reading values from the file, calculating them, and writing them to
the file is repeated until all subarrays are calculated. The benchmark program
shown in Fig. 9 was generated to perform similar operations as the ooc-DNS code
with three arrays: a, b, and c. Each array is divided into 32 subarrays, each of
which is stored into separate files. The size of arrays a, b, and c in each process is
512 MiB, so that the size of the subarrays is 16 MiB. The input and output times
were measured with barrier synchronization after each operation. The variable F
in Fig. 9 is the number of subarrays. In the same way, the benchmark program
was also generated with six arrays: a, b, c, d, e, and f.

These programs were executed using 192 MPI processes on 48 compute nodes,
with four processes per node. The sizes of the CN-cache size were set to 0, 16, 32,
64, 96, 128, 192, 256, and 512 MiB. Figures 10 and 11 show the execution results
when using three arrays and six arrays, respectively. For each configuration, we
repeat the code execution 11 times and the figures show the average time of the
last 10 iterations. The read and write times are depicted in orange and blue,
respectively. The times for the CN-cache size of 0 MiB are depicted in the same
figure using the symbol “■.”

Figure 10 shows that when the CN-cache size is 0 MiB, the I/O time is
longest and there is not much difference in the read time and write time. When
the CN-cache size is 16 MiB or larger, the write time is approximately twice as
long as the read time. The write time is shortest when the CN-cache size is 128
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do F = 1, 32
call read_a_file(F)
call read_b_file(F)
call read_c_file(F)

call calculation(a,b,c)

call write_a_file(F)
call write_b_file(F)
call write_c_file(F)

end do

subroutine calculation(a,b,c) 
a = a*04 + a*0.3 + a*0.2
b = b*04 + b*0.3 + b*0.2
c = c*04 + c*0.3 + c*0.2

end subroutine calculation

Fig. 9: Simple program created to evaluate CN-cache performance

MiB. On the other hand, the read time is shortest when the CN-cache size is 96
MiB.

Figure 11 shows that the I/O time is longest when the CN-cache size is 0
MiB and that there is no difference in the read time and write time when the
CN-cache size is 0 MiB. The write time is shortest when the CN-cache size is
128 MiB, and increases monotonically when the CN-cache size is 128 MiB or
larger. On the other hand, the read times for the CN-cache size of 128 MiB and
192 MiB are approximately 2 and 1.8 times longer than for that of 96 MiB,
respectively. However, no such significant difference in read time was observed
when only reading and calculating were repeated without writing. Therefore,
these spikes for 128 MiB and 192 MiB are caused by the sequence of reading
and writing instructions. More specifically, when the CN-cache size is between
128 MiB and 192 MiB and the transfer data is 16 MiB, consecutive reads and
writes will degrade the speed of reading data.

It is found that I/O time was reduced by using the CN-cache for both cases
of three and six arrays. However, it is also found that there are spikes in read
time, as shown in Fig. 11, and that increasing the CN-cache size results in longer
I/O time in some cases. Therefore, optimizing the CN-cache size is important to
further reduce I/O time.

4.3 Performance Evaluation of I/O Cache with the Ooc-DNS Code

We carried out the ooc-DNS code with two problem sizes, N3 = 2, 0483 and
4, 0963.

The number of nodes used in the execution with N3 = 2, 0483 and 4, 0963 are
32 and 1,024, respectively, with four MPI processes allocated per node. The DNSs
with N3 = 2, 0483 and 4, 0963, however, require approximately 1,281 GiB and
10,256 GiB memory capacities, respectively, and it is necessary to store variables
to files in storage considering that one node has only a 32-GiB memory capacity.
We changed the number of variables to be stored in files on each problem size
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so that as few variables as possible are stored in files. In fact, 11 or 12 out of
16 variables are divided into 32 subarrays for the cases of N3 = 2, 0483 and
4, 0963, respectively. Then, the size of one file storing a subarray is 16 MiB, and
the memory usage is approximately 0.52 times for N=2,048 and approximately
0.45 times for N=4,096. Barrier synchronization is performed at the end of the
interval for which time measurements were taken, and the I/O time required to
proceed a time step is measured. The numbers of read and write operations in
the ooc-DNS code are 4,069 and 3,008, respectively, for N3 = 2, 0483, for one
time step. In contrast, the numbers of read and write operations in the ooc-DNS
code are 4,704 and 3,648, respectively, for N3 = 4, 0963.

The times for read and write operations are measured by varying the CN-
cache size as 0, 4, 16, 32, 64, 96, 128, 256, and 512 MiB. The times for the read
and write operations and their sums for N3 = 2, 0483 and N3 = 4, 0963 are
plotted in Figs. 12 and 13, respectively. The times for read, write, and their sum
are depicted in orange, blue, and gray, respectively. The times for the CN-cache
size of 0 MiB are plotted by the “■” symbol.

The difference in I/O time between the DNS sizes of 2, 0483 and 4, 0963 is due
to the different number of variables stored in first-layer storage, and, regardless
of CN-cache size, the I/O total time is shorter for N3 = 2, 0483.

Figure 12 shows that the write performance when the CN-cache size is 96
MiB or larger is worse than when the CN-cache size is 0 MiB. Fig. 13 shows that
the write performance when the CN-cache size is 192 MiB or larger is similarly
worse. These results indicate that the write performance is better with a small
CN-cache size, despite the large number of write operations. The reasons for
these are thought to be that the CN-cache improves the write speed, and that
there is too much data in the CN-cache for the LLIO to manage.

Figures 12 and 13 also show that spikes are found for read performance when
the CN-cache size is 128 MiB for the two cases. In Fig. 12, the read time at 128
MiB is approximately 1.5 times longer than that at 96 MiB. On the other hand,
in Fig. 13, the read time at 128 MiB is approximately 1.8 times longer than that
at 96 MiB. These behaviors are also confirmed in Fig. 11 in Section 4.2.
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We found that the I/O total time for the CN-cache size of 0 MiB is the
longest and that the CN-cache improved the I/O total speed and reduce I/O
total time for practical applications.
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Fig. 12: Performance for 2, 0483 grid
points
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Fig. 13: Performance for 4, 0963 grid
points

4.4 Execution of Ooc-DNS Code with 8, 1923 Grid Points

The DNS with N3 = 8, 1923 was executed using 8,192 processes on 2,048 nodes
with four processes per node. The DNS with N3 = 8, 1923 requires a memory
capacity of approximately 80-TiB, and it is necessary to store variables to files
in storage. Twelve out of 16 variables are divided into 32 subarrays and sent
to storage. Then, the size of one file storing a subarray is 16 MiB, and the
memory usage is approximately 0.45 times as large as that without the out-
of-core implementation. Barrier synchronization is performed at the end of the
interval for which time measurements were taken, and the I/O time and the
other time required to proceed a time step are measured. The numbers of read
and write operations in the ooc-DNS code are 4,704 and 3,648, respectively, for
one time step.

The times for reading, writing, and computation are measured at two CN-
cache sizes of 0 and 32 MiB. These times are plotted in Fig. 14. The times for
read, write, and other computation are depicted in orange, blue, black, respec-
tively. It is found that there is little difference in computation time between the
CN-caches of 0 MiB and 32 MiB. In addition, when the CN-cache size is set to
32 MiB, a two-fold speed up in overall execution time is achieved compared to
the CN-cache size of 0 MiB.

5 Conclusions

Modern world-class supercomputers do not have sufficient memory capacity to
carry out DNS at very high Reynolds number. Therefore, we implemented the
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Fig. 14: Execution time for ooc-DNS with N3 = 8, 1923

ooc-DNS code. When we ran the ooc-DNS code on Fugaku, the I/O time ac-
counted for the majority of the execution time. In order to accelerate the I/O
speed when executing the ooc-DNS code, we have focused on the CN-cache
function for optimizing the I/O cache size on Fugaku and evaluated the CN-
cache performance from three perspectives. First, the basic evaluation of the
performance of the CN-cache was conducted using the IOR benchmark pro-
gram. Next, we evaluated the performance with a simple program that is similar
to the ooc-DNS code. The perfowermance was then evaluated with the ooc-DNS
code. Finally, we optimized the CN-cache size in order to accelerate the ooc-
DNS code. As a result, it was found that specifying a CN-cache size larger than
512 MiB does not reduce the I/O time in the execution of the ooc-DNS code
due to performance degradation of the write cache. In addition, the read perfor-
mance degrades drastically without explicit specification of the CN-cache size.
By specifying an appropriate CN-cache size when executing the ooc-DNS code
with N3 = 8, 1923, the I/O speed and the overall execution speed was increased
by 2.4 times and 1.9 times, respectively, as compared to the CN-cache size of 0
MiB.
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