
Calculation of the Sigmoid Activation Function in FPGA

Using Rational Fractions

Pavlo Serhiienko1[0000-0003-3030-0074], Anatoliy Sergiyenko1[0000-0001-5965-1789],

Sergii Telenyk2[0000-0001-9202-9406] and Grzegorz Nowakowski2[0000-0002-3086-0947]

1 Igor Sikorsky Kyiv Polytechnic Institute, Kyiv, 03056, Ukraine
aser@comsys.kpi.ua

2 Cracow University of Technology, Cracow, 31-155, Poland

Abstract. In this paper, we consider implementations of the sigmoid activation

function for artificial neural network hardware systems. A rational fraction num-

ber system is proposed to calculate this function. This form of data representation

offers several benefits, including increased precision compared to integers and

more straightforward implementation in a field programmable gate array (FPGA)

than the floating-point number system. In contemporary FPGA applications, ra-

tional fractions excel in regard to their compact hardware size, high throughput,

and the ability to adjust the precision through the selection of the data width. The

proposed module for calculation of the sigmoid activation function is shown to

have high throughput and to occupy a relatively modest hardware volume com-

pared to modules relying on piecewise polynomial approximation with fixed-

point data.

Keywords: rational fraction, sigmoid function, FPGA, VHDL, artificial neural

network.

1 Introduction

The increasing number of publications devoted to artificial neural networks (ANNs) in

recent years indicates a growing interest in implementing these in hardware. The main

reason for this trend is the rapid development of the element base used in digital ANN

implementations. One approach to both accelerating the operations of an ANN and

minimising its power consumption is to exploit its parallelism through the use of a field

programmable gate array (FPGA). The speed of the artificial neurons depends heavily

on the speed with which the sigmoid activation function is calculated in the nodes of

the ANN. However, implementing this function in an FPGA requires significant hard-

ware resources. The choice of approximation method for this function and its hardware

implementation are crucial factors that affect the accuracy and speed of the ANN algo-

rithm. Previous studies have explored various approximation methods for the digital

implementation of nonlinear activation functions, including tabular approaches, Taylor

transformation, and piecewise polynomial approximation. The most commonly used

method for implementing sigmoid-type activation functions is a piecewise linear or

quadratic approximation with integer data. This provides lower approximation

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63778-0_11

mailto:aser@comsys.kpi.ua
https://dx.doi.org/10.1007/978-3-031-63778-0_11
https://dx.doi.org/10.1007/978-3-031-63778-0_11

2 P. Serhiienko, A. Sergiyenko, S. Telenyk and G. Nowakowski

accuracy, which may lead to higher performance, while reducing the approximation

error increases the hardware resource usage and decreases the data processing speed

[13–16]. Other methods, such as rational approximation and continued fractions, pro-

vide the highest precision results; however, these involve floating point data calcula-

tions, which require large amounts of hardware resources in FPGA.

This paper proposes a new algorithm for calculating the sigmoid activation function

based on a rational fraction data representation.

2 Introduction

The most common data representation in an ANN is based on the floating point, and

this is explained by the features of the ANN algorithm. The ith node of a typical ANN

applies a signal multiplier by the weight i,j at its jth input. During learning by the gen-

eralised delta rule (backpropagation algorithm), the weights i,j are updated, taking into

account the difference between the available and predicted results (recognition errors),

and based on the results, the gradients l
i are calculated. Each gradient indicates in which

direction and at what speed the weights i,j should be changed so that they eventually

reach the optimal value.

A node calculates its activation аі as the sum of the inputs xi multiplied by the

weights i,j, which is processed by a nonlinear activation function pi. This function must

be differentiable so that network parameters can be tuned using the error backpropaga-

tion algorithm. The most common is the sigmoid activation function:

 p(x) =
1

 1 + e–x
. (1)

The weights i,j of the nodes in the different layers are adjusted according to the

chain rule. At the same time, the gradients l
i, which are used to adjust the weights i,j

in the internal layers of the ANN, are calculated taking into account the gradients l+k
i ,

which are propagated from all subsequent layers. The learning process involves several

iterations in which the parameters i,j, 
l
i are continuously updated until the network is

optimised (for example, when the weights i,j stop changing).

When the network is deep (more than three layers), the learning process may suffer

from vanishing or exploding gradients l
i depending on the choice of the activation

function pi. As a result, the weights of the initial layers cannot be properly adjusted [1].

To ensure both convergence of the weights and an ANN with the optimum through-

put-cost ratio, the execution of an ANN usually has two stages. In the first, the ANN is

trained using precise floating point calculations, meaning that the effect of vanishing or

exploding gradients is minimised. In the second step, an effective data representation

is selected, and the weights i,j are truncated and rounded. The trained ANN is then used

for a particular application. In this inference step, the ANN is effectively implemented

in FPGA as well. Through this process, the unneeded relations in the ANN are removed,

which significantly simplifies the structure configured in the FPGA (network pruning)

[2]. However, a problem remains in terms of selecting both the data representation and

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63778-0_11

https://dx.doi.org/10.1007/978-3-031-63778-0_11
https://dx.doi.org/10.1007/978-3-031-63778-0_11

 Calculation of the Sigmoid Activation Function in FPGA Using Rational Fractions 3

the sigmoid function approximation that can provide the minimum degradation in the

pattern recognition effectiveness [3, 4].

A wide range of data formats can be used for an ANN implementation. To compress

the huge sets of weights i,j to provide a sufficient data range, 16-bit floating point for-

mats are used, such as fp16 and BFloat16 [2]. Moreover, the different ANN layers need

different levels of precision, and specific floating point formats of different bit widths

can be used with a FPGA [5].

The results of previous studies show that the data dynamic range for an ANN is more

important than the mantissa range. This fact is taken into account in the BFloat16 for-

mat proposed by Google, in which the mantissa has only 7 bits while the exponent has

8 bits [6].

A logarithmic number system is sometimes used that can also provide a wide dy-

namic range [7] and multiplier-free structures for the node. However, a logarithmic

arithmetic unit may be more expensive than a hardware multiplier due to the significant

complexity of the logarithmic function approximation.

Other investigations have shown that the weights i,j and outputs of the activation

functions in a trained convolutional ANN such as AlexNet are distributed over a rela-

tively small range [8]. To exploit this fact, the Posit format is used in some ANNs. This

format is distinguished by the variable lengths of both the mantissa and exponent, which

is coded by the additional regime field [9–11].

Although both the floating point and Posit formats provide the necessary computa-

tional precision, they yield lower throughputs, higher hardware volumes, and higher

power consumption than integer formats for ANNs configured in FPGA [12]. FPGA is

an excellent basis for the implementation of application-specific processors that calcu-

late integer data. The data bit width can be tuned easily in an FPGA to provide the

optimum ratios for the throughput, precision to hardware volume, and power consump-

tion [4]. When performing calculations in the respective data ranges, integers are con-

sidered as fixed point data.

The position of the point in the fixed point format depends on the scale factor of the

particular data. In most convolutional ANNs, the point in the data and weights i,j is

positioned just after the sign bit [8]; however, the input data for a sigmoid-type activa-

tion function are usually limited by a value of 8. The point therefore divides the word

into an integer and its fractional parts. In this situation, the data distribution in the set

of all integers of a particular bit width is not effective. Fig. 1 illustrates the data distri-

bution for a set of 28 unsigned integers. It is clear that in the case of the input data

entering the sigmoid function, most of the uniformly represented data are concentrated

in the range [4: 8]. This example illustrates that the integer range is used ineffectively

here.

Integers are used in convolution algorithms very well, but it is hard to find an effec-

tive algorithm to calculate a nonlinear function such as the sigmoid function using in-

tegers. As a result, most of the activation functions in ANNs are calculated using a

piecewise linear or second-order polynomial approximation [13–17, 28]. Most of these

have data representations based on 16 bits and limited precision, with a maximum error

in the range [0.0005: 0.07].

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63778-0_11

https://dx.doi.org/10.1007/978-3-031-63778-0_11
https://dx.doi.org/10.1007/978-3-031-63778-0_11

4 P. Serhiienko, A. Sergiyenko, S. Telenyk and G. Nowakowski

It is therefore preferable to use a data format that occupies a place between floating

point and integer formats, and which provides high precision and dynamic range, high

speed, and a low hardware volume for an ANN implementation as well as an effective

sigmoid function calculation. The next section presents such a format.

3 Rational fractions and calculation of the sigmoid

activation function

3.1 Rational fractions

A rational fraction is a numerical object that consists of an integer numerator and integer

denominator, and represents a rational number. The rational fraction a/b has the char-

acteristic that it can approximate a given transcendental number x. If a/b < x and c/d >

x, then the fraction (a + c)/(b + d), called a medianta, is nearer to x than a/b or c/d.

Hence, if a set of mediantes is built, then we can approximate a number x with any

precision [18].

If a noninteger number x is represented by 2n digits in fixed point format with error

1, then it can be represented by the fraction a/b with error 2 = 1, and the numbers a

and b have no more than n digits in their representation [19].

A representation based on a fractional number has a set of advantages. Firstly, any

binary fraction or fixed point datum is dependent on the binary data representation, and

does not exactly represent a real number. In binary representation, a floating point num-

ber is equal to a fraction where the denominator is a power of two, and is not equal to

the respective decimal fraction. For example, the number 1/9 = 1/10012 is an exact frac-

tion in any numerical system, and can be represented with an error as the decimal frac-

tion 0.111110 or binary fraction 0.111000111000112.

Secondly, the number distribution of rational fraction data is more effective for the

implementation of an ANN compared to integers. This fact is illustrated in Fig. 1, where

the charts represent a number n of different data samples in the range [2i, 2i+1], i = –

6,…,7 for 16-bit fixed point data and rational fractions with an 8-bit numerator and

denominator. From the graph, it is clear that the data are concentrated around a value

of 1.0, as the data are for real ANNs.

Fig. 1. Data distributions for sets of fixed point data and fractions.

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63778-0_11

https://dx.doi.org/10.1007/978-3-031-63778-0_11
https://dx.doi.org/10.1007/978-3-031-63778-0_11

 Calculation of the Sigmoid Activation Function in FPGA Using Rational Fractions 5

Thirdly, rational fractions can help us to find an approximation for an irrational or

transcendental number with a given level of precision. Many elementary functions are

effectively calculated using suitable rational approximation formulas. When such a

function is approximated using finite continued fractions or rational approximations,

the rational fraction arithmetic fits very well. Many constants and constant tables are

effectively stored as rational numbers.

Finally, rational fractions provide a comparatively simple set of arithmetic opera-

tions. The multiplication a/b to c/d and division of them are equal to ac/(bd) and bd/(ac),

respectively. Note that the division of the numerator to the denominator is not calcu-

lated. The addition operation is equal to (ad + bc)/(bd). For comparison of two numbers,

it is sufficient to calculate ad – bc [18]. Some specific calculations are simple, such as

 1 +
a

 b
 =

 a + b

 b
; or

1

1 +
a

 b

 =
b

 a + b
, (2)

and these can help in calculating the continued fractions.

It should also be taken into account that the numerator and denominator bit width is

less than half of the bit width of the fixed-point data that provides equal precision.

 Hence, the hardware complexity of a fraction adder is similar to the complexity of

an integer multiplier with the same precision, and the complexity of a fraction multiplier

is two times less than that of an integer multiplier.

3.2 Rational fractions in processors

Some computers in the 1970s had already the rational fraction arithmetic except float-

ing point one. The main disadvantage of rational fractions is that the number of bits

increases dramatically when operations are implemented precisely [20]. To eliminate

this disadvantage, the division of the numerator and denominator by their greatest com-

mon divisor was done, as in the rational fraction processor, which was proposed in [21].

However, when floating point coprocessors became widely used, fractional number

processors dropped out of use.

Later, rational fractions were built into many mathematical CAD tools such as Ma-

ple, which are implemented in PC. Such fractions are widely used for calculations with

unlimited precision, for solving modern cryptographic problems, and other tasks. Lan-

guages such as PERL and Java are therefore supported by packages providing calcula-

tions with unlimited precision using rational fractions.

The development of FPGAs, which contain numerous hardware multipliers, enabled

the design of application-specific processors that used rational fractions. Two proces-

sors for computing linear algebra problems were proposed in [22, 23]. Rational frac-

tions have also been effectively used in a processor intended for autoregressive signal

analysis [24].

The features of rational fractions described above were exploited in these processors.

Modern FPGAs have thousands of hardware multiplier-accumulator units (MPUs) that

can perform base operations with fractions, including (2). Each operation may result in

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63778-0_11

https://dx.doi.org/10.1007/978-3-031-63778-0_11
https://dx.doi.org/10.1007/978-3-031-63778-0_11

6 P. Serhiienko, A. Sergiyenko, S. Telenyk and G. Nowakowski

underflows in the numerator or denominator; in this situation, both the numerator and

denominator are normalised by a left shift of an equal number of bits. This number of

bits is equal to one after the addition operation and a maximum of n/2 after multiplica-

tion.

3.3 Calculation of the sigmoid function

In view of the features of the rational fraction operation, it is clear that the usual ap-

proximation methods such as piecewise approximation and power series are not effec-

tive, due to the large numbers of comparison and addition operations. In contrast, ra-

tional approximation and finite continued fractions are effectively calculated using ra-

tional fractions, as this approach requires much fewer elementary operations. We note

that continued fractions frequently converge much more rapidly than power series ex-

pansions and in a much larger domain. A sigmoid activation function with a single

precision floating point can be effectively calculated using only the rational Padè ap-

proximation [25].

The function in (1) can be calculated in two steps. In the first, the exponent function

is calculated using the continued fraction approximation [26]

 ex = 1 +
x

1 –

x

2 +

x

3
 …  1 +

2x

2 – x2/6
 (3)

while in the second, the formula in (1) is calculated.

To evaluate rational fraction calculations with different bit widths, a package of spe-

cific functions was designed in the VHDL language so that the functions marked as ‘+’,

’-‘, ‘*’ , and ’/’ overload the respective operations but for the rational fraction data.

Functions were also designed for calculating (2) as well as functions that transferred

data from the floating point format to a rational fraction and back again.

The chart in Fig. 2 was created by evaluating the sigmoid function in (1) using the

approximation in (3) on the basis of 16-bit rational fractions. This gives maximum er-

rors of 0.12 in the range [–6:6] and 0.002 in the range [–2:2]. It is clear from this

example that a piecewise approximation would give good results. For instance, this

function could be approximated by lines at the levels of 1.0 when x is outside the range

[–4:4]. However, the exponent function features provide a more effective means of im-

proving the precision of the approximation.

Fig. 2. Sigmoid function approximated using (3).

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63778-0_11

https://dx.doi.org/10.1007/978-3-031-63778-0_11
https://dx.doi.org/10.1007/978-3-031-63778-0_11

 Calculation of the Sigmoid Activation Function in FPGA Using Rational Fractions 7

Consider the case where y0 = ex0 is the exact value of the function in (1) for an argu-

ment x0. Then, for any argument x which is close to x0, we have the approximation

 ex = y0 ez = y0 (1 +
z

1 –

z

2 +

z

3
 …)  y0 (1 + z);

 z = x – x0 (4)

Here, x0 is a rational fraction formed from the most significant bits of the input data

x. The bits of x0 serve as the address bits for the table, which stores the values y0. Hence,

the approximated exponent function is derived as the product of the table function y0(x0)

and the sum 1 + z. A graph of the resulting sigmoid function when the numerator and

denominator of x0 have widths of 4 bits is shown in Fig. 3.

Fig. 3. Sigmoid function approximated using (4).

The resulting function gives a maximum error of –0.0088 in the range [–8:8]. This

error can be reduced by increasing both the bit width of x0 and the number of terms of

the continued fraction in (4), and can be as small as necessary. When one additional

term is used in (4), the maximum error is decreased to –0.0004.

In this section, we have proposed a new method for effective approximation of the

sigmoid activation function based on rational fraction arithmetic, which gives moder-

ate precision using a small number of calculations. In the next section, we present an

example of a module used to calculate this function in a FPGA.

4 Experimental results

The proposed method for approximation of the sigmoid activation function is imple-

mented in FPGA as an IP core. The input data x and results p are represented by the 16-

bit integer numerators xn, yn, and denominators xd and yd, respectively. A dataflow graph

for the approximation algorithm is shown in Fig. 4. The input data are stored in the

registers RXn and RXd, and are loaded and calculated in the pipeline mode. Their four

most significant bits (including signs) form the value x0, which serves as the address in

the tables ROMEn and ROMEd, which store the values of the exponent coefficients y0

= y0n/y0d.

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63778-0_11

https://dx.doi.org/10.1007/978-3-031-63778-0_11
https://dx.doi.org/10.1007/978-3-031-63778-0_11

8 P. Serhiienko, A. Sergiyenko, S. Telenyk and G. Nowakowski

Fig. 4. Dataflow graph for calculation of the sigmoid function.

Five integer multipliers and three integer adders are used to perform the calculations

shown in (1) and (4). The intermediate result z and result p are normalised by left-

shifting the numerator and denominator by up to 2 bits. The module used for calculating

this algorithm is described in VHDL language by the style for synthesis as the pipelined

datapath. This datapath contains five pipeline register stages, and outputs the results in

each clock cycle.

The parameters for the proposed module, as configured for different FPGA series,

are shown in Table 1. The number of DSP blocks containing the multiplier is only two

when the module is configured in a Xilinx Kintex7 FPGA.

Table 1. Parameters of the module for calculating the sigmoid function

Module FPGA se-

ries

Hardware cost Maximum clock

frequency, MHz

Maximum

error LUTs/ALMs DSP

blocks

Proposed

Proposed

Proposed

Kintex7

Artix7

Cyclone V

381

389

151

2

2

4

238

154

117

0.0094

0.0094

0.0094

Tsmots [13] Cyclone III 368 0 37 0.018

Campo [16] Virtex6 232 6 53* 0.028

Gomar [27] Virtex4 123 0 29* 0.087

Zhang [15] Zed7 272 2 107 –

Li [14] Virtex7 493 0 208 0.0078

* Data input frequency, as the algorithm is implemented in several sequential steps.

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63778-0_11

https://dx.doi.org/10.1007/978-3-031-63778-0_11
https://dx.doi.org/10.1007/978-3-031-63778-0_11

 Calculation of the Sigmoid Activation Function in FPGA Using Rational Fractions 9

Fig. 5. Error in the sigmoid function calculation.

This is explained by the fact that the small bit multiplication in the data x0n and x0d

is performed in hardware on the basis of LUTs. The maximum clock frequency in this

FPGA reaches 238 MHz due to the pipelining of the calculations. When the calculations

are carried out without pipelining, this frequency is reduced to 95 MHz.

Fig. 5 shows the calculation error for the module. An analysis shows that there is the

opportunity to minimise the maximum error by rounding the result. Moreover, the error

depends on the address bit widths of ROMEn and ROMEd, and can be decreased dra-

matically when these bit widths are increased. Due to the hardware consumption in

Table 1, these ROMs are performed in LUTs and there is the potential to increase their

volume.

The different modules that have been used to calculate the sigmoid activation func-

tion using a piecewise polynomial approximation are presented in Table 1 for compar-

ison. We note that they all use 16-bit fixed point arithmetic, and the maximum error is

derived for the input range [–8: 8]. A comparison of these different modules shows that

the proposed module has the highest speed, with a moderate value for the hardware

volume and a comparatively small computational error.

Our module has the advantages of increasing the computational precision and mini-

mising the hardware volume at the cost of bit width minimisation. The other modules

of the ANN system can also use rational fraction arithmetic. However, in other situa-

tions, the proposed module has to be agreed upon both with the input and output floating

point or integer data by attaching not complex wrapping hardware. The hardware at-

tached to the output must have a division unit that calculates p = pn/pd.

5 Conclusion

A rational fraction number system has the advantage of providing higher precision than

integers, and its FPGA implementation is simpler than that of a floating number system.

The main advantages of using rational fractions in a modern FPGA implementation are

small hardware volume, high throughput, and the possibility of regulating the precision

by selecting the data width. It has been shown here that this data representation helps

in designing effective modules for implementation of the sigmoid activation function.

Our module for calculating the sigmoid activation function is shown to have high

throughput and low hardware volume in comparison with modules based on a piecewise

polynomial approximation using fixed point data. Future work on the use of rational

fractions will focus on the implementation of an ANN system as a whole.

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63778-0_11

https://dx.doi.org/10.1007/978-3-031-63778-0_11
https://dx.doi.org/10.1007/978-3-031-63778-0_11

10 P. Serhiienko, A. Sergiyenko, S. Telenyk and G. Nowakowski

Acknowledgments. Funding: This research was funded by the Faculty of Electrical and Com-

puter Engineering, Cracow University of Technology, and the Ministry of Science and Higher

Education, Republic of Poland (grant no. E-1/2024).

References

1. Russell S., Norvig P.: Artificial Intelligence: A Modern Approach, 4th Edition. Pearson

(2022)

2. Young Kim J-Y.: Chapter Five - FPGA based neural network accelerators. In: S. Kim, G.

C. Deka (eds) Advances in Computers, vol. 122, pp. 135–165, Elsevier (2021),

https://doi.org/10.1016/bs.adcom.2020.11.002

3. Bailey B., Machine Learning’s Growing Divide. Semiconductor Engineering (2018),

https://semiengineering.com/machine-learnings-growing-divide, last accessed 2024/04/19

4. Mahajan, R., Sakhare, D. Gadgil R.: Review of Artificial Intelligence Applications and Ar-

chitectures. In: Anuradha D. Thakare, Sheetal Umesh Bhandari (eds), pp. 25–34. Artificial

Intelligence Applications and Reconfigurable Architectures, Wiley Online Library (2023).

https://doi.org/10.1002/9781119857891.ch2

5. Floating-Point Operator v7.1 PG060, Xilinx (2020), https://docs.amd.com/v/u/en-

US/pg060-floating-point, last accessed 2024/04/19

6. Lai, L., Suda, N., Chandra, V.: Deep convolutional neural network inference with floating-

point weights and fixed-point activations, arXiv:1703.03073v1, pp. 1–10, Computer Sci-

ence: Machine Learning (2017), https://doi.org/10.48550/arXiv.1703.03073

7. Miyashita D., Lee E. H., Murmann B.: Convolutional neural networks using logarithmic

data representation, arXiv:1603.01025v2, Computer Science: Neural and Evolutionary

Computing (2016), https://doi.org/10.48550/arXiv.1603.01025

8. Zhang, H., Subbian, D., Lakshminarayanan, G., Ko, S-B.: Application-Specific and Recon-

figurable AI Accelerator. In: Mishra, A., Cha, J., Park, H., Kim, S. (eds) Artificial Intelli-

gence and Hardware Accelerators, pp. 183–223. Springer, Cham (2023),

https://doi.org/10.1007/978-3-031-22170-5_7

9. Johnson J.: Rethinking floating point for deep learning, arXiv:1811.01721v1, Computer Sci-

ence: Numerical Analysis (2018), https://doi.org/10.48550/arXiv.1811.01721

10. Carmichael Z., Langroudi H. F., Khazanov C., Lillie J., Gustafson J. L. and Kudithipudi D.:

Deep Positron: A Deep Neural Network Using the Posit Number System, Design, Automa-

tion & Test in Europe Conference & Exhibition (DATE), Florence, Italy, pp. 1421–1426,

IEEE (2019), https://doi.org/10.23919/DATE.2019.8715262

11. Raposo G., Tomás P., Roma N.: PositNN: Training Deep Neural Networks with Mixed Low-

Precision Posit, ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP), pp. 7908-7912, Toronto, ON, Canada (2021),

https://doi.org/10.1109/ICASSP39728.2021.9413919

12. Nechi, A., Groth, L., Mulhem, S., Merchant F., Buchty, R., Berekovic, M.: FPGA-based

Deep Learning Inference Accelerators: Where Are We Standing?, vol. 16, issue 4, Article

No.: 60, pp 1–32, ACM Transactions on Reconfigurable Technology and Systems (2023),

https://doi.org/10.1145/3613963

13. Tsmots, I., Skorokhoda, O., Rabyk V.: Hardware Implementation of Sigmoid Activation

Functions using FPGA, pp. 34-38IEEE 15th International Conference on the Experience of

Designing and Application of CAD Systems (CADSM), Polyana, Ukraine (2019),

https://doi.org/10.1109/CADSM.2019.8779253

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63778-0_11

https://doi.org/10.1016/bs.adcom.2020.11.002
https://semiengineering.com/machine-learnings-growing-divide
https://onlinelibrary.wiley.com/authored-by/Mahajan/Rashmi
https://onlinelibrary.wiley.com/authored-by/Sakhare/Dipti
https://onlinelibrary.wiley.com/authored-by/Gadgil/Rohini
https://onlinelibrary.wiley.com/authored-by/Thakare/Anuradha+D.
https://onlinelibrary.wiley.com/authored-by/Bhandari/Sheetal+Umesh
https://onlinelibrary.wiley.com/doi/book/10.1002/9781119857891
https://onlinelibrary.wiley.com/doi/book/10.1002/9781119857891
https://doi.org/10.1002/9781119857891.ch2
https://arxiv.org/abs/1703.03073v1
https://doi.org/10.48550/arXiv.1703.03073
https://arxiv.org/abs/1603.01025v2
https://doi.org/10.48550/arXiv.1603.01025
https://arxiv.org/search/cs?searchtype=author&query=Johnson,+J
https://arxiv.org/abs/1811.01721v1
(2018),%20https:/doi.org/10.48550/arXiv.1811.01721
https://doi.org/10.1145/3613963
https://doi.org/10.1109/CADSM.2019.8779253
https://dx.doi.org/10.1007/978-3-031-63778-0_11
https://dx.doi.org/10.1007/978-3-031-63778-0_11

 Calculation of the Sigmoid Activation Function in FPGA Using Rational Fractions 11

14. Li, Z., Sui, B., Xing, Z., Wang, Q.: FPGA Implementation for the Sigmoid with Piecewise

Linear Fitting Method Based on Curvature Analysis, vol. 11, issue 9, Electronics (2022),

https://doi.org/10.3390/electronics11091365

15. Zhang, L.: Implementation of Fixed-point Neuron Models with Threshold, Ramp and Sig-

moid Activation Functions, 4th International Conference on Mechanics and Mechatronics

Research, vol. 224, IOP Publishing IOP Conf. Series: Materials Science and Engineering

(2017), https://doi.org/10.1088/1757-899X/224/1/012054

16. Del Campo, I., Finker, R., Echanobe, J., Basterretxea, K.: Controlled Accuracy Approxima-

tion of Sigmoid Function for Efficient FPGA-based Implementation of Artificial Neurons,

vol. 49(25), pp. 1598-1600, Electronics Letters (2013), https://doi.org/10.1049/el.2013.3098

17. Laudani, A., Lozito, G. M., Fulginei, F. R, Salvini, A.: On Training Efficiency and Compu-

tational Costs of a Feed Forward Neural Network: A Review, vol. 2015, 13 pages, Compu-

tational Intelligence and Neuroscience (2015), https://doi.org/10.1155/2015/818243

18. Kornerup, P., David W. Matula, D. W.: Finite Precision Number Systems and Arithmetic,

Cambridge University Press (2010), https://doi.org/10.1017/CBO9780511778568

19. Hintchin A.Y. Continued Fractions: Moscow, Nauka, 3-d Ed (1978) (in russian)

20. Horn, B. K. P. Rational arithmetic for minicomputers, Vol. 8, No. 2, pp. 171–176, Software

Practice and Experience (1978)

21. Irvin M. J., Smith D. R.: A rational arithmetic processor, pp. 241-244, Proc. 5-th Symp.

Comput. Arithmetic (1981)

22. Maslennikow, O., Lepekha, V., Sergyienko, A.: FPGA Implementation of the Conjugate

Gradient Method. In: Wyrzykowski, R., Dongarra, J., Meyer, N., Waśniewski, J. (eds) Par-

allel Processing and Applied Mathematics, Lecture Notes in Computer Science, vol. 3911.

Springer, Berlin, Heidelberg (2006), https://doi.org/10.1007/11752578_63

23. Maslennikow, O., Lepekha, V., Sergiyenko, A., Tomas, A., Wyrzykowski, R.: Parallel Im-

plementation of Cholesky LL T-Algorithm in FPGA-Based Processor. In: Wyrzykowski,

R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds) Parallel Processing and Applied

Mathematics, Lecture Notes in Computer Science, vol. 4967, Springer, Berlin, Heidelberg

(2008), https://doi.org/10.1007/978-3-540-68111-3_15

24. Sergiyenko, A., Maslennikow, O., Ratuszniak, P., Maslennikowa, N., Tomas, A.: Applica-

tion Specific Processors for the Autoregressive Signal Analysis. In: Wyrzykowski, R., Don-

garra, J., Karczewski, K., Wasniewski, J. (eds) Parallel Processing and Applied Mathemat-

ics, Lecture Notes in Computer Science, vol. 6067, Springer, Berlin, Heidelberg (2010),

https://doi.org/10.1007/978-3-642-14390-8_9

25. Hajduk, Z.: High accuracy FPGA activation function implementation for neural networks,

vol. 247, issue C, pp. 59–61, Neurocomputing (2017), https://doi.org/10.1016/j.neu-

com.2017.03.044

26. Roy, R., Olver, F. W. J.: Elementary Functions, In: NIST Handbook of Mathematical Func-

tions, Cambridge Univ. Press (2010)

27. Gomar, S., Mirhassani, M., Ahmadi M.: Precise Digital Implementations of Hyperbolic

Tanh and Sigmoid Function, 50th Asilomar Conference on Signals, Systems and Computers,

pp. 1586-1589, Pacific Grove, USA (2016), https://doi.org/10.1109/ACSSC.2016.7869646

28. Moroz, L., Samotyy, V., Gepner, P., Węgrzyn, M., Nowakowski, G.: Power Function Algo-

rithms Implemented in Microcontrollers and FPGAs, vol. 12, issue 16, Electronics (2023),

https://doi.org/10.3390/electronics12163399

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63778-0_11

https://doi.org/10.3390/electronics11091365
https://doi.org/10.1088/1757-899X/224/1/012054
https://www.researchgate.net/journal/Electronics-Letters-1350-911X?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIiwicG9zaXRpb24iOiJwYWdlSGVhZGVyIn19
http://dx.doi.org/10.1049/el.2013.3098
https://doi.org/10.1155/2015/818243
https://doi.org/10.1017/CBO9780511778568
https://doi.org/10.1007/11752578_63
https://doi.org/10.1007/978-3-540-68111-3_15
https://doi.org/10.1007/978-3-642-14390-8_9
https://doi.org/10.1016/j.neucom.2017.03.044
https://doi.org/10.1016/j.neucom.2017.03.044
https://doi.org/10.1109/ACSSC.2016.7869646
https://dx.doi.org/10.1007/978-3-031-63778-0_11
https://dx.doi.org/10.1007/978-3-031-63778-0_11

