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Abstract. In this paper, we consider implementations of the sigmoid activation 

function for artificial neural network hardware systems. A rational fraction num-

ber system is proposed to calculate this function. This form of data representation 

offers several benefits, including increased precision compared to integers and 

more straightforward implementation in a field programmable gate array (FPGA) 

than the floating-point number system. In contemporary FPGA applications, ra-

tional fractions excel in regard to their compact hardware size, high throughput, 

and the ability to adjust the precision through the selection of the data width. The 

proposed module for calculation of the sigmoid activation function is shown to 

have high throughput and to occupy a relatively modest hardware volume com-

pared to modules relying on piecewise polynomial approximation with fixed-

point data. 

Keywords: rational fraction, sigmoid function, FPGA, VHDL, artificial neural 

network. 

1 Introduction 

The increasing number of publications devoted to artificial neural networks (ANNs) in 

recent years indicates a growing interest in implementing these in hardware. The main 

reason for this trend is the rapid development of the element base used in digital ANN 

implementations. One approach to both accelerating the operations of an ANN and 

minimising its power consumption is to exploit its parallelism through the use of a field 

programmable gate array (FPGA). The speed of the artificial neurons depends heavily 

on the speed with which the sigmoid activation function is calculated in the nodes of 

the ANN. However, implementing this function in an FPGA requires significant hard-

ware resources. The choice of approximation method for this function and its hardware 

implementation are crucial factors that affect the accuracy and speed of the ANN algo-

rithm. Previous studies have explored various approximation methods for the digital 

implementation of nonlinear activation functions, including tabular approaches, Taylor 

transformation, and piecewise polynomial approximation. The most commonly used 

method for implementing sigmoid-type activation functions is a piecewise linear or 

quadratic approximation with integer data. This provides lower approximation 

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63778-0_11

mailto:aser@comsys.kpi.ua
https://dx.doi.org/10.1007/978-3-031-63778-0_11
https://dx.doi.org/10.1007/978-3-031-63778-0_11


2  P. Serhiienko, A. Sergiyenko, S. Telenyk and G. Nowakowski 

accuracy, which may lead to higher performance, while reducing the approximation 

error increases the hardware resource usage and decreases the data processing speed 

[13–16]. Other methods, such as rational approximation and continued fractions, pro-

vide the highest precision results; however, these involve floating point data calcula-

tions, which require large amounts of hardware resources in FPGA.  

This paper proposes a new algorithm for calculating the sigmoid activation function 

based on a rational fraction data representation. 

2 Introduction 

The most common data representation in an ANN is based on the floating point, and 

this is explained by the features of the ANN algorithm. The ith node of a typical ANN 

applies a signal multiplier by the weight i,j at its jth input. During learning by the gen-

eralised delta rule (backpropagation algorithm), the weights i,j are updated, taking into 

account the difference between the available and predicted results (recognition errors), 

and based on the results, the gradients l
i are calculated. Each gradient indicates in which 

direction and at what speed the weights i,j should be changed so that they eventually 

reach the optimal value. 

A node calculates its activation аі as the sum of the inputs xi multiplied by the 

weights i,j, which is processed by a nonlinear activation function pi. This function must 

be differentiable so that network parameters can be tuned using the error backpropaga-

tion algorithm. The most common is the sigmoid activation function: 

 p(x) = 
1

 1 + e–x
.  (1) 

The weights i,j of the nodes in the different layers are adjusted according to the 

chain rule. At the same time, the gradients l
i, which are used to adjust the weights i,j 

in the internal layers of the ANN, are calculated taking into account the gradients l+k
i   , 

which are propagated from all subsequent layers. The learning process involves several 

iterations in which the parameters i,j, 
l
i are continuously updated until the network is 

optimised (for example, when the weights i,j stop changing). 

When the network is deep (more than three layers), the learning process may suffer 

from vanishing or exploding gradients l
i depending on the choice of the activation 

function pi. As a result, the weights of the initial layers cannot be properly adjusted [1].  

To ensure both convergence of the weights and an ANN with the optimum through-

put-cost ratio, the execution of an ANN usually has two stages. In the first, the ANN is 

trained using precise floating point calculations, meaning that the effect of vanishing or 

exploding gradients is minimised. In the second step, an effective data representation 

is selected, and the weights i,j are truncated and rounded. The trained ANN is then used 

for a particular application. In this inference step, the ANN is effectively implemented 

in FPGA as well. Through this process, the unneeded relations in the ANN are removed, 

which significantly simplifies the structure configured in the FPGA (network pruning) 

[2]. However, a problem remains in terms of selecting both the data representation and 

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63778-0_11

https://dx.doi.org/10.1007/978-3-031-63778-0_11
https://dx.doi.org/10.1007/978-3-031-63778-0_11


 Calculation of the Sigmoid Activation Function in FPGA Using Rational Fractions 3 

the sigmoid function approximation that can provide the minimum degradation in the 

pattern recognition effectiveness [3, 4].  

A wide range of data formats can be used for an ANN implementation. To compress 

the huge sets of weights i,j to provide a sufficient data range, 16-bit floating point for-

mats are used, such as fp16 and BFloat16 [2]. Moreover, the different ANN layers need 

different levels of precision, and specific floating point formats of different bit widths 

can be used with a FPGA [5]. 

The results of previous studies show that the data dynamic range for an ANN is more 

important than the mantissa range. This fact is taken into account in the BFloat16 for-

mat proposed by Google, in which the mantissa has only 7 bits while the exponent has 

8 bits [6].  

A logarithmic number system is sometimes used that can also provide a wide dy-

namic range [7] and multiplier-free structures for the node. However, a logarithmic 

arithmetic unit may be more expensive than a hardware multiplier due to the significant 

complexity of the logarithmic function approximation. 

Other investigations have shown that the weights i,j and outputs of the activation 

functions in a trained convolutional ANN such as AlexNet are distributed over a rela-

tively small range [8]. To exploit this fact, the Posit format is used in some ANNs. This 

format is distinguished by the variable lengths of both the mantissa and exponent, which 

is coded by the additional regime field [9–11].   

Although both the floating point and Posit formats provide the necessary computa-

tional precision, they yield lower throughputs, higher hardware volumes, and higher 

power consumption than integer formats for ANNs configured in FPGA [12]. FPGA is 

an excellent basis for the implementation of application-specific processors that calcu-

late integer data. The data bit width can be tuned easily in an FPGA to provide the 

optimum ratios for the throughput, precision to hardware volume, and power consump-

tion [4]. When performing calculations in the respective data ranges, integers are con-

sidered as fixed point data.  

The position of the point in the fixed point format depends on the scale factor of the 

particular data. In most convolutional ANNs, the point in the data and weights i,j is 

positioned just after the sign bit [8]; however, the input data for a sigmoid-type activa-

tion function are usually limited by a value of 8. The point therefore divides the word 

into an integer and its fractional parts. In this situation, the data distribution in the set 

of all integers of a particular bit width is not effective. Fig. 1 illustrates the data distri-

bution for a set of 28 unsigned integers. It is clear that in the case of the input data 

entering the sigmoid function, most of the uniformly represented data are concentrated 

in the range [4: 8]. This example illustrates that the integer range is used ineffectively 

here. 

Integers are used in convolution algorithms very well, but it is hard to find an effec-

tive algorithm to calculate a nonlinear function such as the sigmoid function using in-

tegers. As a result, most of the activation functions in ANNs are calculated using a 

piecewise linear or second-order polynomial approximation [13–17, 28]. Most of these 

have data representations based on 16 bits and limited precision, with a maximum error 

in the range [0.0005: 0.07].  
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It is therefore preferable to use a data format that occupies a place between floating 

point and integer formats, and which provides high precision and dynamic range, high 

speed, and a low hardware volume for an ANN implementation as well as an effective 

sigmoid function calculation. The next section presents such a format. 

3 Rational fractions and calculation of the sigmoid 

activation function 

3.1 Rational fractions 

A rational fraction is a numerical object that consists of an integer numerator and integer 

denominator, and represents a rational number. The rational fraction a/b has the char-

acteristic that it can approximate a given transcendental number x. If a/b < x and c/d > 

x, then the fraction (a + c)/(b + d), called a medianta, is nearer to x than a/b  or c/d. 

Hence, if a set of mediantes is built, then we can approximate a number x with any 

precision [18]. 

If a noninteger number x is represented by 2n digits in fixed point format with error 

1, then it can be represented by the fraction a/b with error 2 = 1, and the numbers a 

and b have no more than n digits in their representation [19].  

A representation based on a fractional number has a set of advantages. Firstly, any 

binary fraction or fixed point datum is dependent on the binary data representation, and 

does not exactly represent a real number. In binary representation, a floating point num-

ber is equal to a fraction where the denominator is a power of two, and is not equal to 

the respective decimal fraction. For example, the number 1/9 = 1/10012 is an exact frac-

tion in any numerical system, and can be represented with an error as the decimal frac-

tion 0.111110 or binary fraction 0.111000111000112. 

Secondly, the number distribution of rational fraction data is more effective for the 

implementation of an ANN compared to integers. This fact is illustrated in Fig. 1, where 

the charts represent a number  n  of different data samples in the range [2i, 2i+1],    i  = –

6,…,7 for 16-bit fixed point data and rational fractions with an 8-bit numerator and 

denominator. From the graph, it is clear that the data are concentrated around a value 

of 1.0, as the data are for real ANNs.  

 
Fig. 1. Data distributions for sets of fixed point data and fractions. 
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Thirdly, rational fractions can help us to find an approximation for an irrational or 

transcendental number with a given level of precision. Many elementary functions are 

effectively calculated using suitable rational approximation formulas. When such a 

function is approximated using finite continued fractions or rational approximations, 

the rational fraction arithmetic fits very well. Many constants and constant tables are 

effectively stored as rational numbers.  

Finally, rational fractions provide a comparatively simple set of arithmetic opera-

tions. The multiplication a/b to c/d and division of them are equal to ac/(bd) and bd/(ac), 

respectively. Note that the division of the numerator to the denominator is not calcu-

lated. The addition operation is equal to (ad + bc)/(bd). For comparison of two numbers, 

it is sufficient to calculate ad – bc [18]. Some specific calculations are simple, such as 

 1 + 
a

 b 
 = 

 a + b

  b
;   or   

1 

1 + 
a

 b
 

 = 
b

 a + b
, (2) 

and these can help in calculating the continued fractions. 

It should also be taken into account that the numerator and denominator bit width is 

less than half of the bit width of the fixed-point data that provides equal precision. 

 Hence, the hardware complexity of a fraction adder is similar to the complexity of 

an integer multiplier with the same precision, and the complexity of a fraction multiplier 

is two times less than that of an integer multiplier.  

3.2 Rational fractions in processors 

Some computers in the 1970s had already the rational fraction arithmetic except float-

ing point one. The main disadvantage of rational fractions is that the number of bits 

increases dramatically when operations are implemented precisely [20]. To eliminate 

this disadvantage, the division of the numerator and denominator by their greatest com-

mon divisor was done, as in the rational fraction processor, which was proposed in [21]. 

However, when floating point coprocessors became widely used, fractional number 

processors dropped out of use. 

Later, rational fractions were built into many mathematical CAD tools such as Ma-

ple, which are implemented in PC. Such fractions are widely used for calculations with 

unlimited precision, for solving modern cryptographic problems, and other tasks. Lan-

guages such as PERL and Java are therefore supported by packages providing calcula-

tions with unlimited precision using rational fractions.  

The development of FPGAs, which contain numerous hardware multipliers, enabled 

the design of application-specific processors that used rational fractions. Two proces-

sors for computing linear algebra problems were proposed in [22, 23]. Rational frac-

tions have also been effectively used in a processor intended for autoregressive signal 

analysis [24]. 

The features of rational fractions described above were exploited in these processors. 

Modern FPGAs have thousands of hardware multiplier-accumulator units (MPUs) that 

can perform base operations with fractions, including (2). Each operation may result in 
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underflows in the numerator or denominator; in this situation, both the numerator and 

denominator are normalised by a left shift of an equal number of bits. This number of 

bits is equal to one after the addition operation and a maximum of n/2 after multiplica-

tion. 

3.3 Calculation of the sigmoid function 

In view of the features of the rational fraction operation, it is clear that the usual ap-

proximation methods such as piecewise approximation and power series are not effec-

tive, due to the large numbers of comparison and addition operations. In contrast, ra-

tional approximation and finite continued fractions are effectively calculated using ra-

tional fractions, as this approach requires much fewer elementary operations. We note 

that continued fractions frequently converge much more rapidly than power series ex-

pansions and in a much larger domain. A sigmoid activation function with a single 

precision floating point can be effectively calculated using only the rational Padè ap-

proximation [25].  

The function in (1) can be calculated in two steps. In the first, the exponent function 

is calculated using the continued fraction approximation [26] 

 ex = 1 + 
x

1 –
  

x

2 +
  

x

3
 …    1 + 

2x

2 – x2/6
 (3) 

while in the second, the formula in (1) is calculated. 

To evaluate rational fraction calculations with different bit widths, a package of spe-

cific functions was designed in the VHDL language so that the functions marked as ‘+’, 

’-‘, ‘*’ , and ’/’ overload the respective operations but for the rational fraction data. 

Functions were also designed for calculating (2) as well as functions that transferred 

data from the floating point format to a rational fraction and back again.   

The chart in Fig. 2 was created by evaluating the sigmoid function in (1) using the 

approximation in (3) on the basis of 16-bit rational fractions. This gives maximum er-

rors of 0.12 in the range [–6:6] and 0.002 in the range  [–2:2]. It is clear from this 

example that a piecewise approximation would give good results. For instance, this 

function could be approximated by lines at the levels of 1.0 when x is outside the range 

[–4:4]. However, the exponent function features provide a more effective means of im-

proving the precision of the approximation. 

  

Fig. 2. Sigmoid function approximated using (3). 
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Consider the case where y0 = ex0 is the exact value of the function in (1) for an argu-

ment x0. Then, for any argument x which is close to x0, we have the approximation 

 ex = y0 ez  = y0 (1 + 
z 

1 –
  

z 

2 +
  

z 

3
 … )  y0 (1 + z); 

 z = x – x0 (4) 

Here, x0 is a rational fraction formed from the most significant bits of the input data 

x. The bits of x0 serve as the address bits for the table, which stores the values y0. Hence, 

the approximated exponent function is derived as the product of the table function y0(x0) 

and the sum 1 + z. A graph of the resulting sigmoid function when the numerator and 

denominator of x0 have widths of 4 bits is shown in Fig. 3. 

 
Fig. 3. Sigmoid function approximated using (4). 

The resulting function gives a maximum error of –0.0088 in the range [–8:8]. This 

error can be reduced by increasing both the bit width of  x0 and the number of terms of 

the continued fraction in (4), and can be as small as necessary. When one additional 

term is used in (4), the maximum error is decreased to –0.0004.  

In this section, we have proposed a new method for effective approximation of the 

sigmoid activation function based on rational fraction arithmetic, which gives  moder-

ate precision using a small number of calculations. In the next section, we present an 

example of a module used to calculate this function in a FPGA.  

4 Experimental results 

The proposed method for approximation of the sigmoid activation function is imple-

mented in FPGA as an IP core. The input data x and results p are represented by the 16-

bit integer numerators xn, yn, and denominators xd and yd, respectively. A dataflow graph 

for the approximation algorithm is shown in Fig. 4. The input data are stored in the 

registers RXn and RXd, and are loaded and calculated in the pipeline mode. Their four 

most significant bits (including signs) form the value x0, which serves as the address in 

the tables ROMEn and ROMEd, which store the values of the exponent coefficients y0 

= y0n/y0d.  
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Fig. 4. Dataflow graph for calculation of the sigmoid function. 

Five integer multipliers and three integer adders are used to perform the calculations 

shown in (1) and (4). The intermediate result z and result p are normalised by left-

shifting the numerator and denominator by up to 2 bits. The module used for calculating 

this algorithm is described in VHDL language by the style for synthesis as the pipelined 

datapath. This datapath contains five pipeline register stages, and outputs the results in 

each clock cycle.  

The parameters for the proposed module, as configured for different FPGA series, 

are shown in Table 1. The number of DSP blocks containing the multiplier is only two 

when the module is configured in a Xilinx Kintex7 FPGA. 

Table 1. Parameters of the module for calculating the sigmoid function  

Module FPGA se-

ries 

Hardware cost Maximum clock 

frequency, MHz 

Maximum 

error  LUTs/ALMs DSP 

blocks 

Proposed 

Proposed 

Proposed 

Kintex7 

Artix7 

Cyclone V 

381 

389 

151 

2 

2 

4 

238 

154 

117 

0.0094 

0.0094 

0.0094 

Tsmots [13] Cyclone III 368 0 37 0.018 

Campo [16]  Virtex6 232 6 53* 0.028 

Gomar [27] Virtex4 123 0 29* 0.087 

Zhang [15] Zed7 272 2 107 – 

Li [14] Virtex7 493  0 208 0.0078 

* Data input frequency, as the algorithm is implemented in several sequential steps. 
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Fig. 5. Error in the sigmoid function calculation. 

 

This is explained by the fact that the small bit multiplication in the data x0n and x0d 

is performed in hardware on the basis of LUTs. The maximum clock frequency in this 

FPGA reaches 238 MHz due to the pipelining of the calculations. When the calculations 

are carried out without pipelining, this frequency is reduced to 95 MHz. 

Fig. 5 shows the calculation error for the module. An analysis shows that there is the 

opportunity to minimise the maximum error by rounding the result. Moreover, the error 

depends on the address bit widths of ROMEn and ROMEd, and can be decreased dra-

matically when these bit widths are increased. Due to the hardware consumption in 

Table 1, these ROMs are performed in LUTs and there is the potential to increase their 

volume.  

The different modules that have been used to calculate the sigmoid activation func-

tion using a piecewise polynomial approximation are presented in Table 1 for compar-

ison. We note that they all use 16-bit fixed point arithmetic, and the maximum error is 

derived for the input range [–8: 8]. A comparison of these different modules shows that 

the proposed module has the highest speed, with a moderate value for the hardware 

volume and a comparatively small computational error. 

Our module has the advantages of increasing the computational precision and mini-

mising the hardware volume at the cost of bit width minimisation. The other modules 

of the ANN system can also use rational fraction arithmetic. However, in other situa-

tions, the proposed module has to be agreed upon both with the input and output floating 

point or integer data by attaching not complex wrapping hardware. The hardware at-

tached to the output must have a division unit that calculates p = pn/pd.  

5 Conclusion 

A rational fraction number system has the advantage of providing higher precision than 

integers, and its FPGA implementation is simpler than that of a floating number system. 

The main advantages of using rational fractions in a modern FPGA implementation are 

small hardware volume, high throughput, and the possibility of regulating the precision 

by selecting the data width. It has been shown here that this data representation helps 

in designing effective modules for implementation of the sigmoid activation function. 

Our module for calculating the sigmoid activation function is shown to have high 

throughput and low hardware volume in comparison with modules based on a piecewise 

polynomial approximation using fixed point data. Future work on the use of rational 

fractions will focus on the implementation of an ANN system as a whole. 
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