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Abstract. Hyperbolic geometry has recently found applications in so-
cial networks, machine learning and computational biology. With the
increasing popularity, questions about the best representations of hy-
perbolic spaces arise, as each representation comes with some numerical
instability. This paper compares various 2D and 3D hyperbolic geome-
try representations. To this end, we conduct an extensive simulational
scheme based on six tests of numerical precision errors. Our comparisons
include the most popular models and less-known mixed and reduced
representations. According to our results, polar representation wins, al-
though the halfplane invariant is also very successful. We complete the
comparison with a brief discussion of the non-numerical advantages of
various representations.
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1 Introduction

Hyperbolic geometry has recently gained interest in many fields. Notable ex-
amples include the hyperbolic random graph models of hierarchical structures
[18,20], social network analysis [5], hyperbolic embeddings used in machine learn-
ing [22], as well as visualizations and video games [10,15,23].

One crucial aspect of hyperbolic geometry is its tree-like structure, as shown
in Figure 1. Each edge of these trees has the same length, making them grow
exponentially. This tree-likeness property is crucial in the modeling hierarchical
data [5, 22] and game design [15]. However, this property comes with a severe
numerical cost [2,7,24,26]. Since the circumference of a hyperbolic circle of radius
r is exponential in r, any representation based on a fixed number b of bits will
not be able to distinguish between points in a circle of radius r = Θ(b), even if
the pairwise distances between these points are large.

Different communities use different representations of hyperbolic spaces. The
newcomers and some experts often use the Poincaré model, most popularly used
in the introductions to hyperbolic geometry. However, in visualizations [14,15,20]
the Minkowski hyperboloid model seems to be commonly used for the internal
representation (and converted to Poincaré for visualization purposes), and in the
social network research, native polar coordinates are popular [5, 13]. The users
motivate their choice of representation by factors such as ease of use, general-
izability, and numerical stability. The numerical aspect needs further study; for
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example, the hyperboloid model and the Poincaré disk model may be better nu-
merically depending on the computation at hand. At the moment, we know one
study comparing the hyperboloid model and the Poincaré half-plane model [12];
however, this paper compares only two representations of isometries, and has
been written in 2002, before the surge of interest in hyperbolic geometry.

In this paper, we compare a large number of representations of hyperbolic
geometry. We primarily focus on the numerical issues. It is worth to note that,
due to the exponential growth, any representation based on a fixed number of
bits will introduce numerical errors, a commonly used solution to this [7, 8, 11,
15,17,26] is to use combinatorially generated tessellations, and represent points
and isometries by a pair (t, h), where t is one of the tiles of the tessellation, and
h is coordinates relative to tile t. Our research takes this into account.

Fig. 1. The {7,3} tessellation of the hyperbolic plane in the following models:
hyperboloid, Poincaré disk, upper half-plane, Beltrami-Klein disk, polar coordinates.

2 Hyperbolic geometry and representations

A geometry is defined by how points, lines, distances, angles, and isometries
behave. A representation of a geometry is a method of representing points p
and isometries f . We need to define and compute the following basic geometric
objects and operations:

– Origin, a constant C0 representing a point which we consider the origin.
– Translate in the X direction by distance x (returns an isometry T x).
– Rotate around C0 by an angle α (returns an isometry Rα).
– Apply an isometry f to a point p.
– Compose two isometries f1 and f2.
– Invert an isometry f .
– Distance of a given point p to the origin C0.

Spherical geometry The most straightforward non-Euclidean geometry is spher-
ical geometry. The d-dimensional sphere is Sd = {x ∈ Rd+1 : g+(x, x) = 1},
where g is the inner product, g+((x1, . . . , xd+1), (y1, . . . , xd+1)) = x1y1 + . . . +
xd+1yd+1). We consider C0 = (0, . . . , 0, 1) ∈ Sd to be the origin of Sd. Isome-
tries of the sphere are exactly the isometries of Rd+1 which map 0 to 0, i.e.,
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orthogonal matrices in R(d+1)×(d+1). It is straightforward to compute the basic
translations and rotations, for example, an isometry Tα which moves the ori-
gin of S2 by α units in the direction of the first coordinate can be written as
Tα(x1, x2, x3) = (x1 cos(α)+x3 sin(α), x2, x3 cos(α)−x1 sinα). The distance be-
tween the points x, y ∈ Sd+1 is the length of the shortest arc γ ⊆ Sd+1 connecting
x and y, and can be computed using the formula acos g+(x, y).

Minkowski hyperboloid (linear representation) The representation above lets a
person with a basic knowledge of linear algebra work with spherical geometry in
an intuitive wall. We obtain hyperbolic geometry (in the Minkowski hyperboloid
model) by applying the same construction in pseudo-Euclidean space, using the
Minkowski inner product g−((x1, . . . , xd+1), (y1, . . . , xd+1)) = x1y1+. . .+xdyd−
xd+1yd+1). Many formulas of hyperbolic geometry are the same as the relevant
formulas of spherical geometry, except that we need to change the sign in some
places (due to the change of sign in g−), and use sinh and cosh instead of sin
and cos when the argument represents distance. The hyperbolic plane is Hd =
{x ∈ Rd+1 : xd+1 > 0, g−(x, x) = −1}. Again, we consider C0 = (0, . . . , 0, 1) to
be the origin of Hd. Isometries of Hd are the matrices M ∈ R(d+1)×(d+1) such
that g−(Mx,My) = g−(x, y), and (MC0)d+1 > 0. An isometry Tα which moves
the origin of H2 by α units in the direction of the first coordinate can be written
as the Lorentz boost Tα(x1, x2, x3) = (x1 cosh(α) + x3 sinh(α), x2, x3 cosh(α) +
x1 sinhα); however, a rotation Rα of H2 by α around C0 still uses cos and sin:
Rα(x1, x2, x3) = (x1 cos(α) − x2 sin(α), x2 cos(α) + x1 sin(α), x3). The distance
between the points x, y ∈ Hd is the length of the shortest arc γ ⊆ Hd connecting
x and y computed according to g−, and can be computed using the formula
acosh g−(x, y). For x, y ∈ Hd, the midpoint mid(x, y) is the point in the mid-
dle of this arc. We have mid(x, y) = x+y

−
√
g−(x+y,x+y)

. We can use this model

directly (i.e., represent points as their coordinates in Hd and isometries as linear
transformation matrices), which we will call the linear representation.

Other models of H2, and polar representation. In the Minkowski hyperboloid
model, every point has three coordinates, while two are sufficient. Other common
models (projections to R2) of H2 include:

– Beltrami-Klein disk model: the point x = (x1, x2, x3) ∈ H2 is mapped to
P (x) = (x1

x3
, x2

x3
). This maps H2 to the inside of the unit disk in R2.

– Poincaré disk model: the point x = (x1, x2, x3) ∈ H2 is mapped to K(x) =
( x1

x3+1 ,
x2

x3+1 ). Again, this maps H2 to the inside of the unit disk in R2.
– Upper half-plane model: obtained from the Poincaré disk model by applying

a circle inversion which maps the inside of the Poincaré disk into the upper
half-plane U2, which we interpret in terms of complex numbers: U2 = {z ∈
C : ℑ(z) > 0}. The center point of U2 is i ∈ U2.

– Native polar coordinates: in this model, we use coordinates (ϕ, r) ∈ P, where
r is the distance from C0 and ϕ is the angle. In other words, the coordinates
(ϕ, r) in native polar coordinates correspond to the point Rϕ(T r(C0)) ∈ H2.
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These models have natural analogs in higher dimensions. Figure 1 shows the
hyperbolic plane in the models above. The pictures show the tessellation of H2

by regular hyperbolic heptagons; all heptagons are of the same size and shape,
but these sizes and shapes had to be changed by the projection to E2 used.

Native polar coordinates are the first example of an alternative representation
of the hyperbolic plane, that is popular in network science applications [5,13]. It
is somewhat analogous to using latitude and longitude in spherical geometry. It is
straightforward to compute the distance between (ϕ1, r1) ∈ P and (ϕ2, r2) ∈ P.
Indeed, (0, r1) ∈ P corresponds to (sinh(r1), 0, cosh(r1)) ∈ H2, and (ϕ2, r2) ∈
P. corresponds to (cos(ϕ2) sinh(r2), sin(ϕ2) sinh(r2), cosh(r2)) ∈ H2; thus, the
distance d satisfies the hyperbolic cosine rule

cosh(d) = cosh(r1) cosh(r2) + cos(ϕ2) sinh(r2) cosh(r2). (1)

In general, we need to replace ϕ2 with ϕ1. If (ϕ1, r1) and (ϕ2, r2) are close, the
following formula is numerically better [3]:

cosh(d) = cosh(r1 − r2) + (1− cos(ϕ)) sinh(r1) sinh(r2) (2)

While less useful in network science applications, we also need to represent arbi-
trary isometries, but this is also straightforward: (ϕ, r, ψ) represents the isometry
RϕT rRψ. In higher dimensions, we need to replace ϕ and ψ with isometries of
Sd−1.

Clifford algebras, and mixed representation. While using d × d matrices is a
straightforward method of representing rotations of Rd (and thus also isometries
of Sd−1), it is often advantageous to use other representations. For orientation-
preserving isometries of R3, quaternions are commonly used in computer graph-
ics. This section explains Clifford algebras that generalize this construction.

Let V be Rd with inner product g, and let e1, . . . , ed be the unit vectors
of V. The points of V can be written as x1e1 + . . . + xded. The free algebra
over V, T (V), is the vector space whose basis is the set of all sequences of ei
(including the empty sequence, denoted by 1). The elements of T (V) are added
and multiplied in a natural way, for example:

(3 + 2e2e1)(1 + 2e1) = 3 + 2e2e1 + 6e1 + 4e2e1e1

Note that V is a subspace of T (V) and that this multiplication is associative
but not commutative. Addition is associative and commutative, and multiplica-
tion is distributive over addition.

The Clifford algebra Cl(V) is obtained from T (V) by identifying elements
according to the following rule: for u, v ∈ V, uv + vu = 2g(u, v) (⋆). We
perform all the identifications that follow from this rule and the associativ-
ity/commutativity/distributivity rules. In particular, for V = (Rd+1, g−) we have
eiej = −ejei and eiei = 1 for i ≤ d, and eiei = −1 for i = d+ 1. Thus, Cl(V) is
a 2d+1-dimensional space (using the rules above, we can rewrite any element of
Cl(V) using only products of ei which are ordered and have no repeats).
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For x ∈ Cl(V), x, called the conjugate of x, is defined as follows: 1 = 1,
ei = −ei, x+ y = x+ y, xy = yx.

Let v be a non-zero vector in V. Any vector w ∈ V can then be decomposed
as w = av + u, where u is orthogonal to v. We have vwv = v(av + u)v =
a(vvv) + vuv = g(v, v)av − vvu = −g(v, v)av + vvu = g(v, v)(u − av). For
V = (Rd+1, g−), if v, w ∈ Hd, the operation w 7→ vwv is exactly the point
reflection of Hd−1 in v; and if g−(v, v) = 1, it is the reflection in the hyperplane
orthogonal to v.

For an x ∈ Cl(V), let us denote the operation w 7→ xwx by M(v). It is
easy to check that M(xy) is the composition of M(x) and M(y). Since the
basic translations and rotations of Hd can be obtained as compositions of two
operations from the last paragraph, they can be represented as M(x) for some
x ∈ Cl(V); furthermore, every orientation-preserving isometry of Hd can be
obtained as a composition of basic translations and rotations, thus, also M(x)
for some x ∈ Cl(V). It is easy to check that, since the number of basic reflections
is even, we only use Cl[0](V), which is the subspace of Cl(V) whose base is all
the products of even number of ei’s.

Therefore, for Hd (and Sd), we have a representation of orientation-preserving
isometries which uses only 2d real numbers. For d ≤ 5 this is less than (d+ 1)

2

we would have to use in the R(d+1)×(d+1) representation.

Reduced representation. In the previous paragraph, we represented the points
x ∈ Hd using the Minkowski hyperboloid model and the isometries using Cl[0](V)
(the mixed approach). Another possible representation is to represent x ∈ Hd as
y ∈ Cl[0](V) such that M(y)(C0) = x and M(y)(x′) = C0, where x′ is the point
such that C0 = mid(x, x′) (i.e., this isometry moves C0 to x without introducing
any rotation). This y can be computed as x′′C0, where x′′ = mid(C0, x).

Reduced representation represents every point x ∈ Hd as y1e1ed+1+y2e2ed+1+
. . .+ydeded+1+yd+1 (only d+1 out of 2d coordinates are used). The coordinates
y = (y1, y2, . . . yd+1) can be interpreted as coordinates on the Minkowski hyper-
boloid of the point x′′. Since x′′ = mid(C0, x), the distance of x′′ from C0 is half
the distance of x from C0; this will be a serious numerical advantage. We call
this representation reduced. Another important property is that, by projecting
y as in the Beltrami-Klein disk model, we obtain x in the Poincaré disk model,
K(y) = K(x′′) = P (x).

Half-plane representation. Another representation of H2 uses the upper half-

plane U for points and matrices A =

(
a b
c d

)
, where a, b, c, d ∈ R, for isometries.

We apply A to z ∈ U2 as follows: Apply(A, z) = (ax+b)/(cx+d). Note that, for
α ∈ R such that α ̸= 0, A and αA represent the same isometry. The normalized
one is the one which has determinant ad−bc = 1. Therefore, the set of isometries
corresponds to the set of 2×2 matrices over reals with determinant 1, which is
called the special linear group over R, SL(2,R).

This representation of isometries is essentially equivalent to the Clifford al-
gebra representation up to the base change. In particular, if the Clifford algebra
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representation of an isometry is k0 + k2e1e3 + k1e2e3 + k3e1e2, then its SL(2,R)

representation is
(
k0 − k2 k1 + k3
k1 − k3 k0 + k2

)
.

Half-space representation. While half-plane representation works for H2, a simi-
lar representation exists for H3. We will be using quaternions H: a four-dimensional
space over reals, with the four basis vectors called 1, i, j, and k, multiplied ac-
cording to rules i2 = j2 = k2 = −1, ij = k, jk = i, ki = j. (To avoid confusing H
with the hyperbolic space Hd, note that the standard notation for quaternions,
H, has no index.) The points are represented in the Poincaré half-space model,
using quaternions x ∈ H such that the j-part of x is positive, and the k-part of x
is 0. The center point is j ∈ H. The isometries are represented as SL(2,C), that
is, 2×2 matrices over C with determinant 1. Applications are performed using
the same formula: Apply(A, x) = (ax+ b)/(cx+ d). Again, this representation
is essentially equivalent to the Clifford algebra: k0 + k3e1e2 + k5e1e3 + k6e2e3 +
k9e1e4 + k10e2e4 + k12e3e4 + k15e1e2e3e4 is equivalent to(

k0 − k9 + k15i− k6i k3 + k10 − k5i− k12i
k10 − k3 + k12i− k5i k0 + k9 + k6i+ k15i

)
.

3 Representation variants

In Section 2, we introduced the basic representations we will compare in our
study (linear, mixed, reduced, half-plane/half-space, polar, and generalized po-
lar). There are also multiple methods of dealing with numerical errors. As an
example, consider a point x = (x1, . . . , xd+1) in the Minkowski hyperboloid Hd.
We should have x2d+1 = 1+ x21 + . . .+ x2d. However, if we apply several of repre-
sentation operations to compute the point x, it may happen that this equation
is not true as a result of numerical errors. We consider the following variations:

– Invariant. Do not do anything. Hope that numerical errors do not build up.
– Careless. Here we consider αx, for any α ∈ R other than 0, to be a correct

representation of x ∈ Hd.
– Flattened. We normalize in another way: we multiply x ∈ Hd by 1/xd+1.

This lets us conserve memory since the d+ 1-th coordinate in our represen-
tation will always equal 1. (This is effectively the Beltrami-Klein model.)

– Forced. Normalize the output after every computation.
– Weakly Forced. Try to normalize the output after every computation, but

do not do it if the norm could not be computed due to precision errors.
– Binary. In careless, values may easily explode and cause underflow/overflow;

avoid this by making the leading coordinate in [0.5, 2) range (by multiplying
by powers of 2, which is presumably fast).

Similar variants can also be applied to the Clifford representation of points
and isometries. For example, flattened reduced representation is effectively the
Poincaré disk model. Furthermore:
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– In linear representations, matrices can be fixed by replacing them with cor-
rect orthogonal matrices close to the current computation. HyperRogue [15]
uses this method; not applying such fixes would have a visible effect of the
visualization becoming visibly stretched after the user moves sufficiently far
away from the starting point (interestingly, it tends to fix itself when the user
moves back towards the starting point). We call non-fixed representations
linear-F, and fixed representations linear+F.

– In polar1, we always use the basic cosine rule (1). In polar2, we use a better
formula when the angles are close or opposite to each other (2). In 2D,
we can use angles (angles variant), but forcing angles into [−π, π] may be
needed to prevent explosion (mod variant). In general, we have a choice of
representation for Sd−1. We use forced or invariant reduced representations.

– In the Clifford representation, the gyro variant splits the isometries into the
translational part (which is flattened, making it equivalent to the Poincaré
disk model) and the rotational part (for which ’invariant’ is used). This
fixes the problem with full flattening where rotations by 180° are flattened
to infinity. This is inspired by gyrovectors [25] and is essentially doing the
computation in the Poincaré disk model, a popular representation [1, 4, 10].

Fig. 2. Tessellations of H2 used in our experiments. From left to right: {7, 3}, {5, 4},
{8, 3}, {4, 5}, {4, 6}, {6, 4}, {6, 6}.

4 Tessellations

The hyperbolic plane can be tessellated with regular p-gons of the same size,
such that q of them meet in every vertex, for all p, q such that 1

p +
1
q <

1
2 . Such

a tessellation has Schläfli symbol {p, q}. Figure 1 shows the {7,3} tessellation.
Tessellations can be used to avoid numerical precision errors. With every

tile t, we assign an isometry Xt that maps the central tile to t (rotation is
chosen arbitrarily). If a point p is in tile t, we can write p = Xtp0, where p0 is
coordinates of p relative to the center of t. We can now represent p as (t, p0)
– since p0 is close to the origin, this avoids the problem of numerical precision
issues being significantly higher for points far away. A similar method can be
used for isometries.

If two tiles t, t′ are adjacent, the isometry Xt,t′ = XtX
−1
t′ which maps t′-

relative coordinates to t-relative coordinates equals RαT xRβ , where the angles α
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and β correspond to the chosen orientations of t and t′, and x is the distance be-
tween two adjacent tiles, which can be computed using hyperbolic trigonometry.
The adjacency structure of tiles can be computed combinatorially [8, 11].

In our tests, we use tessellations either to produce tests with known correct
answers or (as described above) to enhance the numerical precision. See Figure
2 for the tessellations we use.

5 Tests

We compare representations on the following tests (some parameterized by d).

LoopIso In this test, we construct a path t0, . . . , tk in the tiling by always
moving to a random adjacent tile until we get to a tile d afar; then, we
return to the start (also randomly, may stray further from the path). We
compose all the relative tile isometriesXtk,tk−1

. . . (Xt2,t1Xt1,t0) into f , which
theoretically should equal identity. We see if f(C0) = C0. The test result is
the first distance d for which f(C0) is not found to equal C0 (distance > 0.1).

LoopPoint Same as LoopIso, but we apply the consecutive isometries to point
right away. We compute h = Xtk,tk−1

. . . (Xt2,t1(Xt1,t0C0)). We see if h = C0.
AngleDist We construct a random path t0, . . . , td. This time, we do not loop.

We compute h = Xtd,td−1
. . . (Xt2,t1(Xt1,t0C0)). We check whether the angle

and distance of h from C0 have been computed correctly. In the variant
AngleDist2, we multiply the matrices in the opposite order. The correct angle
and distance are computed using high-precision floating point numbers. The
test result is the first distance d for which the error exceeds 0.1.

Distance We compute the distance between two points in distance d from the
starting point. Such computations are of importance in social network anal-
ysis applications. The angle between them is very small (similarity), or close
to 180◦ (dissimilarity), close to 1◦ (other). The test result is the first distance
d for which the error exceeds 0.1.

Walk This test is based on an effect of numerical precision issues that is most
visible in HyperRogue [15]. After walking in a small line, it can often be
clearly observed that we have “deviated” from the original straight line. This
test checks how long we can walk until this happens.
We construct an isometry A representing a random direction. In each step,
we compose this isometry with a translation (A := AT 1/16). Whenever the
point AC0 is closer to the center of another tile, we rebase to that new tile.
For a test, we do this in parallel with two isometries A and B, where B
= AT 1/32. We count the number of steps until the paths diverge. In the
WalkGood variant, we instead compare to the result obtained using high-
precision floating point numbers.

Close Here, we see whether minor errors accumulate when moving close to the
center. Like in loop tests, we move randomly until we reach distance d+ 1,
after which we return to the start (always reducing the distance). After each
return to the start, we check if the representation is still fine; if yes, we repeat
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the loop, letting the errors accumulate over all loops. We stop when the error
is high or after 10000 steps. The variants Close and CloseInverse differ in
the order of multiplying X matrices.

6 Experimental Results
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Fig. 3. Aggregate results of our tests, in 2 dimensions (above) and 3 dimensions (be-
low). For each test, the score of the best representation is normalized to 1.

For our implementation and experimental results, see [9]. Our implementa-
tion is written in C++. All computations use the IEEE754 double precision
format. The GMP library is used for the high-precision comparisons.
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Figure 3 presents the heatmap of averages of running each representation
on each test 20000 times. We observe significant differences between the per-
formance of various representations. Some of these experimental results can be
quite easily explained. It is clear from Figure 1 that the Beltrami-Klein disk
model is not good at representing points far away from C0. In the Klein disk
model, a point in distance d from C0 is mapped to a point in distance tanh(d)
from the center of the disk, which is 1 − Θ(exp(2d)). Floating point numbers
cannot express such a slight difference from 1. Conversely, in the Poincaré disk
model, this is 1 − Θ(exp(d)). Therefore, we can expect the effective distance
represented accurately in flattened reduced to be double that of flattened linear.
This issue carries over to most computations in non-flattened representations,
although not all of them. This effect has been studied in [12].

In the invariant linear representation, the point RαT xC0 is represented as
(cos(α) sinh(x), sin(α) sinh(x), cosh(x)), and since floating-point numbers are good
at representing large numbers, we can recover α and x even if x is very large (as
long as cosh(x) fits in the range of our floating-point type). This makes invariant
linear significantly better than the Poincaré disk model (flattened reduced) in
some experiments, such as AngleDist. This relies on multiplying the matrices
in the correct order and on the fact that we care only about distances – nu-
merically computing AB−1 for two isometries moving C0 to two points a and b
which are closed to each other but far from C0 is not likely to yield meaning-
ful results. While polar representations can represent even larger distances x,
this does not carry over to computations in our implementation, which have to
compute exp(x), cosh(x) or sinh(x) anyway.

In three dimensions, flattened reduced fails due to some isometries of the
{4, 3, 5} honeycomb not being representable (due to not having the unit compo-
nent). The gyro variant fixes this issue. In some tests, the lack of normalization
causes the coordinates to quickly blow up exponentially, which is avoided in nor-
malized variants. This happens, e.g., in the Walk test for polar invariant (avoided
in polar forced) and in the LoopPoint test for reduced careless.

The invariant reduced representation shares both advantages of invariant
and reduced representations. In the half-plane and half-space models, we no
longer have the problem of faraway points getting close to 1 (typically, they are
complex numbers with the imaginary coordinate close to 0 instead). So, these
representations are quite good at representing large distances. We can expect
these representations to be highly accurate; our experiments support that. Polar
representations are highly accurate, too.

Figures 4 and 5 depict the accurate rankings. A representation A wins against
the representation B if the probability that a randomly chosen simulation result
obtained by A is greater than a randomly chosen simulation result obtained by
B exceeds 0.5. If that probability is equal to 0.5, we have a tie between A and
B; otherwise, A loses against B. We use the Condorcet voting rule (breaking ties
using the Copeland rule [19]) to obtain the ranking. To compute the score for a
given representation, we add 1 for every winning scenario, 0 for every tie, and
-1 for every losing scenario.
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Fig. 4. Condorcet rankings, in 2 dimensions. Better representations are closer to the
bottom.
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The simulations are conducted under specific conditions, including 2000 iter-
ations and the consideration of both 2D and 3D tessellations. These conditions
are chosen to provide a comprehensive and representative view of the perfor-
mance of each representation.

In many tests, polar2 mod representation wins, although the halfplane in-
variant is also very successful and linear+F representations (especially invariant)
perform well in walk tests.
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Fig. 6. The result of the Walk test, divided by tessellation.

Figure 6 depicts the density graph of the results of the Walk test, divided by
tessellation. We use the linear+F invariant representation since it achieves the
best results. For comparison, we also present the result of a similar test without
using any tessellation; this result uses the half-plane representation (linear+F
invariant is half as good in this case). From the tessellations we have considered,
{7, 3} yields the best results; other tessellations get slightly worse results except
{6, 6} which is significantly worse, and no tessellation is even worse.

7 Comparison based on non-numerical advantages

We focused on comparing various representations of hyperbolic geometry con-
cerning numerical precision. However, computational issues are not the only ones
that should impact the final choice of the representation. That is why this section
discusses the non-numerical advantages of particular representations.

The Poincaré model is often used to teach hyperbolic geometry, so many
people use it for this reason – it is the one they know the best. However, the
linear representation is more natural for those who understand Minkowski ge-
ometry. For example, the formulas for T x and mid(x, y) are straightforward in
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Minkowski hyperboloid, but the respective Poincaré model formulas are not. Po-
lar coordinates, based on the idea of angle and distance from the origin, are also
intuitive for many people [23]. While the half-space models have great numerical
properties, their lack of symmetry makes them less intuitive.

One advantage of matrix representations is that they can represent both
orientation-preserving and orientation-reversing isometries. To represent orientation-
reversing isometries in Clifford algebras, half-plane/half-space, or polar represen-
tations, we need to add an extra bit of information – whether the isometry should
be composed with a mirror image. This introduces some extra complexity.

In some applications (e.g., to work with non-compact honeycombs in H3 [21])
we need to represent not only the material points discussed so far, but also ideal
and ultra-ideal points. Intuitively, ideal points are the points on the boundary of
the Beltrami-Klein model, and ultra-ideal points are outside of the boundary. In
the Poincaré disk and half-plane model, we can represent ideal points (they are
on the boundary), but we cannot represent ultra-ideal points (the points outside
of the boundary are better interpreted as alternative representations of material
points). Thus, only non-normalized (careless) linear/mixed can represent ultra-
ideal points, while only non-normalized/flattened linear/mixed/reduced/half-
plane/half-space can represent ideal points.

In some applications, it is useful to have a single implementation of all
isotropic geometries (hyperbolic, Euclidean, and spherical, with varying curva-
tures). In [1,4], the Poincaré disk model (and its spherical analog, stereographic
projection) is chosen for this reason. However, polar coordinates also work in all
isotropic geometries, and a similar general model can be obtained for the hyper-
boloid (Hd), sphere (Sd), and plane model; furthermore, linear representations
can also be used for other Thurston geometries [17]. From the representations
we studied, it seems that only half-plane and half-space do not easily generalize
beyond hyperbolic geometry.

There are applications of hyperbolic geometry where we focus on the neigh-
borhood of a straight line L rather than the origin point C0. In such applications,
in H2, it is useful to use coordinates (x, y) where x is the distance along L, and
y corresponds to the distance from L. Here, y can be simply the distance from
L (Lobachevsky coordinates, where T xRπ/2T yC0 gets coordinates (x, y), analo-
gous to longitude and latitude in spherical geometry), or in some other way, like
Bulatov’s conformal band model [6, 16]. Such a situation occurs in [16], where
the conformal band model is used. There are also potential applications in video
games (racing along a straight line) and data analysis (bi-polar data). This is
a very specific potential application, with major advantages in specific circum-
stances and no advantages otherwise, so we do not compare such representations.

8 Conclusions

This paper aimed to determine which representation of hyperbolic geometry is
best concerning numerical issues. To this end, we compared five representations
(linear, mixed, reduced, halfplane/halfspace, and generalized polar), controlling
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for six variants of dealing with numerical errors (invariant, careless, flattened,
forced, weakly forced, binary). We conducted six tests capturing different sce-
narios leading to accumulating numerical imprecisions. Our results suggest that
polar representation is the best in many cases, although the halfplane invari-
ant is also very successful. It is known that numerical errors can be successfully
combated by combining representation with tessellations, so our research took
that into account. From the tessellations we have considered, {7, 3} yields the
best results. Fixed linear representations (especially invariant) perform well in
game-design-related scenarios (walk tests: how long we can walk until we observe
that we have “deviated” from the original straight line).
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