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Abstract. Recently proposed gradient estimators enable gradient de-
scent over stochastic programs with discrete jumps in the response sur-
face, which are not covered by automatic differentiation (AD) alone.
Although these estimators’ capability to guide a swift local search has
been shown for certain problems, their applicability to models relevant
to real-world applications remains largely unexplored. As the gradients
governing the choice in candidate solutions are calculated from sampled
simulation trajectories, the optimization procedure bears similarities to
metaheuristics such as particle swarm optimization, which puts the fo-
cus on the different methods’ calibration progress per function evalua-
tion. Here, we consider the calibration of force-based crowd evacuation
models based on the popular Social Force model augmented by discrete
decision making. After studying the ability of an AD-based estimator
for branching programs to capture the simulation’s rugged response sur-
face, calibration problems are tackled using gradient descent and two
metaheuristics. As our main insights, we find 1) that the estimation’s fi-
delity benefits from disregarding large jumps inherent to the Social Force
model, and 2) that the common problem of inferring a parameter’s pos-
terior distribution given some data obviates the need for AD across the
Social Force calculations, allowing gradient descent to excel.

Keywords: calibration, parameter synthesis, automatic differentiation,
gradient descent, agent-based simulation, social force

1 Introduction

Agent-based crowd models are widely used in urban planning [13, 23], to study
disease spread [15] or to optimize strategies for emergency evacuations [6,18,34].
In contrast to coarse-grained models that consider groups of people in aggregate,
agent-based models operate on the microscopic level, giving each agent its own
state, perception of its environment, and decision making. To generate mean-
ingful simulation results, the calibration of the model parameters to empirical
data, e.g., gathered from video footage, is a crucial prerequisite.

Often, metaheuristics such as genetic algorithms or particle swarm opti-
mization are applied [30, 33], which permit a straightforward parallelization
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to tackle the computational cost of evaluating microscopic simulations across
high-dimensional parameter spaces. Surrogate models generated by sampling the
simulation response can support a faster calibration but may require enormous
numbers of samples to capture an original model’s dynamics [25].

However, all these methods typically operate on black-box observations of
the simulation output. If it is possible to also determine its partial derivatives
wrt. the parameters, local search strategies based on gradient descent can steer
the calibration toward a local optimum. Calibration using Bayesian inference [4,
11], which also offers uncertainty information instead of sheer point estimates,
could particularly benefit from the resulting increase in sampling efficiency [9].
Unfortunately, in the presence of models of discrete decision making, agent-based
simulations form stochastic functions with discrete jumps. For these functions,
simple averaging over derivatives determined using the established methods and
tools for automatic differentiation (AD) [14,21] yields biased estimates [12].

Recently, there has been renewed interest in gradient estimation over stochas-
tic functions with discrete jumps. Rooted in infinitesimal perturbation analysis,
this line of research has produced AD-based estimators tailored to specific do-
mains [1,7,29], for programs involving random sampling from discrete probability
distributions [2], and for general imperative programs [19]. The recent generic
estimators combine pathwise derivatives with the contributions of jumps, the
former being determined using traditional AD, and the latter based on a priori
knowledge of the distributions or density estimations. As an AD-free alternative,
modern finite differences estimators compute gradient estimates from series of
function evaluations on stochastically perturbed inputs [24]. These recent esti-
mators’ reliance on sampling raises the question whether the function evaluations
permitted by a time budget are better spent on obtaining gradient estimates, or
to directly evaluate a set of candidate solutions as part of a metaheuristic.

Here, we explore the suitability of gradient descent for calibrating crowd
evacuation models based on Treiber’s popular Social Force model [16] augmented
by discrete decisions. We assess an AD-based and a stochastic finite differences-
based estimator [19, 24] compared to a genetic algorithm and particle swarm
optimization. Our main contributions are threefold:

– We present an alternative derivation of our gradient estimator DiscoGrad
Gradient Oracle [19] starting from the concept of stratified derivatives.

– We study the fidelity of sampling-based gradient estimates over an evacua-
tion scenario with continuous or discrete objective.

– The calibration progress is evaluated for three problems, one being a distri-
bution fitting problem over a 20-dimensional parameter space, showing that
this problem class permits fast convergence via gradient descent.

The remainder of the paper is structured as follows: In Section 2, we briefly
introduce methods for (automatic) differentiation across discrete jumps. In Sec-
tion 3, we introduce the existing AD-based gradient estimator DGO. Section 4
describes the considered simulation model and scenarios. In Section 5, we present
our experiment results and discuss their implications. Section 6 provides an in-
terpretation of our results and concludes the paper.
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2 Background and Related Work

Simulation models of crowd dynamics typically combine low-level models of
pedestrian movement with 1) models of discrete decisions, e.g., for path plan-
ning, and 2) stochastic components accounting for uncertainty and variability
in initial conditions and pedestrian behaviors [6, 18]. In effect, the models thus
take the form of stochastic functions P : Rn → R involving discrete jumps, which
poses challenges to traditional gradient estimation methods. In the following, we
briefly introduce the existing work on gradient estimation across discontinuities
and concrete estimators for this purpose.

To begin, we briefly recapitulate the widely employed concept of automatic
differentiation (AD) [14,21]. This method views the execution of P as a composi-
tion of operators P1 ◦P2 ◦ · · · . By repeatedly applying the chain rule, the partial
derivatives wrt. the inputs can be determined from the intermediate derivatives
and values at the operators Pi. Implementations can be grouped into reverse
and forward modes. Whereas the former implements AD as a second (reverse)
pass over previously stored intermediate values retrieving one row of the Jaco-
bian per pass, the latter propagates derivatives through the forward execution
retrieving one column per pass. The partial derivatives obtained this way are
pathwise in the sense that they only capture the operation sequence of a single
program execution, disregarding alternative branches.

When estimating gradients of stochastic programs, we are typically interested
in the partial derivatives of the expected value of P wrt. a parameter vector θ:

∂

∂θ
E [P(θ)] (1)

As is common in the literature [12,28], we introduce an additional parameter ω.
This allows the explicit consideration of the stochasticity of P, so that P(ω; θ)
refers to a specific realization of the stochastic function, e.g., as determined
by a pseudo-random generator’s seed. Without loss of generality, we sometimes
consider only n = 1, while n > 1 follows directly from separately calculating
the partial derivative for each dimension. One important case occurs if P ex-
hibits discontinuities (jumps), whose positions depend on θ and/or ω. In the last
decades, several methods have been developed to deal with this situation, an
overview of which is given in [10].

Among the earliest is the infinitesimal perturbation analysis (IPA) estima-
tor [17]. Relying on an interchange of the differentiation and expectation op-
erators in Eq. 1 it can be computed by averaging over pathwise derivatives.
However, this estimator is biased for discontinuous P, as then the requirements
for the interchange of operators are not satisfied. To still account for jumps,
smoothed perturbation analysis (SPA) [12] employs a method inspired by Con-
ditional Monte Carlo. Based on the law of total expectation, E[P] is calculated
as E[E[P|z]] for some tailored characterization z of P’s execution. If z is chosen
correctly, this allows the use of pathwise derivatives as in IPA.

Recently, inspired by the success of AD on deterministic programs, auto-
matic methods to calculate Eq. 1 gained new interest. The StochasticAD esti-
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mator [2] builds on SPA and AD to allow the automatic differentiation of pro-
grams sampling from discrete parametric distributions. Other methods include:
the straight-through estimator [3]; interpolation using continuous approximations
of discontinuous operators Pi in P [1, 8]; and abstract interpretation [5], which
propagates distributions symbolically through P to smooth over discontinuities.

Another approach to the calculation of Eq. 1 are black-box estimators like
REINFORCE [32] and randomized finite-differences schemes [27]. A notable can-
didate from the latter category is proposed in [24] building on [26, Chapter 3.4],
which we adopt here as follows under the name Polyak Gradient Oracle (PGO):

∇P(θ) ≈ ∑S
s=1(P(θ + σu, ωs)− P(θ, ω))σ−1u/S, (2)

where u is a vector of i.i.d. standard normal variates and σ a “smoothing factor”.
By introducing random perturbations on θ, this estimator can provide a full
gradient estimate from one sample. Note that introducing such perturbations is
possible (or even required) with many estimators, allowing their application to
deterministic programs with discontinuities.

3 DiscoGrad Gradient Oracle

In this publication, we evaluate practical applications of the recently proposed
DiscoGrad Gradient Oracle (DGO) [19]. The following provides an alterna-
tive derivation starting from the abstract concept of the “stratified derivative”
from [28]. The latter is constructed around the concept of a critical event A,
which occurs if |P(ω; θ+ ϵ/2)−P(ω; θ− ϵ/2)| > B|ϵ| for some bound B > 0, i.e.,
when a jump is observed in an ϵ-neighborhood around θ. Then, it holds that

∂E [P(θ)]

∂θ
= E

[
∂

∂θ
P(θ)

]
+ E [∆P ] p

′
θ. (3)

Here, ∆P denotes the distribution of the jump’s magnitudes conditioned on A,
and p′θ is the critical rate, defined as limϵ↓0

1
ϵP(A). The DGO estimates the above

for the special case of imperative programs with conditional branches.
Let us consider a program P with scalar input and output, including a single

branch of the form “if G(θ) < d“, with d a constant and the value of P depending
on the path taken. Defining C(θ) := G(θ) − d, the branching condition can be
rewritten as C(θ) < 0. Thus, a realization of C’s sign indicates the chosen branch.

The term E
[

∂
∂θP(θ)

]
in Eq. 3 can be trivially estimated by sampling pathwise

derivatives using AD as in IPA. Considering p′θ, we first note that P(|P(ω; θ +
ϵ/2) − P(ω; θ − ϵ/2)| > B|ϵ|) = P(C(ω; θ + ϵ/2) · C(ω; θ − ϵ/2) < 0). This is
the probability of a sign change in an ϵ-neighborhood around θ. We assume all
jumps to originate from branches of the above form, which still allows many other
discontinuous functions such as the minimum or absolute value to be expressed.

For ϵ → 0, we obtain p′θ = fC(θ)(0)E
[

∂
∂θC(θ)

]
, where fC(θ) is the probability

density function of C(θ). DGO estimates p′θ by gathering realizations C(ωs; θ)
and calculating a density estimation, which is evaluated at the origin. E

[
∂
∂θC(θ)

]
as well as E [∆P ] are estimated using the realizations of C(θ) closest to 0.

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63775-9_16

https://dx.doi.org/10.1007/978-3-031-63775-9_16
https://dx.doi.org/10.1007/978-3-031-63775-9_16


Automatic Gradient Estimation for Calibrating Crowd Models 5

Estimating gradients across programs with several branches requires addi-
tional considerations. In the presence of sequential branches, a branch condi-
tion’s distribution can depend on whether previous branches have been taken.
Hence, the density estimation must distinguish the control flow path along which
a branch is reached. We uniquely identify each branch b by the path along which
it is encountered, corresponding to the sequence of condition signs at all previous
branches. Now, we can express DGO for programs with B ∈ N branches:

∂E [P(θ)]

∂θ
= lim

S→∞

1

S

S∑
s=1

∂P(ωs; θ)

∂θ
+

B∑
b=1

(P(ω+
b ; θ)− P(ω-

b ; θ))λbf̂Cb(θ)(0)
∂Cϵ

b

∂θ

where ω+
b and ω-

b select the samples s corresponding to the positive and negative
realizations of Cb(θ) closest to the branching point, λb is the proportion of sam-
ples that encountered the branch, f̂Cb(θ) is an estimate of Cb(θ)’s probability
density function, and ∂

∂θC
ϵ
b is the partial derivative of the condition near the

branching point.
We note that, in contrast to PGO (cf. Section 2), whose calculation of direc-

tional derivatives relies on perturbations of the parameters, DGO can operate
on an original program without introducing external stochasticity. However, by
reducing the ruggedness of the objective function, smoothing via external per-
turbations can contribute to faster convergence of gradient descent.

An implementation of DGO exists as part of the DiscoGrad tool [19], which
permits the differentiation across a subset of C++ programs with conditional
branches. The implementation is available publicly1.

4 Crowd Model and Scenarios

Our experiments build on the typical constituents of evacuation studies: a force-
based model of crowd mobility in a two-dimensional continuous space and per-
pedestrian discrete decision making. The mobility is modeled using Treiber’s
popular Social Force model [16], in which a person’s effective acceleration vector
is calculated as a sum of three forces. The internal force reflects a person i’s
intention to move in a straight line towards its goal location in direction e0i
with desired velocity v0i , vi(t) being the current velocity. The adaptation time
is scaled according to a characteristic time τi. Interaction forces fij between
person i and each other person j in his or her vicinity exert a repellent effect,
reflecting avoidance maneuvers and maintenance of personal distance. Finally,
obstacle forces fiW repel the person from any nearby wall W , leading to the
overall force equation for a person i with mass mi and scaling coefficients w1,
w2, w3:

mi
dvi
dt

= w1mi
v0i e

0
i (t)− vi(t)

τi
+ w2

∑
j ̸=i

fij + w3

∑
W

fiW

1 https://github.com/DiscoGrad/DiscoGrad
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Fig. 1: Scenario for calibrating exit selection coefficients. The crowd enters from
the left-hand side, aiming to evacuate by reaching the circular waypoints (dashed
circles), each agent periodically reconsidering the targeted exit by weighing its
distance against the number of agents in its vicinity (gray circles).

We consider two scenarios, the first representing a bottleneck in an evacuation
situation, similar to [11]. The simulation space is a 30 × 30m square separated
in the center by a single wall with a door 4m in width. As in [11], we calibrate
the weight coefficients that determine the strengths of the forces experienced by
pedestrians aiming to pass through the door. The output of the simulation to be
calibrated is either the pedestrians’ average horizontal position or the number
of pedestrians evacuated after 20s of simulation time.

The second scenario (cf. Figure 1) combines low-level mobility via the Social
Force model with discrete exit selections as in existing work such as [31]. A crowd
comprised of 1 000 pedestrians gradually enters the scenario from the left-hand
side, aiming to exit the building via any of the four available doors, each 3m
wide. Each pedestrian selects its target door by weighing its distance against
the congestion level at the door as measured by the number of agents nearby. To
be able to react to changing circumstances, each agent reconsiders the previous
decision every 15s. The weight coefficient underlying the decision is drawn from a
probability distribution supplied as model parameters in the form of a histogram
ranging in 20 steps from 0.1, where the decision is dominated by the congestion
level, to 1.0, where the decision is made solely based on distance. The simulation
output to be minimized is the Wasserstein distance of the histogram of observed
evacuation times to a reference histogram after a warm-up time of 100s, spanning
20 steps from 10s to 75s.

The scenarios differ fundamentally in their implications for gradient estima-
tion. While the first scenario involves explicit conditional branches only in the
counting of evacuations, discrete jumps are created by the Social Force model
itself, making this a challenging scenario for DGO. In contrast, the calibration of
the second scenario leads to gradients entirely defined by conditional branches,
which prevents their estimation via AD alone but is well-suited for DGO.
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5 Experiments

The goal of our experiments is to determine whether gradient descent using
sampling-based gradient estimators can outperform genetic algorithms and par-
ticle swarm optimization in the calibration of evacuation models. We approach
this objective by first studying the degree to which the estimators are able to
capture Social Force’s dynamics. We then turn to the calibration problems and
carry out hyperparameter sweeps in order to shed light on the relative perfor-
mance of the different optimization methods.

The simulation models were implemented in C++ within DiscoGrad [19],
closely following PEDSIM2 for the Social Force model and its parametrization.
As the genetic algorithm implementation, we used pyeasyga3, and for the particle
swarm optimization we employ the pyswarms library [22]. All simulations use
Leapfrog integration with a time step of 0.1s. The calibration experiments were
carried out on two identical machines, each equipped with an AMD EPYC 9754
processor with 256 threads and 768GB RAM, running Ubuntu 22.04.4 LTS, each
machine executing at most 256 calibration runs in parallel.

5.1 Automatically Differentiating the Social Force Model

While the Social Force model itself does not call for explicit conditional branches,
slight perturbations in the parameters can cause large discrete jumps in acceler-
ation. For instance, the interaction force increases exponentially as the distance
between two agents decreases, and its direction depends discretely on the dis-
tance and angle difference between two agents. If the distance between two agents
is small, minor changes in parameters can cause a change in direction and thus
extreme changes in forces. While AD alone correctly determines the gradient
at a given point of the parameter space, it cannot capture such jumps. DGO
can treat these jumps as explicit conditional branches. However, its estimation
relies on sampled derivatives of intermediate branch conditions (cf. Section 3),
which may suffer from high variance when pairs of agents come in close mutual
proximity.

To assess the differences in the AD-based and black-box estimators’ ability
to estimate gradients of crowd simulations, we carried out a parameter sweep
across the weight coefficients w0, w1, w2 that govern the intensity of the internal,
interaction, and obstacles forces for the single-exit evacuation scenario. For com-
petitiveness with optimization procedures other than gradient descent, we are
particularly interested in the gradients’ fidelity with small numbers of samples.
Thus, we study the estimation error when varying the number of samples in
comparison to reference gradients calculated from 100 000 function evaluations
via PGO, which delivers unbiased estimates of the smoothed gradient.

Figure 2 shows the partial derivatives wrt. each of the coefficients being varied
separately in 300 steps while keeping the others fixed at values of 0.6, 5.5, and 5.5,
2 https://github.com/chgloor/pedsim
3 https://github.com/remiomosowon/pyeasyga
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(f) 10 agents, obstacle weight w2.

Fig. 2: Derivative estimates with respect to the weight of the three types of forces
in scenarios populated with 3 agents (a-c) and 10 agents (d-f) with the fit in the
agents’ final coordinates’ as output and σ = 0.001. PGO with a large number of
samples is used as the reference. DGO captures most of the derivatives’ spikes,
whereas the IPA estimate only reflects the general curvature.

respectively. The grey curves show the simulation output, which is the squared
error in the average final agent positions compared to the pre-defined reference.
For comparability to PGO, the input is perturbed by Gaussian noise with σ =
0.001. For the partial derivative estimates, we evaluate averaging across plain
AD gradients (IPA) and DGO against the reference produced by PGO. With 3
agents, both AD-based estimators closely track the derivatives’ curvature. In (b),
we can see that the jump in the simulation output at about 24.5 is not visible in
the derivative at the chosen resolution along the w1 axis. Importantly, we observe
that the IPA curve does not follow the sharp downward spikes in ∂y/∂w2, while
they are accurately captured by DGO. The results with 10 agents follow a similar
trend, but due the increased number of force calculations, the simulation output
becomes substantially more rugged, resulting in noisier estimates using DGO.

Figure 3 assesses the same scenario focusing on w0 after changing the output
to the squared error in the number of evacuations compared to a reference value.
This entirely discrete objective is smoothed only by the parameter’s perturba-
tions, whose standard deviation we set to 0.01 and 0.1, observing the expected
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(c) 10 agents, σ = 0.01.
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(d) 10 agents, σ = 0.1.

Fig. 3: Derivative estimates with respect to the weight of the internal force, the
simulation output being the fit in the number of evacuations. In the larger sce-
nario, DGO’s estimates suffer from substantial noise as jumps in the mobility
derivatives translate to biased and high-variance derivative estimates of the sim-
ulation output. When ignoring jumps in the Social Force model (IPA/DGO),
estimates observe some bias but capture the trends well.

increase in smoothness with the larger value. In this problem, the simulation
output is gathered by counting the number of agents that have passed the exit,
which in the model’s source code translates to a series of conditional branches
on the agent positions. Considering DGO, the estimation of the branches being
taken and their effects on the overall derivatives are now subject to any noise in
the positions’ partial derivatives, leading to extremely noisy and often inaccurate
derivative estimates particularly with 10 agents.

In the previous scenario, we have seen that the IPA estimates reflect the
main curvature of the derivatives. However, since IPA alone yields zero-valued
derivatives with this discrete objective, it cannot be applied here. Instead, we
combine IPA and DGO by disregarding any jumps in Social Force while still
accounting for the effects of branches using DGO. In this combination, while
some noise and slight deviations from the reference are observed, the tendencies
of the reference are reflected much more accurately with 100 function evaluations.

To quantify the gradient estimates’ fidelity, we consider the mean absolute er-
ror compared to PGO with 100 000 function evaluations for w0. Figure 4 supports
the previous observations: As the source of IPA’s deviation from the reference is
its inability to capture jumps, its estimates do not improve with additional sam-
ples, while the estimates with 10 samples observe a similar error compared to the
other estimators. In contrast, DGO improves somewhat with more evaluations
but consistently outperforms PGO only in the smaller scenario. PGO reliably
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Fig. 4: MAE of gradients wrt. w0 fitting the agent coordinates, σ = 0.001.
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Fig. 5: MAE of gradients wrt. w0 fitting the evacuation count, σ = 0.001.

approaches the reference when increasing the sample count. However, we note
that at low sample counts, the AD-based estimators are highly competitive.

The results for the same scenario with the discrete objective are shown in
Figure 5. Here, similar error levels are observed for all estimators with 3 agents,
while with 10 agents, PGO is superior at 1 000 function evaluations and beyond.
Again, the AD-based estimators are competitive up to 100 evaluations.

5.2 Calibrating Force Coefficients

We now compare the practical capabilities of the different gradient estimators,
PSO and GA. To achieve a reasonably fair comparison among the calibration
progress, we carried out a sweep across a range of sensible hyperparameters, with
10 microreplications of the program and 20 macroreplications of each hyperpa-
rameter configuration (cf. Table 1).

For each estimator, PSO, and GA, we select the configuration that produced
the best average solution at the end of the time budget of 5 minutes wall time and
report the mean over macroreplications of the crisp simulation output, i.e., with-

DGO, PGO, and IPA
samples 1, 10, 50

σ 0, 0.01, 0.1, 0.5, 1.0

lr 0.01, 0.1, 0.5, 1.0

PSO
particles 10, 50

c1, c2, w 10 LHC samples

neighbors 3, 6, all

GA
population 10, 50

elitism yes, no

mutation x=U(0, 10), x+=N (0, 0.1)

Table 1: Hyperparameter sampling ranges. Legend: σ sample size, lr learning
rate, (c1, c2, w) social, cognitive, and inertia parameters, LHC latin hyper cube.
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Fig. 6: Calibration progress over steps, wall time and function evaluations during
calibration of the final agent coordinates via the Social Force weights.
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Fig. 7: Calibration progress over steps and wall time during calibration of the
number of evacuations via the Social Force weights.

out any perturbations, which we evaluated in a post-processing step over 1 000
microreplications. In addition to the progress over wall time, we also show the
progress over function evaluations, each of which reflects one simulation trajec-
tory executed by a sample (gradient estimators), particle (PSO), or population
member (GA).

Figure 6 shows the solution quality over function evaluations and wall time
for the first problem. As expected, we observe that all approaches converge
quickly for this problem. The fastest progress over time is achieved by GA, which
converged after only a few seconds. Considering the gradient estimators, DGO
and the finite differences-based PGO exhibit comparatively high variance and
are the slowest to converge. DGO’s progress per function evaluation is similar to
GA, but is slowed in wall time by the gradient estimation overhead. Remarkably,
IPA, which fared worst in terms of gradient fidelity (cf. Figure 4), yields the
fastest convergence, which suggests that capturing the general curvature of the
objective function suffices to quickly identify a local minimum.

In the second calibration problem shown in Figure 7, GA outperforms the
other methods both in terms of function evaluations and time. Of the gradient
estimators, PGO makes the fastest progress in wall time, with a plateau be-
tween about 10s to 100s stemming from a lack of initial progress in one of the 20
macroreplications. Again, the AD-based gradient estimation benefits from dis-
regarding jumps in the force calculations, which allows IPA/DGO to overtake
PGO over function evaluations, albeit encumbered by the AD overhead.
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Fig. 8: Calibration progress over optimization steps, function evaluations, and
wall time for the exit selection scenario. Gradient descent using the sampling-
based estimators PGO and DGO achieved the best fit to the reference.

5.3 Calibrating Decision-Making Parameters

Next, we turn to the higher-dimensional problem of adjusting a distribution of
weight coefficients that govern the agents’ discrete exit selection decisions. An
important property regarding the gradient estimation and a key difference to
the previous problems lies in drawing the individual agents’ coefficients from the
input distribution as part of a simulation run. Each coefficient is determined
by inverse transform sampling on the distribution specified in discretized form
by the parameters. After drawing u ∼ U(0, 1), we iterate over the histogram’s
normalized per-bin probabilities bi and select the coefficient according to the
lowest bin index i with u ≥ ∑20

i=1 bi. Drawing each pedestrian’s coefficient thus
involves a sequence of conditional branches on the cumulative sum of normal-
ized bin weights. The branch conditions are functions of the input parameters
and are thus taken into account as part of DGO’s gradient estimation. However,
the remainder of each simulation trajectory, including all force calculations, exit
selection decisions, and the calculation of the distance to the reference output
distribution, is a direct consequence of the branches taken while drawing co-
efficients. Since the pathwise derivatives wrt. parameters thus extend only to
the initial coefficient calculation, DGO’s gradient estimates are based solely on
the critical events generated by these initial branches. Hence, AD-based deriva-
tives across the force calculations do not contribute to DGO’s estimates, which
eliminates the main source of noise observed in the previous problems.

Figure 8 shows the calibration progress for this problem based on a subset of
the hyperparameters from Table 1, and setting the number of microreplications
to 1 or 10. As one function evaluation corresponds to about 1s of wall time,
we omit the progress over function evaluations and instead show the progress
over optimization steps, each of which can cover several evaluations depending
on the method’s hyperparameters. Here, gradient descent using PGO and DGO
identified the best solutions within the time budget. We note the steepness of
DGO’s progress over steps in the best-performing configuration of 10 simulation
replications and 25 samples per step, in contrast to PGO’s 1 replication and 25
samples. DGO overtakes PGO at around 5 000 steps, whereas PGO stagnates.
PSO and GA show similar progress, and neither reaches convergence by the end
of the time budget, with GA achieving a similar solution quality as PGO.
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Fig. 9: Best calibration results generated by DGO. While the output matches the
reference distribution well, the identified input distribution is similar in mean to
the reference but differs in shape.

Finally, we consider the solution identified by DGO in its best-performing hy-
perparameter combination and macroreplication. Figure 9 shows the calibrated
input histogram over exit selection coefficients, and the output histogram over
evacuation times. As expected, a good fit is achieved with respect to the dis-
tribution of evacuation times. In contrast, the input distribution still somewhat
deviates from the reference in shape, although the tendency is captured. This
result shows that for this problem, high-quality solutions can be achieved via
differently shaped input distributions. Hence, the calibration for real-world pur-
poses would likely benefit from additional criteria to increase identifiability.

6 Conclusions

Our study of the crowd model calibration via gradient descent using sampling-
based estimators shows both the challenges and the promise of the approach.

Firstly, even in the absence of explicit conditional branching, crowd simula-
tions based on Social Force can observe large jumps in the simulation output.
While our AD-based gradient estimator is capable of accounting for such jumps,
scenarios of non-trivial size can generate sufficiently rugged output so that cap-
turing the jumps based on only few samples becomes challenging. The general
function curvature seems to be largely independent of the jumps, which sug-
gests using either simple pathwise derivatives for the Social Force portion of a
simulation, or resorting to black-box gradient estimators.

Our largest calibration problem involved finding a posterior distribution over
per-agent decision parameters, from which we draw by inverse transform sam-
pling using a series of conditional branches. A key insight is that in this formula-
tion of simulation-based inference, our AD-based method reduces to estimating
these branches’ effects. This can positively affect both performance, by reducing
the AD overhead to a minimum, and fidelity, by reducing the dependence on po-
tentially noisy intermediate pathwise gradients. We consider this an encouraging
result demonstrating a gainful integration of AD into inference workflows [9].

In a calibration problem across 20 input dimensions, gradient descent us-
ing the sampling-based estimators outperformed the gradient-free methods. The
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general tendency observed is that the AD-based gradient estimators are benefi-
cial where large jumps in the underlying force calculations can be disregarded
and only explicit conditional branches must be accounted for. Thus, a promising
direction for future work lies in further facilitating gradient-based calibration
and optimization by model refinements that reduce jumps in acceleration [20]
while maintaining a realistic representation of real-world crowd behavior.
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