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Abstract. Designing microwave components involves managing multiple ob-
jectives such as center frequencies, impedance matching, and size reduction for 
miniaturized structures. Traditional multi-objective optimization (MO) ap-
proaches heavily rely on computationally expensive population-based meth-
ods, especially when executed with full-wave electromagnetic (EM) analysis 
to guarantee reliability. This paper introduces a novel and cost-effective MO 
technique for microwave passive components utilizing a machine learning 
(ML) framework with artificial neural network (ANN) surrogates as the pri-
mary prediction tool. In this approach, multiple candidate solutions are ex-
tracted from the Pareto set via optimization using a multi-objective evolution-
ary algorithm (MOEA) applied to the current ANN model. These solutions ex-
pand the dataset of available (EM-simulated) parameter vectors and refine the 
surrogate model iteratively. To enhance computational efficiency, we employ 
variable-resolution EM models. Tested on two microstrip circuits, our method-
ology competes effectively against several surrogate-based approaches. The 
average computational cost of the algorithm is below three hundred EM anal-
yses of the circuit, with the quality of generated Pareto sets surpassing those 
produced by the benchmark methods. 

Keywords: Microwave design, multi-objective optimization, design automation, 
machine learning, neural networks, surrogate modeling, Pareto optimality. 

1 Introduction 

Contemporary microwave design confronts various challenges linked to meeting diverse 
performance criteria [1], [2], while concurrently striving for compact circuit sizes [3]-[5]. 
The miniaturization imperative is crucial for numerous applications like the Internet of 
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Things, mobile healthcare, and more [6]-[8]. Achieving size reduction involves strategies 
such as multi-layer implementations or integrating geometrical modifications like line 
meandering, compact microstrip resonant cells, metamaterials, etc. [9]-[11]. Accurate as-
sessment of intricate circuits full-wave electromagnetic (EM) analysis is indispensable 
[20], which proves computationally demanding, especially when repetitive simulations 
are required (e.g., for optimization, uncertainty quantification [12], [13]). To mitigate 
these high computational costs, several techniques have been introduced, including space 
mapping [14], response correction [15], surrogate-assisted methods [16], response feature 
techniques [17], machine learning [18], or restricted Jacobian updating strategies [19]. 

Designing microwave systems involves managing multiple criteria simultaneously, en-
compassing aspects like center frequency, bandwidth, return loss levels, and more. Often, 
these design goals conflict with each other. For instance, in the case of miniaturization, 
reducing size might compromise electrical performance. Achieving the best possible de-
sign trade-offs often results in a Pareto set representation [20], necessitating multi-objec-
tive optimization (MO). Many available numerical optimization methods handle only sca-
lar objectives, requiring objective aggregation for MO [21]. However, this approach yields 
a single design per algorithm run. Generating the entire Pareto set requires genuine MO 
[20], which is primarily conducted using bio-inspired population-based algorithms [22]-
[26]. Clearly, nature-inspired methods can produce the entire set of trade-off designs in a 
single run, yet, they are computationally inefficient. Particularly, direct simulation-driven 
MO is constrained because of excessive CPU costs. 

To address the high computational costs, surrogate modeling methods [27] offer an 
alternative by utilizing a rapid metamodel for system evaluation instead of resource-
intensive EM analysis. Surrogates can either be pre-constructed [28], [29], or iteratively 
refined throughout the optimization run [30], [31]. However, building reliable surro-
gates over larger parameter spaces poses numerical challenges, making the former ap-
proach uncommon. Consequently, most multi-objective (MO) frameworks adopt a ma-
chine learning (ML) approach, refining the metamodel iteratively using EM data gath-
ered during the search process. The surrogate model's role lies in generating candidate 
designs, known as infill points [32], with a wide array of ML techniques available in 
literature [33], [34]. Although cost-efficient, ML tends to leave a significant portion of 
the search space unexplored. The search process focuses on an initially identified prom-
ising region, allocating most resources to its exploration. Moreover, the challenges in 
building reliable data-driven models restrict ML's applicability to simpler problems. 

Addressing the challenges of EM-driven multi-objective optimization (MO) associ-
ated with high parameter space dimensionality can be achieved through domain re-
striction. Practically, this is done by identifying extreme non-dominated solutions (re-
quiring extra optimization runs for individual objectives) and delineating the domain 
using this data [35]. The computational benefits of domain restriction lie in the smaller 
training datasets needed within a reduced volume, enhancing the MO process's effec-
tiveness. Another method, performance-driven modeling [36], constructs the surrogate 
only within the region housing high-quality designs. Similar to domain restriction, this 
approach significantly improves the surrogate's predictive capability while reducing the 
required training data samples [37]-[39]. However, the said algorithms might incur high 
initial costs due to acquiring extreme non-dominated solutions, which could easily 
reach hundreds of EM simulations. Additionally, there's an assumption about the regu-
larity of the Pareto front, posing a limitation. 
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The aim of this article is to introduce an innovative approach for cost-effective and 
reliable multi-objective optimization (MO) of compact microwave circuits. The proposed 
algorithm leverages machine learning (ML) with artificial neural networks (ANN). An 
integral part of this algorithm is a multi-objective evolutionary algorithm (MOEA) used 
to optimize the ANN metamodel and generate a current representation of the Pareto set. 
From this set, a collection of candidate designs (infill points) is derived, and their EM-
simulated circuit characteristics are acquired and integrated into the ongoing dataset. The 
termination criterion for the algorithm is based on evaluating the similarity between the 
rendered Pareto sets in successive iterations. To reduce CPU cost, variable-resolution EM 
simulations are employed. Initial sampling starts at the lowest acceptable fidelity, gradu-
ally increasing to higher levels later on. While lower-resolution EM analyses are faster, 
they lack accuracy. The search process's reliability is maintained by progressively remov-
ing low-resolution points from the dataset, retaining only high-fidelity ones to form the 
final Pareto set. The effectiveness of this approach has been validated using two minia-
turized microwave circuits, demonstrating exceptional performance. The average running 
cost equates to fewer than three hundred high-fidelity EM analyses of the circuit under 
design. This represents almost ninety percent relative acceleration over one-shot bench-
mark algorithms and over forty percent speedup over single-fidelity ML frameworks. Im-
portantly, the reported savings do not affect the quality of the resulting Pareto fronts. 

This work encompasses several novel contributions, notably: (i) development and 
deployment of a high-efficiency machine learning framework tailored for the multi-
criteria design of microwave circuits; (ii) integration of variable-resolution EM simu-
lations into a model management strategy, facilitating accelerated optimization; (iii) 
successful demonstration of the proposed procedure's capability in managing complex 
multi-objective tasks, handling parameter space dimensions of up to fifteen. 

2 Multi-Objective Optimization Methodology 

This section explores the details of the developed MO algorithm, whose constituent 
parts include a machine learning (ML) framework, ANN models, and multi-resolution 
EM simulations. Sections 2.1 and 2.2 delineate the formulation of the MO problem and 
the variable-resolution EM models, respectively. The remaining sections are devoted 
to providing specifics of the introduced procedure, starting from sampling and ANN 
model construction (Section 2.3), through the usage of MOEA algorithm to generate 
the Pareto set (Section 2.4), infill point rendition (Section 2.5), and variable-fidelity 
model management (Section 2.6). Lastly, Sections 2.7 and 2.8 discuss the termination 
criteria, and reprise the entire MO framework, respectively. 

2.1 MO Microwave Design Optimization 

Our aim is to simultaneously minimize all considered objectives across the design 
space X. Hereinafter, the design objectives will be referred to as Fk(x), k = 1, …, Nobj, 
whereas the vector of objectives will be referred to as F(x) = [F1(x)  F2(x)  …  FNobj(x)]T, 
with x = [x1 … xn]T representing a designable vector (geometry parameters). The design 
space X is of interval-type and it is bound by lower and upper limits l = [l1 … ln]T, and u 
= [u1 … un]T, respectively. 
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The objectives pertaining to real-world circuits are at least partially contradictory, as 
in the case of miniaturization which deteriorates electrical properties. When multiple 
objectives are present, Pareto dominance relation [40] is indispensable to compare var- 

 
MO procedures heavily utilize nature-inspired algorithms: tremendously expensive 

when applied with microwave circuit simulation models, chiefly using full-wave EM 
analysis. To circumvent this issue, surrogate modeling techniques are used, oftentimes, 
within various ML frameworks. Yet, creating dependable surrogate models remains the 
primary challenge, especially in highly-dimensional parameter spaces with extensive 
parameter ranges. Our approach alleviates the mentioned issues to some point by com-
bining ML, multiple infill point rendition, and variable-fidelity EM analysis.  

 
2.2 Multi-Resolution EM Models 

We employ computational models in the form of full-wave EM analysis. Usually, 
circuit design is carried out using a model ensuring adequate accuracy Rf(x), i.e., fine 
(or high-fidelity) model. Unfortunately, evauation of Rf(x) tends to be expensive, with 
the cost increasing with structure complexity. Lower simulation times can be obtained 
for models of reduced fidelity, yet, accompanied with a simultaneous degradation of 
model reliability. Oftentimes, two levels of EM model resolution are utilized (high-
/low-fidelity), yet, the prospective benefits of integrating a spectrum of resolutions have 
been recently shown [41].  

This research exploits multi-resolution EM simulations to speed-up the multi-objective 
(MO) search process. In our approach, we utilize a continuous range of fidelities L  [Lmin  
Lmax]. Hereinafter, we will denote as R(x,L) the EM model of fidelity L. Moreover, Rf(x) = 
R(x,Lmax) and Rc(x) = R(x,Lmin) will be used for high- and low-fidelity models, respectively. 
 
2.3 Sampling Procedure and ANN-Based Surrogate Modeling  

Our MO framework exploits surrogates in the form of ANN regression models. The 
premier metamodel is built utilizing data set comprising Ninit samples xB

(j), j = 1, …, 
Ninit, collected over the design space X using an increased-efficacy Latin Hypercube 
Sampling (LHS) protocol [42]. At this step, EM simulations are carried out at the min-
imum level of fidelity Lmin, i.e., we have R(xB

(j),Lmin), j = 1, …, Ninit. 
As an ANN surrogate, we utilize a multi-layer perceptron [43] with the following 

setup: two hidden layers (each comprising 10 neurons), sigmoid activation function, 
network trained using Levenberg-Marquardt algorithm (maximum 1000 learning 
epochs, performance metric in the form of mean squared error, MSE, random split of 
testing/ training samples). In each iteration, the ANN model is trained anew. Using such 
a simple network allows for retaining short training duration (around dozen seconds for 
datasets comprising below two hundred samples). Thus, the cost of rendering ANNs is 
not taken into account in the total expenses of the MO algorithm. Figure 1 depicts the 
ANN-assisted rendition of frequency characteristics of a microwave coupler. 
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Fig. 1. Complex-valued scattering parameters of the microwave coupler represented using ANN 
model. ANN model renders outputs represening all pertinent device responses for specific fre-
quencies f1 through fm.  

 

 

Fig. 2. The description of the search engine: multi-objective evolutionary algorithm (MOEA), which 
renders Pareto sets by carrying out ANN-surrogate-based multi-objective optimization. 
 

2.4 Multi-Objective Evolutionary Algorithm (MOEA) 

We employ multi-objective evolutionary algorithm (MOEA) as the main search mecha-
nism which renders sets of Pareto-optimal designs by optimizing the ANN models. Our 
version of MOEA adheres to the principles included in [44]. Figure 2 illustrates the em-
ployed algorithm. The verification experiments of Section 3 utilize the following config-
uration of MOEA: NP = 200 (population size), pcross = 0.1 (crossover probability), and pmut 
= 0.8 (mutation probability). The MOEA employs the rapid ANN model, rendering its 
CPU costs insignificant in comparison to that of an individual circuit EM simulation. 

 

2.5 Infill Point Allocation 

Each algorithm iteration involves generating Ninfill candidate solutions, which are in-
cluded into the set the algorithm operates on. The said infill vectors are derived from the 
latest Pareto front rendered by MOEA (see Section 2.4). Figure 3 depicts the selection 
procedure striving to accomplish a uniform coverage of the Pareto front (for a two-di-
mensional objective space). Towards this end, Ninfill values of the objective F2 are set as  
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(a)                                                                  (b) 
Fig. 3. (a) Infill point rendition: the chosen candidate solutions originate from the MOEA-
generated Pareto front through ANN model optimization. We aim at an even distribution of the 
vectors concerning the objective F2, whose range is established by the span of the Pareto set 
(along with optional requirements, e.g., target value of the objective F1 as depicted above); (b) 
Infill points: ANN-predicted vs. EM-evaluated. The EM-predicted objectives are inferior to the 
ANN-rendered ones due to low surrogate accuracy. The following situation is shown: if F2 per-
tains to antenna footprint, values of F2 are identical for EM-analysis and ANN render; still, EM-
predicted levels of F1 are inferior to that ANN-predicted. 

 

 

Fig. 4. The employed strategy for dataset updating. 
 

 
In (1), F2.min and F2.max bound the span of the Pareto set (with supplementary conditions). 
The choice of the infill vectors xI

(i.j), j = 1, …, Ninfill, has to ensure that they are in close 
proximity of the assumed levels (here, i refers to the MO procedure iteration index). 

A noticeable disparity is observed among the objectives at the surrogate-predicted 
infill vectors and the respective values assessed based on EM simulation data (which 
are usually worse due to low accuracy of the ANN). Still, EM-simulated objectives are 
of prime importance (the surrogate serves merely as a supplementary tool). The quality 
of the Pareto and the termination condition are evaluated using EM data. 
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2.6 Management Scheme of Multi-Fidelity Models. Dataset Updating  

In order to lower computational expenses, the developed MO framework employs multi-
fidelity EM models. In this study, the model fidelity L comes from the range between Lmin 
to Lmax. The initial sampling (outlined in Section 2.3) is carried out using Lmin. Later, the 
model resolution is increased until highest fidelity Lmax is reached. The latter is crucial for 
the Pareto-optimal designs to be dependable.  

The strategy for managing model fidelity is straightforward and involves an affine 
adjustment of L. Specifically, in the ith iteration, the resolution L(i) is established as 

( )
max min max min

1
min , ( )

 
   

 
i

transition

i
L L L L L

N
                             (2) 

where Ntransition represents the iteration count beyond which L assumes Lmax. 
The update of the dataset constitutes a crucial element of the MO procedure because 

of the involvement of multi-resolution EM models. When only single-resolution model 
is utilized, addition of the new EM data is simple, i.e., in the ith iteration, we have the 
complete dataset  

{xB
(j)}j=1,…,Ninit  {xI

(1.j)}j=1,…,Ninfill  …  {xI
(i.j)}j=1,…,Ninfill                    (3) 

Whereas in the variable-fidelity approach, the samples of reduced fidelity are system-
atically eliminated, to ensure that high-fidelity points ultimately persist. Figure 4 illus-
trates the procedure for dataset updating. The said strategy keeps the dataset of the size up 
to 2Ninfill until any samples simulated using L < Lmax exist. Later on, the lowest-fidelity points 
are step-by-step ousted from {xT

(i.j)}, until it contains solely high-fidelity. Subsequently, 
each new ML-rendered sample is directly appended to the set.  

 

 
Fig. 5. Termination condition of the introduced ML-based MO procedure. 
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Fig. 6. Verification case studies: (a) Circuit I: a compact branch-linear coupler, (b) Circuit II: a minia-
turized three-section 50-to-100 ohm impedance matching transformer; top and bottom panels show 
the CMRC cell and the entire circuit, respectively. 

 

Table 1. ML-based MO algorithm: Control parameters  

 
 
2.7 Algorithm Termination  

 
 
2.8 Algorithm Operation 

Here, we summarize all the aforementioned algorithmic components. Table 1 gathers the 
control parameters (five in total) of the proposed ML-base MO procedure. In all numerical 
experiments, the default values are utilized. In particular, the number Ninit of initial samples 
(we use Ninit = 100) can be adjusted in order to achieve the required accuracy of the initial 
surrogate (e.g., around ten percent of relative RMS error). The remaining parameters are of 
lesser importance. For example, lower values of Ninfill permit reducing the cost of each algo-
rithm iteration at the expense of increasing total number of iterations necessary to yield sim-
ilar Pareto set. Furthermore, higher values of Na lead to smoothening of the moving average, 
which might be compensated by increasing . 

The expenditures associated with the multi-objective (MO) process are evaluated as the 
total number of EM simulations performed throughout optimization run. Again, MOEA 
utilizes a fast ANN model, so the overhead of the Pareto set generation are negligible in 
comparison to the expenses associated with EM circuit simulations. The primary sampling 
is carried out at the minimum resolution Lmin. Later on, L is increased to Lmax (across the 
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first Ntransition iterations). As procedure advances, the reduced-fidelity samples are progres-
sively eliminated from the dataset. The gradual enhancement of the distribution of infill 
vectors within the sub-set comprising the Pareto front leads to the improvement of ANN’s 
accuracy in the very region. The ultimate outcome of our procedure is the high-fidelity 
Pareto set. 

3 Verification Case Studies 

 
resonant cells (CMRCs). Table 2 presents all the important details on the verification 
structures: geometry parameters, substrate, simulation setups, and design goals. All 
models are simulated using transient solver of CST Microwave Studio.  

For both circuits, the parameter spaces are bounded by lower and upper limits on 
geometry parameters (denoted as l and u, respectively). The primary design goal is the 
same for both structures: minimization of the footprint area. Whereas the secondary 
goals are as follows: maximization of the 0.5-dB power division band-width (Circuit 
I), and minimization of the maximal value of reflection level within the assumed band 
(Circuit II). It is crucial to emphasize that the challenges posed by both test problems 
primarily arise from high dimensionality of their parameter spaces. 

 
 

Table 2. Important parameters of verification circuit structures 
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Circuits I and II were optimized using the algorithm developed in the study, as well 
as the control parameters and their default values (see Table 1). The ultimate result in 
the form of the Pareto set has been generated, where the non-dominated designs are 
simulated at the highest admissible fidelity. The benchmark algorithm set is comprehen-
sive, as it comprises three surrogate-assisted MO procedures (summarized in Fig. 7). The 
two procedures (Algorithm 1 and 2) adhere to a one-shot principle, where a surrogate 
model is built upfront and subsequently optimized via MOEA so as to establish the Pareto 
set. The key distinction between the two approaches consists in the choice of metamodel: 
kriging interpolant (Algorithm 1), and ANN (Algorithm 2). The data sets of two cardinal-
ities are utilized: 400 and1600 training data samples. Algorithm 3 constitutes a one-fidel-
ity variation of the introduced framework operating solely at the highest model resolution. 
By comparing our approach with Algorithm 3 we are able to assess the possible compu-
tational benefits of integrating multi-fidelity EM simulations into the search process.  

Table 3 presents juxtaposition of the computational expenses of the developed algo-
rithm and benchmark techniques, assessed as the equivalent number of highest-fidelity 
EM simulations of the microwave structure under design. In the case of benchmark 
algorithms, which use solely high-fidelity EM model, the cost is calculated as the over-
all number of EM simulations. Figure 8 presents Pareto fronts generated using our 
methodology and Algorithms 1 through 3. The circuit characteristics pertinent to the 
designs optimal in the Pareto sense rendered by our algorithm are displayed in Figs. 9 
and 10, which have been simulated using fine EM model. 

Designs 1 and 3 of Circuit I (presented in Fig. 8) have been fabricated and measured. 
Figure 11 presents the circuit prototypes, as well as a comparison between the measured 
and EM-evaluated S-parameters, demonstrating their satisfactory alignment. 

The developed multi-fidelity ML-based MO framework outperforms the benchmark 
algorithms with regard to cost-efficacy and reliability. One-shot methods (Algorithms 
1 and 2) produce lesser-quality Pareto fronts as a result of the reduced accuracy of the 
model built in an unconstrained design space. As far as the reliability of our approach 
is concerned, it is superior to Algorithms 1 and 2, and similar only to the Algorithm 3. 
Moreover, employment of multi-fidelity EM simulations does not negatively impact 
the Pareto set quality.  

 

Table 2. Benchmark algorithms  
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(a) 

 
(b) 

Fig. 8. Pareto fronts rendered by our and benchmark MO procedures: (a) Circuit I, (b) Circuit II. 

 
                            (a)                                                   (b)                                                   (c) 
Fig. 9. Circuit I: exemplary designs from the Pareto set, S-parameters (|S11| (—), |S21| (), |S31| (- 
- -), |S41| (-o-)) for: (a) BW = 770 MHz, A = 245 mm2 (Design 1), (b) BW = 620 MHz, A = 232 
mm2 (Design 2), (c) BW = 255 MHz, A = 221 mm2 (Design 3); BW – 0.5-dB power division 
bandwidth, A – circuit size. Vertical line shows the intended operating frequency.  

 

Fig. 10. Circuit II: exemplary designs from the Pareto set, reflection characteristics for: (a) A = 33.4 
mm2 (Design 1), (b) A = 41.8 mm2 (Design 2), (c) A = 46.1 mm2 (Design 3), (d) A = 51.2 mm2 (Design 
4). Intended operating frequency range shown by the horizontal line. 
 

The computational efficiency of our framework is considerably better than that of both 
single-run  and ML-based routines: the expenses of our procedure are around 260 high-
fidelity EM analyses, whereas for Algorithm 3 it is close to 450 EM analyses (i.e., the sav-
ings of 42 percent w.r.t. single-fidelity framework have been obtained without degrading 
design quality). The relative savings over Algorithms 1 and 2 (using 1600 samples) are even 
higher (they reach up to 84 percent).  
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Fig. 11. Circuit I: (a) prototype photos for the Pareto-optimal points; (b) measurements (black) and 
EM-evaluated (gray) S-parameters. Top and bottom: Designs 1 and 3 of Fig. 8, respectively. 
 

Table 3. Cost breakdown: the developed and benchmark procedures 

 

4 Conclusion 

This work proposed an innovative approach for accelerated multi-objective optimiza-
tion of compact microwave devices. Our methodology revolves around a machine 
learning framework utilizing an artificial neural network (ANN) model. At each itera-
tion of the search procedure, multiple infill points are generated and integrated into the 
dataset, progressively refining the surrogate model. Intermediate representations of the 
Pareto front are crafted by optimization of the ANN surrogate using a multi-objective 
evolutionary algorithm, driving designs toward the Pareto front. Additionally, the in-
corporation of variable-resolution EM simulations, managed by a tailored model man-
agement strategy, further enhances cost-efficiency. Rigorous numerical validation 
showcases the exceptional computational efficiency of our method (averaging fewer 
than three hundred high-fidelity EM simulations per optimization run) and its reliability 
compared to various surrogate-assisted and machine learning benchmark algorithms. 
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