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Abstract. The development of black-box survival models has created
a need for methods that explain their outputs, just as in the case of
traditional machine learning methods. Survival models usually predict
functions rather than point estimates. This special nature of their out-
put makes it more difficult to explain their operation. We propose a
method to generate plausible counterfactual explanations for survival
models. The method supports two options that handle the special na-
ture of survival models’ output. One option relies on the Survival Scores,
which are based on the area under the survival function, which is more
suitable for proportional hazard models. The other one relies on Sur-
vival Patterns in the predictions of the survival model, which represent
groups that are significantly different from the survival perspective. This
guarantees an intuitive well-defined change from one risk group (Survival
Pattern) to another and can handle more realistic cases where the pro-
portional hazard assumption does not hold. The method uses a Particle
Swarm Optimization algorithm to optimize a loss function to achieve
four objectives: the desired change in the target, proximity to the ex-
plained example, likelihood, and the actionability of the counterfactual
example. Two predictive maintenance datasets and one medical dataset
are used to illustrate the results in different settings. The results show
that our method produces plausible counterfactuals, which increase the
understanding of black-box survival models.
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1 Introduction

Survival models are a special type of machine learning models, which predict
the probability of survival over time. This group of models is widely used in the
healthcare domain but has also been applied to predictive maintenance tasks [3,
5,27,32|. Complex machine learning tasks, involving high dimensionality of data,
often require advanced machine learning models, which are not interpretable by
humans, to achieve satisfactory performance. Safety critical domains, like the
two mentioned above, usually require the explanations of model’s decisions [23].

Explainability in Al refers to the ability to understand and interpret how a
machine learning model makes decisions or predictions. Depending on the type
of task and data, different explanation methods can be applied. Our work fo-
cuses on counterfactual explanations, which is a local explainability method that
answers the question of what should change in the input to observe a different
output. In this paper, we present how counterfactual explanations can be used to
explain survival models. In contrast to classification and regression, the output
of a survival model typically includes a survival function or a hazard function,
representing the probability of survival over time, which is more difficult to ex-
plain.

In this work, we propose a method for generating counterfactual explanations
for survival models that supports two options in terms of the definition of the
change in output. The first option depends on the Survival Score, that is, the area
under the survival function, to search for counterfactual examples that would
change this score by a predefined value. In the second option, we use Survival
Patterns [1] that represent the survival behaviors of groups in the population
significantly different from each other.

Based on such Survival Patterns, we search for counterfactual examples that
would change the predicted survival functions of subjects to predefined patterns.
Other important aspects, that we consider in our research, are the plausibil-
ity and actionability of counterfactual explanations. In this work, we utilize an
outlier detection model to drive counterfactual explanations close to the data
distribution. We also added a special term to the loss function to handle cate-
gorical variables. Lastly, the actionability of the example is controlled by mask-
ing features that cannot be changed in practice. Restricting some features from
changing can cause, in some cases, the target Survival Pattern to be not reach-
able. However, our method generates counterfactual examples that are closest
to the target pattern. To the best of our knowledge, this is the first work that
utilizes both survival scores and survival patterns to generate plausible and ac-
tionable counterfactual examples for survival models. A full implementation of
our method is available on our GitHub repository ~.

* https://github.com/abdoush/SurvCounterfactual

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:
DOI] 10.1007/978-3-031-63772-8_28 |



https://dx.doi.org/10.1007/978-3-031-63772-8_28
https://dx.doi.org/10.1007/978-3-031-63772-8_28

Understanding Survival Models through Counterfactual Explanations 3

2 Related Works

2.1 Survival Analysis Background

Survival models are a type of statistical and machine learning models that aim
at modeling time to an event e.g., the machine failure or the patient’s death.
One of the problems in survival analysis is the presence of censoring. Some
subjects will experience an event during the study, but others will survive be-
yond the study, which are called censored cases. Survival models usually predict
functions, that is, survival or hazard functions. The survival function is the prob-
ability of surviving beyond a certain time t; i.e., the failure time T is greater
than t: S(t) = P(T > t). The Cox proportional hazards model (CPH) 6] is the
first model to predict individualized hazard functions that depend on the indi-
vidual’s features x. The CPH model assumes that hazards between subjects are
proportional and independent of time. As a result, the survival curves of sub-
jects do not intersect leading to unique area-under-curve for different survival
curves, which is rarely the case in real life. To address these issues, machine
learning models for survival analysis have been developed, such as Randon Sur-
vival Forests (RSF) [12], Survival Support Vector Machine [26] or deep learning
approaches [2,14,20]. In contrast to CPH, these models are able to learn non-
linear relations between features and support nonproportional hazards. They
usually offer improved performance in terms of accuracy but lack explanatory
insight into their predictions.

2.2 Explainable AI and Counterfactual Explanations

The CPH model, due to its linearity, can be considered inherently explainable,
which is a strong advantage in safety-critical domains. More complex machine
learning models for survival analysis, require external explanations methods.
Many such methods were proposed for classification or regression and extended
to survival analysis. SurvLIME [16] extended the LIME [28] method, where it ap-
proximates the survival model locally with a CPH model. SurvSHAP(t) [18] ex-
tended SHAP [21] to explain survival functions that can capture time-dependent
variable effects. SurvSHAP [1] used a proxy-based approach to explain the sur-
vival model with SHAP, using the patterns found in the output of the survival
model to build the proxy model.

A promising XAI method is Counterfactual Explanations (CE), which belong
to the family of example-based explanations aiming to find a ’similar’ observa-
tion to the one we are explaining, but with a different model prediction. CE was
originally proposed in [31], where the authors suggested creating explanations
by minimizing the objective function consisting of two terms: the distance to
the target output and the distance between the original observation and the
counterfactual explanation. A major issue with this approach is that unrealistic
explanations might be created. To deal with this problem, the distance between
the explanation and the observed data can be minimized [7], a model which esti-
mates the likelihood of point belonging to a data distribution, e.g. Autoencoder,
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can be used [8], or a generative model can be employed to generate candidates
for explanations [24].

In [17], the authors propose a method for generating counterfactual explana-
tions for survival models using the mean survival time as the target. Our method,
while sharing similarities, enhances this approach by incorporating additional
terms in the optimization to improve the likelihood and actionability of gener-
ated counterfactual examples. Moreover, our alternative option utilizes Survival
Patterns which identify distinct risk groups based on the entire survival function
rather than mean-time alone. This adaptation accommodates both proportional
and non-proportional hazard models and facilitates specifying meaningful target
changes between survival groups.

3 Research Methods

Our method is model-agnostic in the sense that it depends only on the output
of the survival model. Furthermore, the method does not require access to the
training data after the model is trained. We use the Particle Swarm Optimiza-
tion (PSO) algorithm to optimize our objective function to meet four criteria: 1)
achieving the desired change in the target output, 2) minimizing the change to
the input, 3) the plausibility of the counterfactual example, and 4) the action-
ability of the counterfactual example. Our method provides two options with
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Fig. 1: Patterns discovery Workflow

respect to the first criterion, i.e. achieving the desired change in the target out-
put. The first option relies on the Survival Score, representing the area under
the survival function (mean survival time). This treats the survival problem as a
regression task, aiming to find a counterfactual that achieves a specified change
to the survival score, detailed in Section 3.1. While effective for proportional
hazards with non-intersecting survival curves, it has limitations in cases of non-
proportional hazards, where distinct survival behaviors can yield the same area
under the curve.

To address nonproportional hazards, our second method option employs Sur-
vival Patterns. This involves grouping survival curves into distinct and signifi-
cantly different Survival Patterns, each representing curves with similar surviv-
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ability. Determining the optimal number of patterns and clustering curves in a
lower-dimensional space transforms the problem into a classification task. The
objective is to find a counterfactual example that changes the predicted survival
curve to a predefined Survival Pattern. Further details on survival patterns are
provided in Section 3.1.

3.1 Generation of Counterfactual Explanations

The objective function consists of three weighted terms. The purpose of each
term is to fulfill one of the criteria described earlier.

L=aly+BLs+vLrLL (1)

The first term, £,, induces the desired target change, the second term, Lz,
promotes proximity between the counterfactual and the original input, and the
third term, L 1, ensures the counterfactual’s likelihood. The last criterion, which
is the actionability of the generated example, is realized by constraining the
selected input feature from changing based on the domain expert knowledge. The
following subsections provide details about each part of the objective function.

Counterfactual Explanations with Survival Scores The survival score y,
calculated as the area under the survival curve, represents the mean survival
time of a subject. We reframe our explanation task as determining the neces-
sary changes in observed features X to increase the predicted survival score by
Y. These counterfactual explanations reveal the feature adjustments that can
positively impact the expected survival time. In practical applications, these ex-
planations guide adjustments to extend the machine’s or patient’s life. The term
Ly in the objective function associated with the target value of the survival score
Ly = |y + 0 —§|, where y is the original survival score, § is the required change
in the survival score, ¥ is the survival score of the counterfactual candidate, and
|.| indicates the absolute value.

Counterfactual Explanations with Survival Patterns Survival models
predict survival curves of different shapes and levels. Similarities between pre-
dicted curves reflect similarities in input subjects that can define risk groups
that are significantly different from the survival perspective. Each of these risk
groups has its own shape and level of survival function, which is called a Survival
Pattern [1]. Such patterns can be used to explain the behavior of the survival
model. Our method constructs the counterfactual example by finding the mini-
mum change to the input features, which changes the prediction of the survival
model from a source Survival Pattern to a specific target one.

Following what has been done in [1], Survival Patterns are discovered as
follows. Let X € R™*P be the input of the survival model mg, and S € R"*™
where S = ms(X) be the output survival functions, where n is the number of
examples, p is the number of features, and m is the number of timesteps in the
predicted survival functions. The algorithm has three steps; see Figure 1:
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— Lower Dimensional Representation: Survival functions, which are dis-
crete one-dimensional signals of probabilities over m time steps, S € R"*™,
are transformed into a lower dimensional space using the function h,. This
results in Z € R™*" where r is the number of dimensions of the new space
(Z-space). In this work, we used Principal Components Analysis (PCA) and
chose the number of components r, which maintains an explained variance
over 99%.

— Finding the Number of Survival Patterns: Using the lower dimen-
sional representation Z, the algorithm iteratively clusters the curves into
k €{2,3,..., Kinas } clusters using the k-means clustering algorithm. At each
iteration, pair-wise comparisons between the resulting clusters are performed
based on the log-rank test [25], which is a statistical test to assess the sta-
tistical difference between two groups from a survival point of view. The k*
that is selected is the largest k£ that achieves the maximum percentage of
significantly different groups.

— Survival Patterns Prediction Model: In this step, a k-means clustering
model g, is fitted on the Z features, using the optimal number of Survival
Patterns k*.

The final Survival Patterns prediction model f, which will be used in the
search for counterfactual examples, is composed of three models: f(x) = (g. o
h, o mg)(x). Based on the function f and the clusters’ centers in the Z-space
¢i: i €40,...,k*—1}, it is possible to compute the distance between the survival
curve of the proposed counterfactual x.r and the survival curve of the center of
the target pattern ¢, in the Z-space, which will be used as the target part £, of
the loss function:

Ly = 1((f(xer) # Dl(hz 0ms)(Xep) = cill2 (2)

where t is the desired target Survival Pattern, ||.||2 is the Ly norm, and 1(.) is
the indicator function. The use of the indicator function will block the effect of
this part of the loss function once the counterfactual crosses the boundaries of
the target pattern.

Minimal Change to the Features The second term of the objective function
Ly(xcf) = |[|x — Xcf|p aims at minimizing the distance between the original
example x and the generated counterfactual x.¢, where p is the order of the
LP-norm. In this work, we used L'-norm to encourage sparsity in the difference
between the explained example and the counterfactual one.

Likelihood of Counterfactual Explanations To ensure the plausibility of
counterfactual explanations, we utilize an Autoencoder model (AE) fitted to the
training data. The model is used to determine the reconstruction error between
the counterfactual candidate and its reconstructed version by the AE, which we
call the anomaly score L4r = ReLU(||xcr — x|l — A¢), where p is the order of
the LP-norm, z/, 7 s the output of the AE model, and A; is the anomaly threshold.
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The threshold A; is estimated based on the residuals of the test data set using
the formula @3 + 1.5 * IQR where IQR is the interquartile range and @3 is the
upper quartile. A higher anomaly score indicates a candidate’s deviation from
the original data distribution. While autoencoders have been used for unlikely
counterfactuals, our contribution involves introducing an anomaly threshold A;
with the ReLU function. If the reconstruction error is below this threshold, the
loss term L 4p becomes zero, aiming to halt its impact when the counterfactual
is sufficiently likely. This approach can result in counterfactual examples closer
to the original subject. We also included an additional term L, that ensures
that the generated one-hot-encoded features have valid codes. These two terms,
Lag and Lope, constitute our Likelihood Loss (LL), L1, = Lag + Lohe, that is
responsible for determining the plausibility of the counterfactual.

Actionable Counterfactual Explanations Counterfactual explanations achieve
actionability by employing a boolean vector, provided by a domain expert, to
mask uncontrollable features. Features designated by this vector remain un-
changed, focusing the optimization algorithm on modifying other features to
meet the objective. While constraints on input features may limit achieving the
exact desired objective, our method aims to find the nearest attainable target in
such cases.

3.2 Particle Swarm Optimization

Particle Swarm Optimization [15] (PSO) is a nonlinear function optimization
method inspired by bird flocking behavior. In this research, PSO is employed
to minimize the objective function for generating counterfactual explanations.
Using N randomly initialized particles in the search space, each particle evaluates
the objective function at its position. Particle positions are adjusted based on
both individual and neighboring experiences, facilitating effective exploration
and convergence to a near-optimal solution. The algorithm’s performance can
be enhanced by adjusting hyperparameters, a process detailed in the results
section.

3.3 Datasets Description

Turbofan engine Commercial Modular Aero-Propulsion System Simulation
(C-MAPSS) is a NASA-developed software for turbofan engine simulation. Sax-
ena et al. [29] used C-MAPSS to create a dataset modeling engine degradation
and failure, comprising four subsets with varying complexity. This analysis fo-
cuses on a subset with one operating mode and two failure modes, involving 100
engines. To align with survival analysis, we truncated the dataset after the 300"
observation, marking these as no-event observations and removing subsequent
data. The original 21 sensor measurements were reduced to 13 by eliminating
redundant features based on the correlation coefficient.
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Predictive Maintenance Dataset (PM) This is a dataset publicly available
from [11]. The dataset contains information about machines that are provided
by four providers labeled Provider1 to Provider4 and operated by three teams
labeled TeamA, TeamB, and TeamC. The dataset also contains information about
operating conditions (pressure, moisture, and temperature) measured through
sensors. The aim is to study the lifetime of these machines under the aforemen-
tioned operating conditions.

Flchain Dataset [9] This dataset is a publicly available medical dataset aimed
at studying whether the Free Light Chain (FLC) assay is a good predictor of the
survival probability of patients. For the sake of visualization, we only considered
the three most important features, age, XFLC (which is the summation of the
kappa and lambda features in the original dataset), and creatinine.

4 Results and Discussion

In this section, we conduct experiments on three datasets described in Section 3.3
to demonstrate the effectiveness of the proposed methods in generating counter-
factual explanations. We explore various approaches tailored to different types
of data and tasks.

At first, we conduct a comparison and hyperparameter tuning of Particle
Swarm Optimization (PSO) and Simulated Annealing (SA) algorithms. Our find-
ings indicate that utilizing PSO improves explanation generation across all three
datasets.

The first experiment utilizes a Turbofan engine dataset, showcasing the gen-
eration of counterfactuals based on Survival Scores. In the second experiment,
we used our method with Survival Patterns applied to the PM dataset, which
has categorical features. The third experiment highlights the model’s behavior
when the target Survival Pattern is unattainable due to the presence of unac-
tionable features. We employ the Flchain dataset that has the Age feature, which
is naturally unactionable.

It is worth noting that in the first two experiments, we compared the re-
sults generated with and without using the LL term in the loss function. In the
Survival Score option, not using the LL term makes our method similar to the
method proposed in [17], which makes the first experiment a direct compari-
son between the two works. However, the comparison is indirect in the second
experiment as we employ the Survival Patterns option which is not supported
by [17].

4.1 Particle Swarm Optimization vs. Simulated Annealing

In this section, we compare the convergence of the PSO algorithm with the SA
algorithm, optimizing both and assessing convergence based on the final loss.
For the PSO algorithm, key hyperparameters include the number of particles,
cognitive coefficient (c1), social coefficient (¢2), and inertia weight (w). First, we
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set c1, ¢2, and w based on empirically validated values [4], that is, ¢; = 1.49618,
co = 1.49618, and w = 0.7298, and optimized the number of particles to mini-
mize computation time. Subsequently, we used these values to optimize cl, c2,
and w for each dataset via a random search for 1000 iterations. We performed
similar optimization for SA algorithm hyperparameters (T start, T end, itera-
tions, and step), with the final values listed in Table 1. The PSO algorithm

Table 1: PSO and SA Optimized hyperparameters.

PSO SA
Dataset |particles cl c2 w T start T end iterations step
CMAPSS 900 1.780533 1.911480 0.247112|0.203940 0.001783 750  0.039156
PM 5000 0.641856 1.125175 0.013541|0.264709 0.010108 680  0.285497
FLCHAIN| 200 0.119708 1.473350 0.222749(0.415107 0.028302 870  0.180351
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Fig. 2: Loss comparison between PSO and SA on the three datasets

showed better convergence which is evident in the final loss distributions in Fig-
ure 2. This superior performance of the PSO algorithm can be attributed to the
fast computation of the loss function (0.13s per step) that allowed us to use a
large number of particles in the PSO algorithm. Based on the previous results,
we continue with the PSO algorithm in the following sections.

4.2 Survival-Scores-based Counterfactual Explanations

This experiment illustrates the Survival Scores approach on the turbofan engine
dataset. We employed the RSF model to predict the survival probability for each
unit. Conducting an investigation, we randomly selected one unit, predicting its
survival probability after 200 cycles. Our objective was to identify the required
changes in feature values to increase its survival score by 30%. To gather statis-
tics on the generated counterfactual examples, we conducted the experiment 20
times, both with and without utilizing the LL loss.

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:
DOT] 10.1007/978-3-031-63772-8_28 |



https://dx.doi.org/10.1007/978-3-031-63772-8_28
https://dx.doi.org/10.1007/978-3-031-63772-8_28

10 A. Alabdallah et al.

175 10° * :
150 !
e =_
8 -
125 2 ®
3 53
& 2
100 S 210
3 0
75 5 With LL
8 I False
50 ' B True

2
Target Original point kNN
00 Distance

(b) Distance of the gen-
erated counterfactual ex-
planations to target sur-
(a) A 3D PCA projection of the CMAPSS vival score, original obser-
dataset with counterfactual explanations vation, and five nearest
generated for a randomly selected point neighbors from dataset

PCO

Testpoints M WithlL A WihoutlL  $§ Original Point

Fig. 3: PM dataset results of counterfactual explanations with and without LL.

In Figure 3a, a 3D PCA projection illustrates the dataset. The colors of the
test observations denote proximity to the target survival score in counterfactual
explanations. Desirable counterfactuals should be near the yellow region and rel-
atively close to the original data. Counterfactuals without LL mostly lie outside
the original distribution, making them less informative. Those with LL are closer
to the desired region, suggesting higher explanatory validity.

In Figure 3b, distances of counterfactual explanations to the target survival
score, the original point, and the five nearest neighbors are presented. Including
the LL Loss increased the distances to the original point and target survival score.
However, the difference in the target score is negligible in terms of explanation
validity, given its higher magnitude (10?). Importantly, our goal was achieved
as LL Loss inclusion resulted in explanations with improved proximity to the
original data, measured by the proximity to the five nearest neighbors from the
original points closest to the desired target score.

4.3 Survival-Patterns-based Counterfactual Examples

This experiment aims to showcase the use of Survival Patterns in the generation
of counterfactual examples. Particularly, we illustrate that our method is capable
of handling one-hot-encoded categorical features.

We used the RSF model trained on the PM dataset. Our method recognized
eight Survival Patterns in the prediction of the RSF model, as shown in Fig-
ure 4a. It is worth noting that the numbers associated with the patterns do not
reflect any kind of order; rather, they are assigned by the clustering algorithm.
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Fig.4: PM dataset results of counterfactual explanations with and without LL.

We chose all the data points in Pattern 7 (The worst Survival Pattern) as
the source pattern and generated counterfactual examples setting the target Pat-
tern to Pattern 4 (The best Survival Pattern). For each point, we generated two
counterfactual examples with and without using the Likelihood Loss. Figure 4b
shows a three-dimensional PCA projection of the data colored with their respec-
tive Survival Patterns, with the counterfactual examples with and without LL.
It is worth noting that each circle in the PCA plot represents many points very
close to each other and belongs to a specific combination of categorical values.
This means that any point far from these circles would have an invalid categor-
ical value. Although the counterfactual examples without LL correctly changed
the model’s decision to the target pattern, they are unrealistic and far from the
data distribution. While the counterfactual examples with LL are very close to
the data distribution of the target pattern. In fact, the change from Pattern 7 to
Pattern 4 requires only changing the categorical features from TeamC to TeamA
or TeamB and from Provider3 to Provider2. This is what the algorithm did
using the Likelihood Loss, which enabled it to generate examples with a valid
one-hot encoding, shown as blue squares in Figure 4b. Without Likelihood Loss,
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unrealistic examples with invalid one-hot encoding were generated, shown as a
green triangle in Figure 4b.

4.4 Actionability of Counterfactual Explanations

In this experiment, we show an example of actionable counterfactual explana-
tions. This is done by restricting the changes in some features. This will also
show a case where the predefined target Survival Pattern cannot be reached be-
cause of this restriction. RSF model is trained on the Flchain dataset, where our
method identified ten Survival Patterns as shown in Figure 5a. We chose three
source examples from the worst Survival Pattern (pattern 2) and set the target
pattern to the best Survival Pattern (pattern 9).
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(b) 2D projections of the dataset with different features on the y axis.

Fig.5: Actionable counterfactual explanations masking the Age feature.

To generate actionable counterfactuals, we applied a mask to disallow the
Age feature change. This condition made the target pattern unreachable. Our
method relies on reaching the target pattern by minimizing the distance to the
center of that pattern in the Z-space as shown in Equation 2. This will get the
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counterfactual to the nearest-to-target pattern it can reach. Figure 5b shows two
2D projections of the data points colored with their respective patterns, the three
selected source points (marked as xs) from the source pattern (Pattern 2, colored
in green) and the target pattern (Pattern 9, colored in cyan). However, because
the target pattern is not reachable without moving along the Age feature, the
method generated counterfactuals as close as possible to the target pattern. The
respective counterfactuals are colored based on the patterns that they were able
to reach (in this case, Patterns 6 and 7).

5 Conclusion

In this paper, we presented a method of generating plausible Counterfactual
Explanations for black-box survival models. The proposed method finds the
nearest plausible point to the explained observation that changes the output
of the model. That is by changing the survival pattern or survival score of the
studied example while maintaining the plausibility of the counterfactual example
by minimizing the reconstruction loss of an Autoencoder model trained on the
original data. The actionability is also guaranteed by restricting the changes in
certain features.

We validated our method on three publicly available datasets. We generated
counterfactual explanations for selected observations with and without the in-
clusion of Likelihood Loss. The results showed that not using the plausibility
constraint can result in unlikely explanations. We also observed that restricting
the change in some features can make the target pattern unattainable in some
cases. However, in such a case, our method generates counterfactual explanations
that are closest to the target pattern.

This work proposed a promising direction for explaining survival models using
counterfactual explanations, as they can be easily interpreted by humans. A
potential future work on this topic is to generate multiple diverse counterfactual
explanations for a single subject. This is an important issue, which is a subject
of research in Counterfactual Explanations [22] and can be used to strengthen
the applicability of our method.
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