Identification of domain phases in selected lipid
membrane compositions

1]0000-0003—3655—-3048] K arolina Wasyluk!, and Dominik
Drabil! [0000—0003—4568—4066]

Mateusz Rzycki

Department of Biomedical Engineering, Wroclaw University of Science and
Technology Wroclaw, 50-370, Poland
mateusz.rzycki@pwr.edu.pl

Abstract. Lipid microdomains are specialized structures that play cru-
cial roles in various physiological and pathological processes, such as
modulating immune responses, facilitating pathogen entry, and form-
ing signaling platforms. In this study, we explored the dynamics and
organization of lipid membranes using a combination of molecular dy-
namics simulations and a suite of machine learning (ML) techniques.
Using ML algorithms, we accurately classified membrane regions into
liquid order, liquid-disordered, or interfacial states, demonstrating the
potential of computational methods to predict complex biological or-
ganizations. Our investigation was mainly focused on two lipid systems:
POPC/PSM/CHOL, and DPPC/DLIPC/CHOL. The study underscores
the dynamic interaction between ordered and disordered phases within
cellular membranes, with a pivotal role of cholesterol in inducing domain
formation.
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1 Introduction

The cell membrane is a complex and dynamic structure that plays a pivotal
role in maintaining integrity and regulating various cellular processes [3]. The
distribution of lipids within these membranes is heterogeneous and certain lipids
aggregate to form distinct domains [12]. These include structured gel phases (S,)
and less structured liquid disordered phases (L4), with a special case of struc-
tured liquid ordered phases (L,) induced by sterols like cholesterol [15]. Lipid
rafts, a notable L, domain, contain sphingomyelin and cholesterol, affecting the
membrane’s structure and function due to its composition and interactions. Lipid
microdomains are highly ordered regions within membranes, crucial for signal
transduction, endocytosis, and membrane trafficking, due to their ability to sta-
bilize and organize membrane proteins [5, 16]. In contrast, the S, domains exhibit
a different narrative and are rare in living organisms. The L, regions, composed
of disordered lipids, provide a dynamic matrix. This matrix surrounds the or-
dered domains and is essential for protein diffusion and cellular responsiveness
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[6]. Lipid rafts, specialized microdomains, play crucial roles in various physiologi-
cal and pathological processes such as modulating immune responses, facilitating
pathogen entry, and forming signaling platforms [7]. Therefore, the role of lipid
domains in cell signaling and organization emphasizes the importance of under-
standing their impact on cell homeostasis.

Accurate identification of microdomains is particularly crucial, given their
unique mechanical properties, which may render them potential targets for spe-
cific antimicrobial agents [14]. A promising method for identifying microdomains
involves the use of machine learning (ML) techniques on molecular dynamics
(MD) membrane trajectories, although research in this area remains limited.
This study synthesizes methodologies from previous research [11,4], employ-
ing supervised learning in modeled and spontaneously formed microdomains in
ternary lipid mixtures in MD, thus improving the current knowledge base. The
primary advantage of this approach is its precision in predicting molecular orga-
nization, domain, nondomain, and interface, accurately reflecting experimental
observations.

2 Methods

2.1 System preparation and simulation

Using the CHARMM-GUI membrane builder [18], we constructed several mem-
brane systems with various lipid compositions, each designed to represent differ-
ent molecular organizations. Six training systems were created, each containing
150 lipid molecules, representing different domain stages. Lipid compositions in-
cluded phosphatidylcholine (POPC), sphingomyelin (PSM), cholesterol (CHOL),
as well as other phosphatidylcholines (DPPC and DLIPC), mixed in specific ra-
tios to mimic nondomain, interface, and domain-like phases. Lipid ratios were set
as follows: 8:1:1 for nonraft (POPC/PSM/CHOL), 2:1:1 and 4:3:3 for interface
stages (POPC/CHOL/PSM), and varying ratios such as 1:2:2, 2:1, and 1:1 for
raft-like stages (CHOL/PSM). Analogously, for the second approach (sponta-
neous domain formation), we replaced PSM with DPPC and POPC with DOPC
in train systems, following established literature protocols [19,12,4].

Additionally, two specialized testing systems were devised, containing 1140
and 900 lipid molecules, respectively, with equal proportions of POPC/PSM/CHOL
and DPPC/DLIPC/CHOL. The first system was structured with a central circu-
lar configuration of PSM and CHOL surrounded by POPC, designed to replicate
an idealized raft-like domain [4, 15, 12]. The second system featured a stochastic
distribution of DPPC, DLIPC, and CHOL, aimed at exploring lipid behavior in
a nonordered environment. These models facilitate the study of lipids dynamics
and the structural properties of different membrane configurations.

Molecular dynamics simulations were performed with Gromacs software (v.
2022) [1] and the CHARMMS36 force field [18]. The simulation protocol involved
energy minimization, NVT and NPT equilibration (constant number of par-
ticles, volume/pressure, and temperature), ending with a production run. All

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:
DOI] 10.1007/978-3-031-63772-8_13 |



https://dx.doi.org/10.1007/978-3-031-63772-8_13
https://dx.doi.org/10.1007/978-3-031-63772-8_13

Identification of domain phases in selected lipid membrane compositions 3

simulations were performed at 295.15 K, using standard CHARMM protocol.
A detailed description of the simulation procedure is described in our previous
work [14]. The production run involved at least 500ns.

2.2 Lipid features and Machine learning techniques

In our molecular dynamics simulations, we analyzed the last 50 ns of each trajec-
tory to extract ten different lipid features that characterize the local membrane
environment. These features included lipid type (1), area per lipid (APL, 1),
total lipid length (2), the number of surrounding lipids by each type, first shell
(3), and composition of the second shell (3).

APL was determined using a custom MATLAB script. For each lipid, a posi-
tion point was identified at the midpoint between the phosphorus atom (P) and
the second carbon atom (C2) in the phospholipids, and between the C3 and O3
atoms for CHOL. The local environment of each lipid was further quantified by
Voronoi tessellation to determine the composition of the first and second lipid
shells. Additionally, the order parameter (S.q) for acyl chains was calculated
using the MEMBPLUGIN ([8] S.q addon in Visual Molecular Dynamics (VMD)
software, averaging the values for both acyl chains of each lipid. The lengths of
the lipids were measured as the geometric distance between the phosphorus and
last carbon atoms in the acyl chain.

Statistical analysis was performed using the Python Scipy library, employing
a one-way ANOVA test with a significance threshold of 0.05 and the Tukey test
for post hoc analysis to ensure the reliability of our findings. We employed a suite

Table 1. The architectures and accuracy of tested ML models

ML model Architecture Best accuracy
KNN 5 closest neighbors 91% + 3%
DNN 10x128x128x32x8x4x3, ReLu activation, 87% + 5%

20% dropout, softmax without dropout (last layer)
RF entropy criterion, 1,000 estimators, max. depth 15| 88% + 2%
SVC polynomial kernel 85% + 3%

of ML techniques to unravel the complex organization of microdomains and lipid
membranes, using different algorithms to categorize membrane compositions as
raft/domain, nondomain, or interface. Initially, we normalized all input data
and applied one-hot encoding to categorical variables, ensuring that our dataset
was optimized for ML processing. Subsequently, several selected ML algorithms
from the scikit-learn package were adopted: Support Vector Classifier (SVC),
Random Forest (RF), K-Nearest Neighbors (KNN), and Deep Neural Network
(DNN). The models were trained on a random selection of 80% of data, and the
remaining 20% of data was used to determine an accuracy metric for the method.
The choice of an equal lipid composition (1:1:1) ensures a balanced distribution
of features in the test dataset. In this article, we have selected and presented one
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ML technique for each approach with the highest accuracy of all the methods
listed. These were KNN and RF for the first and second approaches, respectively.
All architectures are presented in Table 1.

3 Results and discussion

In this study, we explored two scenarios of lipid microdomain formation using
molecular dynamics simulations. The first scenario involved an idealized domain
with a core of CHOL and PSM, surrounded by unsaturated POPC lipids, show-
ing slow lipid migration and interfacial mixing [12,4]. The second scenario ex-
plores the spontaneous segregation of saturated DPPC and unsaturated DLIPC
lipids facilitated by the addition of CHOL. We used the L, and L; nomencla-
ture for these domains, observing how DPPC’s high phase-transition tempera-
ture influenced behavior differently from the POPC/PSM/CHOL mixture. Our
simulations, which lasted approximately 2 us, highlighted the complex and nu-
anced domain formation process, involving a more probabilistic gel domain (S,)
formation compared to the previous model. Using ML techniques, the selected
parameters of all lipids were used to classify them into three distinct clusters rep-
resenting raft-like / domain, nonraft / nondomain, and interface regions. The
results of selected ML approaches are shown in Figure 1.
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Fig. 1. Classification of (A) POPC/PSM/CHOL and (B) DPPC/DLIPC/CHOL mem-
brane regions using KNN and RF methods, respectively based on selected lipid param-
eters (top view). Each left panel illustrates the structural composition of the lipid
membrane and the right panel depicts the ML lipid classification.

The organization of the idealized raft system is presented in Figure 2A. The
raft, nonraft, and interfacial areas constitute 55%, 31%, and 13% of the sys-
tem, respectively. This distribution is consistent with experimental studies on
POPC/PSM/CHOL vesicles [13]. The formation of these domains is influenced
by temperature variations, which often leads to a predominance of L, regions
due to the affinity of CHOL for PSM [20]. The interface mainly comprises PSM,
CHOL (30%), and POPC (22%), while nonraft areas are dominated by CHOL
and PSM with minimal POPC presence (see Figure 2C). The nonraft region is
predominantly composed of POPC (92%), with minor contributions from PSM
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(5%) and CHOL (3%). These distributions deviate slightly from the literature,
where typically the Ly phase contains about 71% DOPC, 24% PSM, and 5%
CHOL [3]. Our findings for the L, phase align with the trends for CHOL and
PSM but with a slightly lower PC representation. The discrepancies may be
attributed to variations in lipid ratios (43:32:25) in both our study and the pres-
ence of more unsaturated DOPC, which supports phase separation [3]. It is worth
noting that the experimental models hardly quantify the transition phase, thus
a binary classification in ML might mirror the experimental outcomes closely.
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Fig.2. Composition of (A) POPC/PSM/CHOL and (B) DPPC/DLIPC/CHOL
with applied ML classifiers, lipid species distribution in recognized domains in (C)

POPC/PSM/CHOL and (D) DPPC/DLIPC/CHOL systems.

In a DPPC/DLIPC/CHOL mixture, the distribution of lipids and their phases
are less distinct (see Figure 1B). The domains are dispersed in a lattice pattern,
highlighting a more complex and heterogeneous assembly of lipid phases. Inter-
estingly, the location of CHOL molecules can be seen mainly at the interface
between DPPC and DLIPC (see Figure 2B). Here, about 67% of the system is
L,, 30% is Ly, and the interfacial area comprises 3.2%, indicating the challenges
in identifying transition zones. Domain compositions show a balanced distribu-
tion, with the nondomain phase mainly consisting of DLIPC, supplemented by
about 30% DPPC and 20% CHOL. In contrast, the L, phase predominantly in-
cludes DPPC and CHOL, with 15% of DLIPC (see Figure 2D). This distribution
and composition of these domains align with other experimental studies [2,15].

Additionally, we used ML predictions to analyze specific lipids based on their
molecular organization, focusing on the area per lipid (APL) and order parame-
ters. In the rafts, typically enriched with PSM and CHOL, we found a decrease
in APL. This suggests a tighter lipid packing and a consequent increase in the
order parameter, reflecting the dense lipid packing. The Ly phases, which con-
tain more unsaturated lipids such as POPC, tend to indicate higher APL values
and lower order parameters due to looser acyl chain packing and increased dis-
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order [17]. Our findings, illustrated in Figure 3A, confirm these patterns. Lipids
in the raft phase consistently exhibited the lowest APL values, whereas those in
the nondomain regions showed the highest. Interestingly, CHOL in the nonraft
phase displayed unusually low APL values, probably distorted due to its limited
occurrence and not entirely indicative of the overall behavior. Intermediate APL
values in the interface region support its role as a transitional area between the
L, and L, phases, reflecting the characteristics of both phases.
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Fig. 3. Quantitative analysis of lipid organization in (A, B) POPC/PSM/CHOL and
(C, D) DPPC/DLIPC/CHOL. Changes in APL (A, C) and order parameters (B, D)
are displayed for all identified regions.

DPPC/DLIPC/CHOL observations are consistent with previous studies, in-
dicating the highest APL values in nondomain areas and the lowest in domain
areas [15]. The slight effect of the APL values of the interface region on the ML
predictions suggests a diminished role for this parameter in the phase identifica-
tion process.

The order parameter reflects the orientation of the lipid acyl chains in the
membrane, with higher values indicating rigid, straight chains typical of the L,
phases. Our results show the highest order parameters for PSM and POPC in the
raft domains and the lowest in the nondomain areas, with values in the interfacial
zones falling between, showing a smooth transition from ordered to disordered
regions (see Figure 3B). Within the raft phase, there is a notable reduction in
APL for POPC. This pattern is mirrored by the PSM, where the decrease in APL
corresponds to an increase in the order of the lipid tails, highlighting the effect
of CHOL on the behavior of associated lipids. This supports previous findings of
the limited effect of PC on disorder in the L, phase [4]. The interface serves as
a transition zone with reduced POPC and PSM order parameters. It should be
noted that the snl tail of POPC shows a significant deviation in order from its
unsaturated sn2 tail. The APL values for POPC in nondomain areas align with
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those of pure PC systems, whereas an increase is observed in PSM [10]. These
variations imply a significant influence of PC on neighboring lipids, accompanied
by a decrease in PSM order and a shift between the snl and sn2 tails. The role
of CHOL in these organizational changes appears to be minimal. In the second
system, we observe a consistent trend in lipid tail ordering and APL with the
highest order of DPPC in the domain phase and the lowest in the L; phase
(see Figure 3 C, D). This trend is also apparent with DLIPC. These differences
are more nuanced than previously noted, particularly in distinguishing between
the interface and nondomain phases. Integration of DLIPC into the domain
phase showed minimal disruption, indicating good compatibility with DPPC
and CHOL [9]. The interface is heavily affected by DLIPC, which makes it akin
to a nondomain because of its liquid fraction. In nondomain areas, the DPPC-
CHOL combination does not significantly alter the DLIPC tail ordering. These
findings highlight CHOL’s pronounced effect on ordering DPPC over DLIPC,
suggesting that the domain more closely resembles the L, phase, contrary to
initial expectations of a S, phase.

4 Conclustions

In this study, we investigate the dynamics and organization of lipid membranes,
focusing on the formation and characterization of lipid microdomains. We used
molecular dynamics simulations and a suite of machine learning techniques to
analyze and classify membrane regions into ordered, disordered, or interfacial
states. Our findings highlight the dynamic interaction between the L, and Ly
phases, with cholesterol playing a crucial role in the formation of the L, do-
mains. We examine the organization of the membrane in different mixtures:
POPC/PSM/CHOL and DPPC/DLIPC/CHOL to understand the behavior in
varying compositional contexts. Idealized circular rafts were identified better
than spontaneously induced ones. However, it is worth noting that in both
systems the domain compositions were consistent with literature reports. The
dependence on the initial training system’s composition is a main limitation
that could be reduced through experimentally supported training preparations.
Further development of more sophisticated machine learning models capable of
integrating multiscale data will enhance the ability to predict membrane orga-
nization and dynamics under various physiological conditions.
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