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Abstract. Parkinson’s disease (PD) is a neurological disorder defined
by the gradual loss of dopaminergic neurons in the substantia nigra pars
compacta, which causes both motor and non-motor symptoms. Under-
standing the neuronal processes that underlie PD is critical for creating
successful therapies. This work presents a novel strategy that combines
machine learning (ML) and stochastic modelling with connectomic data
to understand better the complicated brain pathways involved in PD
pathogenesis. We use modern computational methods to study large-
scale neural networks to identify neuronal activity patterns related to PD
development. We aim to define the subtle structural and functional con-
nection changes in PD brains by combining connectomic with stochastic
noises. Stochastic modelling approaches reflect brain dynamics’ intrinsic
variability and unpredictability, shedding light on the origin and spread
of pathogenic events in PD. We created a hybrid modelling formalism and
a novel co-simulation approach to identify the effect of stochastic noises
on the cortex-BG-thalamus (CBGTH) brain network model in a large-
scale brain connectome. We use Human Connectome Project (HCP) data
to elucidate a stochastic influence on the brain network model. Further-
more, we choose areas of the parameter space that reflect both healthy
and Parkinsonian states and the impact of deep brain stimulation (DBS)
on the subthalamic nucleus and thalamus. We infer that thalamus activ-
ity increases with stochastic disturbances, even in the presence of DBS.
We predicted that lowering the effect of stochastic noises would increase
the healthy state of the brain. This work aims to unravel PD’s compli-
cated neuronal activity dynamics, opening up new options for therapeutic
intervention and tailored therapy.

Keywords: Brain networks · Machine learning · Laplacian operator ·
Neural dynamics · Wiener process · Neurodegenerative disorders

⋆ Stochastic modelling of brain networks.
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1 Introduction

Parkinson’s disease (PD) stands as one of the most prevalent neurodegenerative
disorders, characterized by the progressive loss of dopaminergic neurons in the
substantia nigra pars compacta, leading to debilitating motor symptoms such
as tremors, rigidity, and bradykinesia [1, 2]. Despite significant advancements
in therapeutic approaches, including pharmacological interventions and DBS,
our understanding of the complex interplay between neuronal dynamics, disease
progression, and treatment outcomes remains incomplete [3, 4].

Recent years have witnessed a paradigm shift in neuroscientific research,
driven by the convergence of computational methodologies, artificial intelligence
(AI) techniques, including ML tools, and advancements in neural engineering
[5]. Among these approaches, ML holds promise in deciphering intricate patterns
within vast datasets, offering insights into disease mechanisms and personalized
treatment strategies. Concurrently, DBS has emerged as a potent therapeutic
modality, modulating aberrant neuronal circuits to alleviate motor symptoms in
PD patients [6]. The discipline of ML, which is a subdivision of AI, has experi-
enced rapid growth and has recently impacted medical fields like neurosurgery
[5]. A literature review focusing on the application of ML in DBS has not yet
been published despite the field’s growing interest in the area.

In parallel, stochastic modelling has gained traction to capture the inher-
ent randomness and complexity of neuronal activity [7], shedding light on the
dynamic nature of neurological disorders such as PD [8]. By integrating these
diverse methodologies, researchers aim to unravel the underlying mechanisms
governing neuronal dysfunction in PD, thereby paving the way for more effec-
tive interventions and improved patient outcomes. Furthermore, recent studies
employing multiscale mathematical modelling have highlighted the efficacy of
nonlinear reaction-diffusion equations in discerning neuropathological conditions
[9]. Notably, connectomic data has revealed the extensive impact of DBS across
various cortical and subcortical regions [10]. Discrete brain network models oper-
ating in a spatio-temporal domain elucidate the dynamics of model parameters,
thereby simulating large-scale brain activity [3, 10, 11].

In essence, neurons constitute the fundamental units of our nervous system,
with the basal ganglia (BG) comprising three critical nuclei: the subthalamic nu-
cleus (STN), the globus pallidus internus (GPi), and the globus pallidus externus
(GPe) [2]. Neurons utilize neurotransmitters for intercellular communication and
employ action potentials to transmit signals within the cell upon receiving ex-
ternal stimuli (Iapp). Notably, using a reduced number of neurons, such as 10
neurons per nucleus, yields similar outcomes to those obtained with 100 neurons.
Thus, each nucleus in our study comprises 10 cells [2].

In the present study, we adopted a novel co-simulation approach utilizing
a modified Rubin-Terman model for subcortical brain regions surrounding the
basal ganglia across the entire cerebral hemisphere from our previous study [2].
This approach incorporates stochastic noise, explicitly incorporating a Wiener
process, to capture additional variability and complexity in brain dynamics [12,
13]. Therefore, we integrate a discrete brain network model for each cortical
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Stochastic modelling of brain networks 3

region, incorporating stochastic noise at the macroscopic scale to better align
with experimental data on neuron firing characteristics. Following the strategy
outlined in [2], we explore critical aspects of the model dynamics, including
the influence of stochastic noise on healthy and diseased states. Our findings
demonstrate that the eigendecomposition of the Laplace operator, incorporat-
ing stochastic noise, can predict the collective dynamics of human brain ac-
tivity at the macroscopic scale [2]. These findings suggest that the disruption
of multivariate connection-wise functional connectivity patterns holds promise
for discriminating PD patients based on cognitive status, supporting previous
observations of altered functional connectivity associated with cognitive impair-
ment in PD. Our research uncovers significant findings regarding the influence
of stochastic noise on brain dynamics. Specifically, we observed that in the pres-
ence of stochastic noise, the activity of the thalamus reaches a critical threshold,
contrasting with scenarios lacking noise. Furthermore, our analysis revealed that
stochastic noise amplifies the membrane potential of the thalamus, potentially
exacerbating brain disease states. This effect of stochastic noise is pronounced,
leading to burst oscillations in the membrane potential across all selected re-
gions, even in the presence of DBS. Our study highlights the brain’s resilience as
it endeavours to maintain a healthy state for a prolonged period following DBS
despite stochastic noise.

The rest of the paper is organized as follows. In Section 2, we describe
our model in its different components: (i) a discrete and (ii) a stochastic dis-
crete brain network model of the CBGTH. Section 3 presents numerical results
based on the developed stochastic discrete brain network model for the cortex-
thalamus-basal-ganglia systems. The computational results were obtained using
codes developed in C-language and SHARCNET supercomputer facilities, and
the simulation results were visualized in MATLAB. Implications of these results
and their importance are discussed in Section 4. Finally, we conclude our findings
and outline future directions in Section 5.

2 Methods

This section highlights the discrete and stochastic brain network model of CBGTH.
In this section, we present (a) the discrete model of the CBGTH network me-
diated by Laplacian terms and (b) the stochastic brain network model of the
CBGTH system, giving particular attention to stochastic noises. We evaluated
the behaviour of stochastic noises in the brain regions such as Gpe, GPi, STN
and thalamus (TH) and firing patterns under healthy and pathological states to
validate the features of the CBGTH model. We then use data to examine the
firing rates of the coupled neurons on each node in the brain network. Finally,
the effects of noise in the presence of DBS on STN and thalamus are evaluated.
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2.1 Discrete brain network model of CBGTH

The network comprises nodes delineated within the brain connectome, often
corresponding to established brain atlas regions. We aim to construct a model
capable of capturing temporal voltage variations across different nodal points.

The brain connectome is represented as a weighted network G consisting of V
nodes and E edges, derived from diffusion tensor imaging (DTI) and tractogra-
phy techniques [2], as adopted from the HCP dataset. The edges of this network
symbolize axonal bundles within white-matter tracts. To generate a network ap-
proximation of the diffusion terms, we utilize a weighted graph Laplacian, where
the weights of the weighted adjacency matrix W are determined by the ratio of
the mean fibre number nij to the mean squared length l2ij connecting nodes i
and j, expressed as:

Wij =
nij

l2ij
, i = 1, . . . , V. (1)

These weights align with the inverse length-squared dependency observed in
the canonical discretization of the continuous Laplace (diffusion) operator [2].
Additionally, we define the diagonal weighted degree matrix as:

Dii =

V∑
j=1

Wij , i, j = 1, . . . , V. (2)

Furthermore, the graph Laplacian L with (i, j)-entry is defined as:

Lij = ρ(Dij −Wij), i, j = 1, . . . , V, (3)

where ρ represents the diffusion coefficient.

(a) (b)

Fig. 1: (Color online) (a) Discrete brain network connectome in a healthy con-
dition (left) (axial view from bottom). The four nodes are STN, GPe, GPi, and
TH, and we replaced the spiking node "cortex" with the whole brain connectome
(b) Stochastic noises applied to STN, GPe, GPi, and TH
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Stochastic modelling of brain networks 5

The adjacency matrix for simulations is derived from diffusion tensor mag-
netic resonance images obtained from 418 healthy HCP subjects sourced from
the Budapest Reference Connectome v3.0 [2]. Fig. 1 (a) showcases a network
composed of V = 4 nodes and E = 6 edges representing brain regions like the
putamen, globus pallidus, and thalamus. Each node is assumed to occupy a sur-
face area of 1.5cm2. Each node linked with STN, GPi, GPe, and TH carries
the voltage vsn, vgi, vge, and vth, respectively. The network equations for the
continuous model take the form of a system of first-order ordinary differential
equations as follows:

dvsn

dt
= −dvsn

V∑
k=1

L1kvk+
1

cm

(
−IsnNa−IsnK −IsnL −IsnT −IsnCa−Isnahp−Ige→sn+Isnapp

)
,

(4)

dvgi

dt
= −dvgi

V∑
k=1

L2kvk +
1

cm

(
− IgiNa − IgiK − IgiL − IgiT − (5)

IgiCa − Igiahp − Isn→gi − Ige→gi + Igiapp

)
,

dvge

dt
= −dvge

V∑
k=1

L3kvk +
1

cm

(
− IgeNa − IgeK − IgeL − IgeT − (6)

IgeCa − Igeahp − Isn→ge − Ige→ge + Igeapp

)
,

dvth

dt
= −dvth

V∑
k=1

L4kvk +
1

cm

(
− IthNa − IthK − IthL − IthT − Igi→th + Ismc

)
, (7)

with non-negative initial conditions for all variables vsn, vgi, vge, and vth. Addi-
tionally, dvsn , dvgi , dvge , and dvth represent the diffusion terms corresponding to
each node. The weights in the weighted adjacency matrix represent the spread of
transneuronal degeneration from one node to its neighbours. Next, we introduce
stochastic noise into the discrete brain network model to observe its influence.

2.2 Stochastic brain network model of CBGTH

The integration of ML techniques with stochastic modelling in brain studies
holds significant promise for advancing our understanding of neural dynamics
and function [14]. In this section, we develop a discrete brain network model
incorporating the addition of stochastic noise. The noise levels are crucial for
ensuring the proper functioning of signals within the nervous system [15]. Stud-
ies have suggested that in computational models of neurodegenerative conditions
such as PD, increased external noise levels are necessary for optimal function, re-
flecting the aging process and reduced plasticity [16]. Consequently, noise stimu-
lation could be an alternative therapeutic approach for alleviating PD symptoms
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[15]. Therefore, based on the model presented in Section 2.1, we have added the
noise terms as follows:

dvsn

dt
= −dvsn

V∑
k=1

L1kvk +
1

cm

(
− IsnNa − IsnK − IsnL − IsnT − IsnCa − (8)

Isnahp − Ige→sn + Isnapp

)
+ σ1 · dW1(t),

dvgi

dt
= −dvgi

V∑
k=1

L2kvk +
1

cm

(
− IgiNa − IgiK − IgiL − IgiT − IgiCa − (9)

Igiahp − Isn→gi − Ige→gi + Igiapp

)
+ σ2 · dW2(t),

dvge

dt
= −dvge

V∑
k=1

L3kvk +
1

cm

(
− IgeNa − IgeK − IgeL − IgeT − IgeCa − (10)

Igeahp − Isn→ge − Ige→ge + Igeapp

)
+ σ3 · dW3(t),

dvth

dt
= −dvth

V∑
k=1

L4kvk+
1

cm

(
−IthNa−IthK −IthL −IthT −Igi→th+Ismc

)
+σ4·dW4(t),

(11)
where dWi(t) represents the increment of the Wiener process Wi(t) and σi are
the scaling factors (representing the intensity of the noise) for each equation.
When numerically integrating these stochastic differential equations, we gener-
ated increments of the Wiener process at each time step dt to represent the
stochastic component using the Euler–Maruyama method. Incorporating noise
into the CBGTH system within a discrete brain network model provides valuable
insights into how the brain functions [16]. Fig. 1 (b) showcases a Wiener pro-
cess or stochastic noises added into the CBGTH system. Since noise is present
throughout various neural processes, from perceiving sensory signals to generat-
ing motor responses, it profoundly affects neuronal dynamics. Therefore, under-
standing the impact of noise is crucial for comprehending the brain’s behaviour
[17]. The significance of this impact will be explored further in the following
Section 3. Moreover, the DBS current is added to the spatio-temporal model to
the membrane potential equations of STN as follows:

dvsn

dt
= −dvsn

V∑
k=1

L1kvk +
1

cm

(
− IsnNa − IsnK − IsnL − IsnT − IsnCa − (12)

Isnahp − Ige→sn + Isnapp + IDBS

)
+ σ1 · dW1(t),
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Stochastic modelling of brain networks 7

where cm = 1µF/cm2 and IDBS is adopted from [2]. According to Eq. (12), the
DBS electrode has been applied to the STN node in the discrete brain network
connectome. The relevant parameters are given in Table 1 (the other relevant
parameters are adopted from [2], (pd is a parameter, and pd = 0 indicates that
the network is in healthy states, while pd = 1 shows that the network is in
Parkinsonian states). The −− represents no connection to neurons.

Table 1: Parameter set for the CBGTH network [2].
STN neuron GPe/GPi neuron TH neuron

ICa 2(c2)(v − 140) 0.15(s∞(v))2(v − 120) −−
Iahp 20(v + 80)

(w/(w + 15))
10(v + 80)(w/(w + 10)) −−

Ige→sn 0.5Sge→sn(v + 85) −− −−
Ige→ge −− 0.5Sge → ge(v + 85) −−
Ige→gi −− 0.5Sge→gi(v + 85) −−
Isn→ge −− 0.15Ssn→gev −−
Isn→gi −− 0.15Ssn→giv −−
Igi→th −− −− 0.112Sgi→th(v + 85)
Isnapp 33− 10pd −− −−
Igiapp 22− 6pd −−
Igeapp 21− 13pd+ (−1.5) −−

3 Results

In this section, we will investigate how stochastic noise impacts the CBGTH sys-
tem in healthy and PD brain states by integrating ML and stochastic modelling
with connectomic data.

Importantly, noise introduces stochastic fluctuations into the brain network,
affecting the timing and reliability of neural signal transmission [18, 19]. In the
context of the basal ganglia-thalamocortical circuit, where precise timing is cru-
cial for motor control and cognitive processes, the impact of noise may lead to al-
terations in information processing and integration [18]. Moreover, neural noise,
originating from various sources such as sensory input, cellular processes, and
electrical activity, significantly influences the functioning of the nervous system.
While it can hinder information processing, it also contributes to brain function
by shaping functional networks, enhancing synchronization, and impacting task
performance [19]. The brain’s dynamics, characterized by subject-specific param-
eters and diverse outputs, make it a noisy dynamical system. Recent research
indicates that noninvasive brain stimulation can alter the signal-noise relation-
ship, but the precise relationship between noise amplitude and the global effects
of local stimulation remains uncertain [18].

The impact of stochastic noise on the selected regions, namely the TH, STN,
GPi, and GPe, in the healthy brain is illustrated in Fig. 2. It is observed that
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Fig. 2: (Color online) The effect of stochastic noise on the membrane voltages of
the discrete brain network’s TH, STN, GPe and GPi neurons in a healthy state.
The red pulse trains in the top right panel denote SMC signal.

burst oscillations occur across all brain regions, particularly in the thalamus and
subthalamic nucleus, where the oscillations persistently burst. Consequently, this
heightened neural activity exacerbates the healthy state of the brain. As a result,
it impairs membrane potential and disrupts the normal functioning of neurons.
These findings underscore the significant adverse effects of stochastic noise on
the brain and its constituent regions, potentially leading to the development or
exacerbation of brain injury [20, 21].

In the Parkinsonian state, the membrane voltages of key neuronal popula-
tions, including STN, GPi, GPe, and TH neurons within a discrete brain network,
exhibit dynamic fluctuations over time, as depicted in Fig. 3. The initial equilib-
rium has been set to −65mV ; these neurons display varying voltage concentra-
tions due to stochastic effects and diffusion processes. The color scale of voltage
concentrations in Fig. 3 is plotted using MATLAB jet colormap. The recorded
voltages at specific time points, such as t = 354.56ms, 356.8ms, 356.23ms, 370ms,
374.67ms, 383.2ms, 385.05ms, and 385.57ms, reveal temporal changes in neu-
ronal activity. Notably, certain neuronal populations exhibit elevated voltages
relative to others at different time points, as indicated by the color nodes. For
instance, at t = 356.23ms, the voltage of TH neurons surpasses that of other
neurons. In contrast, at t = 356.8ms, the GPe and TH neurons exhibit higher
voltage concentrations within the CBTH circuitry in the Parkinsonian state.
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Fig. 3: (Color online) The effect of stochastic noise on the membrane voltage dis-
tributions of TH (top right), STN (top left), GPe (bottom right) and GPi (bot-
tom left) neurons in the brain over time in Parkinson’s state (axial views from
below). Top panel (left to right): t = 354.56ms, 356.8ms, 356.23ms, 370ms, and
for the bottom panel (left to right): t = 374.67ms, 383.2ms, 385.05ms, 385.57ms.

These voltage dynamics underscore the intricate interplay of stochastic noise
and diffusion processes in shaping neuronal activity patterns associated with
PD [2].

In Fig. 3, stochastic noise is crucial in modulating the membrane voltage dis-
tributions of key neuronal populations implicated in PD. Over time, stochastic
fluctuations in membrane potentials within these neural networks can exacer-
bate pathological activity patterns in the Parkinsonian state. In the TH neurons
involved in dopamine production, stochastic noise may contribute to the dysreg-
ulation of dopamine levels characteristic of Parkinson’s. Similarly, in the STN,
known for its involvement in motor control, stochastic noise might amplify aber-
rant firing patterns associated with movement dysfunction. Meanwhile, within
the GPe and GPi, integral components of the basal ganglia circuitry, stochastic
fluctuations could disrupt the delicate balance of inhibitory signalling, further
exacerbating motor symptoms [14, 16]. These stochastic influences underscore
the complexity of Parkinson’s pathophysiology and highlight the importance of
understanding noise modulation within neural circuits for developing effective
therapeutic interventions [20].

Next, the DBS has been applied to STN neurons in the PD state of the
brain. The application of DBS to STN neurons in the Parkinsonian state of the
brain often results in a temporary restoration of healthy neural activity within
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Fig. 4: (Color online) Effect of stochastic noise on membrane voltages of the TH
(top) and the STN (bottom) neurons of discrete brain network in the Parkin-
son’s state (black color). The effects of open-loop DBS on the STN neurons are
presented in red color (bottom). However, the blue color shows a healthy state
after the DBS is applied to the PD state. The red pulse trains in the top panel
denote the SMC signal.

the basal ganglia circuitry, leading to symptom alleviation in PD patients. As
depicted in Fig. 4, we applied the DBS in a spatio-temporal domain for a smaller
amount of time. It is interesting to know that in the presence of a diffusion op-
erator, neurons maintained a healthy state for a sufficient time after the DBS
had been applied. We see the healthy state of STN neurons in blue color, as
shown in Fig. 4. However, despite the therapeutic benefits of DBS, the long-
term maintenance of a healthy state remains challenging. This is evident in the
observed disturbances in thalamic activity characterized by bursts of oscillations
and fluctuating membrane potentials, as shown in Fig. 4. Even with the pres-
ence of DBS, stochastic noise and diffusion processes continue to exert adverse
effects on neural activity within the brain. Stochastic noise, arising from random
fluctuations in ion channels and synaptic activity, can disrupt the finely tuned
balance of excitation and inhibition within neural networks [21, 22]. Addition-
ally, diffusion processes, which govern the spread of neurotransmitters and other
signalling molecules, can lead to spatial and temporal variations in neuronal
activity.
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In Fig. 4, the persistence of disturbances in thalamic activity despite DBS
suggests that stochastic noise and diffusion processes may interact with the ther-
apeutic intervention, leading to unintended consequences. These adverse effects
underscore the complexity of neural dynamics in PD and highlight the need
for further research to better understand and mitigate the impact of stochastic
noise and diffusion on DBS efficacy [23, 24]. Additionally, advancements in DBS
technology and optimization of stimulation parameters may help minimize these
adverse effects and improve long-term therapeutic outcomes for Parkinson’s pa-
tients.

Fig. 5: Color online) The effect of stochastic noise on pathological activity pat-
terns within the thalamus.

Stochastic noise can significantly impact thalamic activity, disrupting its nor-
mal functioning. As depicted in Fig. 5, the thalamus may exhibit erratic fluctu-
ations in membrane potentials and firing patterns in the presence of stochastic
noise. This can lead to disturbances in sensory processing, motor control, and
cognitive functions that rely on thalamic signalling. Moreover, Fig.( 2-5) were
plotted using σ1 = 0.1, σ2 = 0.4, σ3 = 0.4, σ4 = 0.5. As seen in Fig. 5, we
observed that stochastic noise tends to drive the membrane potential of thala-
mic neurons towards the PD state. The fluctuations in the membrane potential
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exhibit low-frequency oscillations. These oscillations appear to have a regular
pattern but are modulated by the stochastic noise added to the system. The
frequency and amplitude of these oscillations may vary depending on the sys-
tem’s parameters and the noise level. The stochastic noise introduced in the
system causes the membrane potential to fluctuate randomly around a mean
value. As the noise level (σ4) increases, the amplitude of the fluctuations also
increases. This suggests that noise can significantly influence the dynamics of
the system. Incorporating stochastic noise in the thalamic membrane potential
exacerbates the pathological activity patterns associated with PD. Conversely,
when the noise is absent, the membrane potentials tend towards a healthier state,
particularly in the presence of DBS. These observations underscore the critical
role of stochastic noise in modulating thalamic activity, thereby influencing the
balance between pathological and healthy states in neurological disorders such
as PD.

4 Discussion

In the current work, we used resting-state functional connectomes and machine-
learning approaches such as parallel computing in classifying brain connectomes
in healthy and PD states, with and without the stochastic process. To solve
the network model computationally, we utilized the Euler–Maruyama method
with a time-step dt = 0.001, with consistent results across various time-step
values. Throughout all simulations, we used brain connectome data sourced from
https://braingraph.org, with no significant changes observed over time.

Additionally, obtaining precise data regarding cortical-BGTH tractography
proves challenging due to various limitations in structural MRI data, as high-
lighted by Meier et al. [8]. Petersen et al. have recently introduced an advanced
axonal pathway atlas for the human brain, integrating findings from histolog-
ical studies, imaging data, and expert insights [25, 26]. Earlier work optimized
connection probabilities and weights among BG regions to align with empirical
fMRI data on an individual basis [2]. However, many studies resort to norma-
tive connectome atlases due to the complexities associated with acquiring and
interpreting patient-specific diffusion-weighted imaging data. Yet, the potential
benefits of patient-specific connection data remain uncertain.

In this work, we modified the Rubin and Terman model to better align with
experimental evidence on neuron firing characteristics [2, 27]. Our study focuses
on a network mathematical model that enables experimentalists to quickly evalu-
ate membrane potentials throughout the cortex’s four central nuclei and BGTH
regions. Importantly, significant connection changes were detected in the PD
brain, especially in stochastic noise, consistent with previous findings [14, 19,
20]. Unlike prior studies focusing on group differences, our study examined the
discriminatory potential of resting-state functional connectivity at the individ-
ual level. This provides evidence that connectivity patterns with stochastic noise
can distinguish PD patients with cognitive impairment from those without. No-
tably, our study is the sole one to show this capacity. In PD patients, functional
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connectivity reductions were observed across significant brain regions, with a
disproportionate involvement of occipital-temporal and occipital-frontal connec-
tions compared to healthy controls. These findings contribute to the understand-
ing of PD-associated cognitive impairment, corroborating previous neuroimaging
modalities’ observations.

Furthermore, this study underscores the potential of resting-state functional
connectivity measures for individual-level discrimination in PD, providing valu-
able insights into the disease’s pathophysiology. Our examination of stochastic
noise’s influence on various brain regions, including the STN, GPi, GPe, and tha-
lamus, enhances our understanding of the complexities of PD. Moreover, noise
can modulate the excitability of neurons within the brain network, influenc-
ing their firing patterns and synchronization properties. This modulation could
change the overall network dynamics, affecting the balance between inhibitory
and excitatory signals and potentially leading to dysregulated activity associated
with neurological disorders such as PD. This discovery not only calls into ques-
tion existing therapy options but also demonstrates the potential of our hybrid
modelling approach for identifying subtle elements of brain dysfunction. Over-
all, investigating the influence of noise on the CBTH system using a discrete
brain network paradigm gives valuable information on the system’s resilience,
flexibility, and susceptibility to dysfunction. It provides insights into the pro-
cesses underpinning neurological diseases and may aid in developing therapeutic
approaches to restore normal network function.

5 Conclusions

In conclusion, this study presents a novel approach utilizing a fusion of ML,
stochastic modelling, and connectomic data to delve into the intricate neural
pathways implicated in Parkinson’s disease (PD) pathogenesis. By harnessing
modern computational methodologies, we’ve endeavoured to decode the nuanced
changes in structure and function within the PD-afflicted brain. Our findings
shed light on the subtle alterations in neuronal activity patterns associated with
PD progression, illuminating potential targets for therapeutic intervention. The
hybrid modelling framework and innovative co-simulation technique developed
in this research offer a deeper understanding of the impact of stochastic distur-
bances on the CBGTH network within the context of large-scale brain connec-
tivity maps derived from the HCP. Notably, our analysis reveals that even in
the presence of DBS, stochastic influences can lead to heightened activity in the
thalamus, a key node in PD pathology.

In the future, we aim to analyze high temporal and spatially resolved cere-
bral data sources from functional near-infrared spectroscopy and EEG, PET, and
MRI/fMRI data from healthy patients with neurodegenerative conditions such
as PD. Also, the effect of stochastic noises in other regions, such as GPe, GPi
and the whole cortex, will be analyzed. This work lays the groundwork for novel
therapeutic strategies tailored to individual patients by elucidating the complex
dynamics of neuronal activity underlying PD. The integration of ML, stochastic
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modelling, and connectomic data holds promise for advancing our understanding
of PD pathophysiology and accelerating the development of personalized treat-
ment approaches. Ultimately, the goal is to translate these insights into tangible
clinical benefits, offering hope to those affected by this debilitating neurological
disorder.
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