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Abstract. Physics-informed Neural Networks (PINNs), a class of neural
models that are trained by minimizing a combination of the residual of
the governing partial di�erential equation and the initial and boundary
data, have gained immense popularity in the natural and engineering sci-
ences. Despite their observed empirical success, an analysis of the train-
ing e�ciency of residual-driven PINNs at di�erent architecture depths
is poorly documented. Usually, neural models used for machine learn-
ing tasks such as computer vision and natural language processing have
deep architectures, that is, a larger number of hidden layers. In PINNs,
we show that for a given trainable parameter count (model size), a shal-
low network (less layers) converges faster than a deep network (more
layers) for the same error characteristics. To illustrate this, we exam-
ine the one-dimensional Poisson's equation and evaluate the gradient for
residual and boundary loss terms. We show that the characteristics of
the gradient of the loss function are such that for residual loss, shallow
architectures converge faster. Empirically, we show the implications of
our theory through various experiments.

Keywords: PINNs · Partial Di�erential Equations · Deep Learning.

1 Introduction

Neural networks have gained popularity in various �elds such as computer vi-
sion, machine translation, and weather prediction [18,25,8,12]. In recent years,
a type of deep neural model called Physics-Informed Neural Networks (PINNs)
has emerged as a method for solving partial di�erential equations (PDEs) in a
semi-supervised manner [20]. PINNs are trained using a loss function that in-
cludes the L2 norm of the residual of the governing PDEs, as well as losses for
initial and boundary data. What makes PINNs special is their use of automatic
di�erentiation to evaluate the residual rather than relying on simulation data
from traditional PDE solvers. This makes the approach semi-supervised, as only
boundary condition data are provided for supervision, while other points utilize
the PDE residual loss.
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Despite the observed empirical success, the training e�ciency of residual-
driven PINNs at di�erent network depths (number of layers) has not been well
documented. In AI tasks such as computer vision and natural language pro-
cessing, deep architectures with a larger number of hidden layers are commonly
used in neural models. For these tasks, having an insu�cient number of layers is
shown to require a signi�cantly higher number of parameters compared to deeper
networks [2]. However, most PINN models use a shallow network with a mod-
est number of layers (around 5) compared to deep networks that are typically
used in AI tasks. Additionally, there is limited research that provides theoretical
explanations for hyperparameter tuning in PINNs [29,6].

Our objective is to answer the question �Why do PINN models work well
with fewer layers?". To answer this question, we study the properties of the loss
function through an analytical solution, a simple network with an analytically
tractable number of parameters, and with numerical test cases to show how
the gradient of PINN loss behaves for relatively shallower shallow and deep
networks with the same parameter count. We �nd that shallower PINN models
have steeper gradients that help them achieve faster convergence, compared to
deeper networks with the same parameter count.

In what follows, we �rst provide a background of PINNs. Next, we analyze the
gradient of the residual and boundary losses by considering an analytical solution
of Poisson's equation, for a one-layer and two-layer neural network. Finally, we
show the implications of our theory through simulations of the Kovasznay �ow,
Lid-driven cavity �ow, and atmospheric boundary layer �ow experiments.

2 Background of PINNs

Consider a general nonlinear PDE,

N (u, x) = f, x ∈ Ω , (1)

B(u(x)) = b, x ∈ ∂Ω , (2)

where N is a generic nonlinear function, B are the initial and boundary condition
operator, x ∈ Ω is the coordinates in the domain Ω, ∂Ω is the boundary of the
domain, b is the boundary condition value and u ∈ U is the solution �eld in a
solution space U that satis�es the above PDE. As a speci�c example, for 2D �uid
�ow problems, the vector u consists of the �ow velocities (horizontal, vertical)
and the pressure. The domain coordinates are (x, y, t) for unsteady �ow and
(x, y) for steady �ows.

Traditionally, �nite discretization-based numerical schemes or spectral meth-
ods have been used to solve the above PDE. The PINNs approach uses and trains
a parametrized neural model H that approximates the functional map between
the input domain Ω and the solution domain U , i.e., H : x×θ 7→ u, such that the
di�erential operator with the initial and boundary conditions are satis�ed. Here
θ is the set of parameters of the neural network H that is learned by minimizing
a loss function LPINN that comprises of the PDE-residual term and boundary
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data loss term, i.e.,

LPINN = Lresidual + Lboundary (3)

Lresidual =
1

Nc

[
Nc∑
i=1

(N (ui, xi)− f)2

]
(4)

Lboundary =
1

Nbp

Nbp∑
i=1

(B(u(xi))− b)2

 . (5)

Here, Nc represents the total count of location points within the domain and
Nbp denotes the total number of boundary points. The PDE loss term is com-
puted using the automatic di�erentiation approach, while the boundary loss
term is determined using the mean squared error with provided boundary data
for the Dirichlet boundary condition. If the Neumann/Robin condition is spec-
i�ed, the boundary loss is computed with the help of automatic di�erentiation.
The use of automatic di�erentiation allows to solve the PDE without relying on
simulation data from numerical solvers as is done in neural operator methods
such as DeepONets [17], and Fourier Neural Operators [15]. Practically, a PINN
model is a dense neural network with input as the coordinates and the output
is the solution variable of the PDE. For neural models, the words shallow and
deep are relative and context-dependent. Our usage is as follows. For the same
number of trainable parameters, a network with fewer layers is called a shallow
network, and a network with more layers is called a deep network. Most PINN
models in the literature use a shallow dense neural network with about 5 lay-
ers [21,18,16,8,19,30,4] compared to typical deep networks used in AI tasks of
computer vision and natural language processing.

3 Analysis of the gradient of the residual loss

The key distinguishing factor between PINNs and neural models used for AI
tasks is the objective function and training strategy. In PINNs, the goal is to
minimize a combined loss function with PDE residual and boundary condition
data. Additionally, the residual loss of the PDE is calculated by automatic di�er-
entiation. In contrast, traditional machine learning tasks typically involve work-
ing with existing datasets, and the objective is to generalize from that data. In
PINNs minimizing the objective function is of paramount importance, whereas
in usual machine learning tasks typically involve working with existing datasets,
and the objective is to generalize from that data.

Gradient descent based algorithms are typically used to train neural net-
works. The nature of the gradient determines the convergence of the training.
As PINNs have two components (residual and boundary loss), the gradients of
each term of the loss a�ect the convergence. We examine the magnitude of the
gradients of these two terms with respect to the parameters of the neural network
to determine how the training will progress.
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To conduct this study, we take a progressive approach. First, we use the an-
alytical solution of the 1D Poisson's equation to gain insights into the di�erence
between the gradients of these two terms with respect to parameters of the PINN
model.

The 1D Poisson's equation is

∂2u

∂x2
= −π2 sin(πx) , x ∈ [−0.5, 0.5]

u(−0.5) = −1 ,

u(0.5) = 1 ,

with an analytical solution u(x) = sin(πx).
Consider a trained neural network fθ(x) that accurately approximates the so-

lution u(x). Without loss of generality, we may express the approximate solution

as fθ(x) = u(x)ϵθ(x), where ϵθ(x) is de�ned for x ∈ [−0.5, 0.5] and ∂ϵθ(x)
∂x < ϵ,

for some ϵ > 0. The gradient of residual loss and boundary loss of fθ is

∂Lresidual

∂θ
≈ π4(ϵθ(x)− 1)

∂ϵθ(x)

∂θ
,

∂Lboundary

∂θ
≈ 4(ϵθ(x)− 1)

∂ϵθ(x)

∂θ
.

The full derivation of the above is in Appendix 6.1, attached in supplementary
material. We see that the gradient of the residual term with respect to the
parameters of the neural network is approximately O(10)−−O(100) times the
gradient of the boundary loss term with respect to the parameters [28]. This
observation holds for a variety of equations as reported in other PINN studies
[24,28].

Next, we consider two networks with two neurons and only two trainable
parameters w1, w2. In the �rst network, we use only one layer (Fig. 1a); in the
second, we use two layers (Fig. 1b). The weights on the remaining edges are
assumed to be one for analysis. All hidden neurons use the swish activation
function as commonly used in PINNs [22]. An input (x) gives the output (U) for
the shallow (one-layer) and deep (two-layer) networks as follows.

UShallow =
w1x

1 + e(−w1x)
+

w2x

1 + e(−w2x)
, (6)

UDeep =

w2w1x

1 + e(−w1x)

1 + e

−

 w2w1x

1 + e(−w1x)


. (7)

The e�ciency of learning for a neural network through backpropagation de-
pends on the characteristics of the loss function. From our analysis above, we
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Shallow architecture for PINNs 5

Table 1: Hyperparameters used in all experiments to study the e�ect of network
depth.

Hyperparameters

Flows Kovaszny �ow Lid-driven cavity ABL

Hidden layers 5 10 15 5 10 15 5+1a 10+1a 15+1a

Neurons per
layer

10 6(5),
7(10)

5(10),
6(5)

300 200 161(5),
160(10)

64(5),
8(1)

36(10),
36(1)

32(15),
24(1)

Learning rate 0.001

Epochs 2,000 30,000 25,000

Optimizer Adam

Trainable-
parameters

500 494 495 363,000 363,000 363,051 19,472 18,936 18,960

Grid points 64*64 50*50 50*500

Activation
function

Swish Swish + ReLU

Initializer Glorot Uniform Glorot Normal Glorot Uniform
a One layer of neurons for each output separately. More details in Appendix 6.2.

(a) 1 hidden layer
neural network

(b) 2 hidden layer neu-
ral network

Fig. 1: The architectures used to analyse the residual loss for the Poisson's equa-
tion. Here, the 1 layer network is the �shallow" network and the 2 layer network
is the �deep" network.

know that the gradient of the residual loss term is greater. Therefore, we plot the
residual loss in terms of w1 and w2 to analyze the di�erence in the loss landscape
for a 1-layer (called shallow) and 2-layer (called deep) PINN. Approximately the
residual term of the loss function for shallow and deep network is

LShallow ≈ w2
1e

−w1x

(1 + e−w1x)2
+

w2
2e

−w2x

(1 + e−w2x)2
,

LDeep ≈ w1w2

(1 + e−w1x)2(1 + e
−w1w2x

1+e−w1x )2
.

This loss is evaluated for a randomly chosen x in the input range and with
a grid of weights and visualized in Fig. 2. We see that the loss landscape of
the shallow network has a prominent valley that can easily be reached by the
gradient descent algorithm, whereas the deep network has a shallow valley that
is harder to optimize. Hence, we expect the shallow network to converge faster
than the deep network during optimization [14,7].
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6 J. Rishi et al.

Fig. 2: The residual loss plotted against the parameters of the neural network
for shallow (1 layer) and deep (2 layers) networks.

4 Experimental results

To empirically con�rm that shallow networks are indeed more e�cient to train
than deep networks for PINN tasks, we conduct experiments with these three
test cases, viz., (i) the Kovasznay �ow, (ii) the lid-driven cavity �ow, and (iii) the
Atmospheric Boundary Layer (ABL) �ow. For each case, we train PINN models
with 5, 10 and 15 layers and compare the solutions of each to a ground truth
obtained either analytically or numerically.

4.1 Kovasznay �ow

The Kovasznay �ow [10,27] is governed by the steady state Navier-Stokes equa-
tions

Fig. 3: The solution of PINNs trained with 5, 10 and 15 hidden layers is shown
next to the true solution of Kovasznay �ow with Re=40. Flow streamlines are
overlaid on a background of velocity magnitude.
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Shallow architecture for PINNs 7

(V .∇)V = −∇p+
1

Re
(∇2V )

∇.V = 0 ,

V |bdry = g(xb, yb) ,

(8)

where V is the velocity vector, p is the pressure, Re is the Reynold's number, ∇
is the gradient operator, ∇2 is the Laplace operator and g is the boundary data
function. The Kovasznay �ow has an analytical solution given by

ζ =
0.5

µ
−

√
1

4µ2
+ 4π2 ,

u = 1− exp(ζx) cos(2πy) ,

v =
ζ

2π
exp(ζx) sin(2πy) ,

p = 0.5(1− exp(2ζx)) ,

where µ is the viscosity, x and y are the cartesian coordinate system, u and v
are horizontal and vertical components of the velocity, and p is pressure. The
boundary condition of the Navier-Stokes equation is given by the analytical
solution evaluated at the boundary points.

We solve the Kovasznay �ow using the PINN approach in a square grid with
x ∈ [−0.5, 1.0], y ∈ [−0.5, 1.5] and µ = 0.025. The loss function consists of the
residual of the PDE in eq. (8) and the boundary loss.

Fig. 4: Log-loss plot during training of the PINN with 5, 10, and 15 hidden layers
for the Kovasznay �ow test case.

We conducted experiments using PINN models with 5, 10, and 15 hidden
layers. To ensure a fair comparison, we use approximately the same number of
trainable parameters for these three models and keep all other training algorithm
hyperparameters �xed. Consequently, shallower networks have more neurons in
each layer compared to deeper networks, as the total number of trainable pa-
rameters remains approximately the same. The main hyperparameters used are
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presented in Table 1. The training process consists of 2000 epochs with a learning
rate of 0.001. The regular training of the PINNs is completed and the trained
model is then evaluated on a 64×64 regular grid for comparison with the ground
truth obtained from the analytical solution. Figure 3 illustrates the solution for
the PINN models with 5, 10, and 15 hidden layers, together with the reference
ground truth solution. It is observed that only the shallow model with 5 hidden
layers successfully trained, while the deeper models failed to accurately capture
the physics of the �ow. Figure 4 shows the log-loss plot for all three models.
The reduction in loss is signi�cant for the model with 5 hidden layers, whereas
the loss plateaus for the other two models. This observation directly con�rms
our hypothesis that shallower networks have a favorable loss landscape for the
optimization method to �nd a minimum for PINNs training dominated by the
residual loss. The residual loss gradient is higher compared to the boundary loss
gradient with respect to the network parameters for most of the epochs in this
case as well, which is consistent with our analysis (Sec. 3) (See also Appendix
6.3)

4.2 Lid-driven cavity �ow

Fig. 5: The solution of PINNs trained with 5, 10 and 15 hidden layers is shown
next to the true solution of the lid-driven cavity �ow for Re=300. Flow stream-
lines are overlaid on a background of velocity magnitude.

The second test case chosen is the steady-state lid-driven cavity �ow prob-
lem, which is an idealization of the wind-driven response of the ocean and is
of practical relevance. The rightmost panel of Fig. 5 shows the �ow setup. A
square �uid-�lled cavity in the x− z plane is subject to a horizontal motion on
the top surface, corresponding to the lid moving to the right at a speci�ed veloc-
ity of 1 non-dimensional unit. The PINNs simulation employs the Navier-Stokes
equation (Eq. 8) along with the following boundary conditions: u, v = 0 for left,
bottom, and right, and u = 1, v = 0 on top surface. Simulations are compared
with the solution obtained from a numerical CFD solver [26].

We train PINNs with 5, 10, and 15 hidden layers, all with approximately the
same number of trainable parameters, and other hyperparameters are �xed, sim-
ilar to the previous test case. The main hyperparameters are shown in Table 1.
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Figure 5 shows the �ow streamlines and magnitude of the lid-driven cavity prob-
lem for Re = 300 for di�erent numbers of hidden layers. All models were trained
for 30,000 epochs. The �ow simulation using the network with �ve hidden layers
agrees better with the �ow simulation using the CFD tool, while those with more
layers do not. Figure 6a shows the learning curve during training, i.e., the plot
of log-loss versus the number of epochs. The network with �ve hidden layers has
the lowest loss compared to the other networks. Table 2 documents the mean
relative error between the PINN and CFD simulations for the di�erent output
variables. The relative error and the con�dence interval are the lowest for the
network with �ve hidden layers. A noticeable di�erence in the number of epochs
to reach a certain threshold log-loss can also be observed between the models.
For example, to reach a log-loss value less than -5.1, models with 5, 10, and 15
hidden layers took nearly 14000, 16000, and 17000 epochs, respectively. Figure
6b shows that the residual loss gradient is higher compared to the boundary loss
gradient with respect to network parameters, which aligns with our analysis in
Sec. 3.

(a) (b)

Fig. 6: (a) Log-loss plot for 5, 10 and 15 hidden layers PINN models to simulate
the lid-driven cavity �ow. (b) L2 norm of the gradient vector of residual loss
and boundary loss with respect to neural network parameters for the lid-driven
cavity �ow problem for 5 hidden layers.

Table 2: Relative error in u, v, and p with their con�dence interval for lid-driven
cavity �ow test case.

Relative error

Layers U Error V Error P Error

5 0.03±0.001 0.04±0.001 0.015±0.0001
10 0.05±0.002 0.06±0.002 0.02±0.0002
15 0.06±0.003 0.07±0.003 0.04±0.0006
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4.3 Atmospheric boundary layer (ABL)

Our third test case is the turbulent atmospheric boundary layer �ow simulation,
a much more complex test case than the previous two. A horizontally homoge-
neous atmospheric boundary layer �ow, as shown in Figure 7, is simulated in a
uniformly rough, �at terrain under neutral strati�cation. The steady Reynolds-
averaged Navier-Stokes (RANS) framework with two-equation turbulence mod-
els has been shown to be e�ective for the simulation of the ABL �ow [1,11]. In
the present work, we use the standard k − ϵ model [9] for turbulence closure
along with the standard wall functions [13] modi�ed to be consistent with the
inlet pro�les [23].

Fig. 7: Illustration of the vertical distribution of horizontal velocity and TKE /
shear stress within the Prandtl layer of the atmospheric boundary layer.

RANS governing equations The incompressible steady RANS equations,
along with the turbulent kinetic energy (TKE) (k) and the dissipation rate (ϵ)
transport equations for the closure in the Cartesian coordinates, are as follows.

Continuity equation:
∂ui

∂xi
= 0 , (9)

Momentum equation:
∂uiuj

∂xj
=

∂

∂xj

[
(ν + νt)

(
∂ui

∂xj
+

∂uj

∂xi

)]
− 1

ρ

∂P

∂xi
, (10)

k transport equation:
∂kuj

∂xj
=

∂

∂xj

[(
ν +

νt
σk

)
∂k

∂xj

]
+ Pk − ϵ , (11)

ϵ transport equation:
∂ϵuj

∂xj
=

∂

∂xj

[(
ν +

νt
σϵ

)
∂ϵ

∂xj

]
+ C1ϵ

ϵ

k
Pk−C2ϵ

ϵ2

k
, (12)

where xi is the spatial coordinate, ui is the time-averaged velocity vector
(u,w for 2D (x, z) and u, v, w for 3D (x, y, z)), P is the mean pressure, ν is
the kinematic viscosity, νt is the turbulent viscosity, Pk is the production of
turbulent kinetic energy. Pk and νt are given by the equations,
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Pk = νt

(
∂ui

∂xj
+

∂uj

∂xi

)
∂ui

∂xj
, νt = Cµ

k2

ϵ
.

Here, the values of the �ve constants Cµ, σk, σϵ, C1ϵ and C2ϵ used for sim-
ulation of neutral atmospheric �ow are 0.033, 1.0, 1.3, 1.176, and 1.92, respec-
tively [5].

Boundary conditions For homogeneous ABL �ow simulations in the stream-
wise direction, we use a fully developed inlet velocity pro�le given by [23],

u =
uτ

κ
ln

(
z + z0
z0

)
, (13)

where uτ =
√

τw
ρ is the frictional velocity (with τw is the wall shear stress, and

ρ is the �uid density), κ ≈ 0.418 is the von Kármán constant, z is the height
co-ordinate and z0 is the aerodynamic roughness height. Wall functions are used
to achieve su�ciently precise solutions in the region close to the wall/ground,
which helps reduce the computational cost and allows the inclusion of empir-
ical information in special cases, such as rough wall conditions, to be used in
ABL [13]. Turbulent kinetic energy and dissipation are speci�ed on the bottom
wall/ground using the equations,

k =
u2
τ√
Cµ

, ϵ =
u3
τ

κ(z + z0)
,

with z = zp, where zp is the height from the wall such that 90 <
zpuτ

ν < 500 [3].
The velocity is also speci�ed at the wall using eq. 13. At the top boundary, the
symmetry boundary condition is used for velocity, pressure, and other turbulent
quantities. A pressure outlet boundary condition is speci�ed for the outlet with
vanishing stream-wise gradients of other quantities.

ABL simulation result Figure 8 shows plots of the stream-wise velocity, tur-
bulent kinetic energy, and dissipation rate pro�les against height obtained from
the PINN models with 5, 10 and 15 hidden layers. The inlet pro�le is also plot-
ted for reference. The hyperparameters used for the PINN models are shown in
Table 1. Here, we use a reference velocity (uref ) of 8m/s at a reference height
(zref ) of 70m and at a turbulence intensity of 7%. The domain is 100m high and
200m long in the stream-wise direction. The frictional velocity, calculated using
Eq. 13 with 0.001 as the aerodynamic roughness height, is used to obtain values
of other turbulent quantities. A successful simulation will have obtained hori-
zontally homogeneous ABL �ow under neutral strati�cation, that is, the PINN
simulations and reference inlet pro�les would be identical. The �ow is also char-
acterized by constant shear stress over the height, providing a constant pro�le
for the turbulent kinetic energy as seen in Figure 8 panel for TKE.
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Fig. 8: Stream-wise velocity, turbulent kinetic energy and turbulent dissipation
rate pro�les of the ABL �ow simulated from PINN models with 5, 10 and 15
hidden layers are compared to the reference (inlet pro�le). For the turbulent dis-
sipation rate, the height is shown only until 3 m for highlighting the di�erences.

From Figure 8, it can be seen that the velocity pro�les simulated by all
networks are in good agreement with the inlet pro�le. However, the deviations
in the TKE and dissipation rate pro�les from the reference are more evident
in models with greater number of hidden layers. The greater di�erence for 10
and 15 layer PINN models can be attributed to the fact that for TKE and
dissipation rate, the Dirichlet condition was provided only at the bottom wall,
and PDE losses were used to solve within the domain. This approach made
the loss function residual dominated and as per our analysis (Sec 3), we expect
shallower networks to perform better here as evidenced by our experimental
results. The absolute error between the inlet and outlet pro�les simulated using
the di�erent PINN models is listed in Table 3. The TKE error in the 5 hidden
layer model is almost one order less compared to other models. The velocity
values were provided at the inlet and the bottom wall. Thus, all models were
able to simulate this pro�le well, which shows that all models perform well in
supervised learning tasks. From the log-loss plot (Figure 9), we see that for
the same number of epochs, the model with 5 hidden layers ended the training
with the least loss. In our experiments, we have �xed the number of parameters
and epochs to be equal for models with di�erent hidden layers. A noticeable
di�erence in the number of epochs to reach a certain threshold log-loss can also
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be observed between the models. For example, to reach a log-loss value less than
4, models with 5, 10, and 15 hidden layers took nearly 9000, 12000, and 16000
epochs, respectively. Also, it should be noted that the computational time for
the model with 5 hidden layers is 4

3 and 5
3 times lesser than the models with

10 and 15 hidden layers. The residual loss gradient is higher compared to the
boundary loss gradient with respect to the network parameters in this case as
well, which is consistent with our analysis (Sec. 3) (See also Appendix 6.4)

Fig. 9: Log-loss plot for 5, 10, and 15 hidden layers for the ABL �ow.

Table 3: Mean absolute error in u, k, and ϵ with their con�dence interval for
ABL �ow.

Mean absolute error

Hidden Layers u error k error ϵ error

5 0.016±5×10−5 0.002±2×10−5 0.003±4×10−5

10 0.019±5×10−5 0.020±8×10−8 0.005±1×10−3

15 0.024±2×10−4 0.010±1×10−7 0.004±2×10−4

5 Conclusion

The results of our study suggest that shallow neural networks are more bene�cial
than deeper networks in the training of PINNs. We also provide an explanation
for why shallow networks tend to converge better than deep networks, based
on an analysis of the gradient of the loss function. To illustrate our �ndings,
we present various test cases. Initially, these results may seem counter-intuitive,
particularly when compared to the prevailing knowledge and empirical evidence
in the �elds of computer vision and natural language processing in AI. However,
our analysis of the loss function for PDE residual-driven training clearly demon-
strates why relatively shallow networks perform well in PINN model training.In
all instances, it was observed that the gradient of the residual loss is higher
when compared to the gradient of the boundary loss. While this holds true in
the majority of cases, in the future we explore scenarios where this observation
may not be accurate.

Supplementary material : Appendix and Codes
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