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Abstract. Faster explicit elastic wavefield simulations are required for
large and complex three-dimensional media using a structured finite el-
ement method. Such wavefield simulations are suitable for GPUs, which
have exhibited improved computational performance in recent years, and
the use of GPUs is expected to speed up such simulations. However, avail-
able computational performance on GPUs is typically not fully exploited,
and the conventional method involves some numerical dispersion. Thus,
in this paper, we propose an explicit structured-mesh wavefield simula-
tion method that uses INT8 Tensor Cores and reduces numerical dis-
persion to speed up computation on GPUs. The proposed method was
implemented for GPUs, and its performance was evaluated in a simula-
tion experiment of a real-world problem. The results demonstrate that
the proposed method is 17.0 times faster than the conventional method.

Keywords: Explicit Wave Propagation Analysis · Finite Element ·
Tensor Core · GPU.

1 Introduction

Explicit simulation of elastic wavefields, which can be computed without solving
matrix equations, is often used to evaluate the dynamic response of large and
complex three-dimensional media through sequential analysis and to estimate
internal structures through optimization via many simulations. Thus, further
speedup is desired for conducting such large and many-case analyses. In this
paper, we focus on increasing the speed of explicit elastic wavefield simulations
with structured finite elements, which are suitable for generating numerical mod-
els. In the standard finite element method, the generation of the finite element
model can be a bottleneck in the analysis process. However, finite element mod-
els can be generated automatically for the structured finite element method by
using cubic elements that are finer than the elements used in standard finite
element analysis and allowing some approximation of geometry, thereby mak-
ing it suitable for analyzing large and complex media. Thus, it is used in seismic
analysis [1, 2] and the estimation of the internal structure of structures [3]. There
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is a strong need for a method that can be executed many times in a short pe-
riod because detailed simulations and model optimizations are desired in such
analyses.

Explicit wavefield simulations using structured finite element methods, where
continuous memory access is dominant, are well-suited for processing on GPUs
and are expected to be executed quickly on recent GPUs with improved com-
putational performance. However, the lumped mass matrix approximation is
applied to the low-order structured finite elements that are conventionally used
in such analyses, and this results in numerical dispersion, which increases com-
putational cost due to the need to use smaller element sizes. In addition, some
GPUs are equipped with acceleration mechanisms, e.g., Tensor Cores [4], and
their use in deep learning and other applications is progressing. However, the use
of Tensor Cores in physics-based simulations is limited because their high-speed
operations are predicated on transforming operations into a somewhat special
form, and they are only used in some cases (e.g., to obtain a coarse solution in
implicit simulations [5, 6]. See [7] for a review of mixed-precision algorithms for
linear numerical algebra in general). In particular, unlike the implicit solution
method, the explicit solution method does not allow for processes that refine the
coarse solution. Therefore, the development of such algorithms is challenging be-
cause the results must be equivalent to those of ordinary FP64 calculations while
effectively using Tensor Cores. However, Tensor Cores have high computational
performance; thus, further increases in processing speed can be expected if the
hardware can be exploited effectively.

Therefore, this paper proposes an explicit structured finite element elastic
wavefield simulation method that uses INT8 Tensor Cores, which is more ac-
curate and faster than the conventional method. The remainder of this paper
is organized as follows. In Section 2, we present an explicit structured finite
element wavefield simulation method that solves the problems of conventional
methods and is suitable for INT8 Tensor Core computation. Section 3 describes
the implementation of the proposed method on a GPU and presents the details
of the performance of the proposed method using a realistic analysis model. We
show that the proposed method can realize an analysis that yields results that
are equivalent to those of the conventional method at higher speed. Finally, the
paper is concluded in Section 4.

2 Low-ordered Orthogonal Voxel Finite Element with
INT8 Tensor Cores

In this study, we target the governing equation of a linear dynamic elastic body:

ρü− (∇ · c · ∇) · u = f , (1)

where ρ, u, c, and f denote the density, displacement, elasticity tensor, and
body force, respectively. In addition, (˙) and ∇ denote the temporal and spatial
differential operators, respectively. In standard finite element analysis, the target
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domain is decomposed into small elements e, and the basis functions ϕα are
defined on these elements. By substituting u =

∑
uαϕα into the functional

in Eq. (1) and taking the stationary condition, the following linear equation is
obtained for the unknown coefficients uα:

Ku+Mü = F. (2)

Here, u is a vector assembled using uα. K and M are a stiffness matrix and
mass matrix assembled using the element stiffness matrix Ke and the element
mass matrix Me obtained for each element, respectively.

In a typical structured finite element analysis, the domain of interest is di-
vided into cubic subdomains of lengths ds per side, and these are used as elements
(hereafter referred to as voxel elements). As a result, a finite element model can
be generated easily by simply covering a three-dimensional region with a struc-
tured grid of constant width ds and evaluating the physical properties of each
element. Thus, it is frequently used for the static and dynamic analysis of regions
with complex geometry and property distributions or for geometry optimization.
However, the object is modeled with cubes of uniform size; thus, it is necessary
to reduce ds to improve the accuracy of modeling geometry, which frequently
results in a problem with large degrees of freedom. When using such voxel el-
ements, low-order elements are frequently used, i.e., it is common to use basis
functions

ϕβ = −1

8
(r1 + r̄1)(r2 + r̄2)(r3 + r̄3) (β = 1, 2, ..., 8)

for node β, which is often used for hexahedral elements (Figure 1 shows the
definition of the local coordinates, local node numbering, and the definition of
r̄1, r̄2, r̄3). However, in this case, the element mass matrix

Me = ρ(ϕβϕβ
′
)e,

becomes nondiagonal, which necessitates solving a large-scale matrix equation
to obtain u in Eq. (2). Note that ( )e indicates volume integration in each
element. To solve this problem, an approximation that concentrates the off-
diagonal terms to the diagonal terms (lumped mass matrix approximation) is
frequently applied, which leads to a diagonal mass matrix Map

e , where the off-
diagonal terms are approximated as 0, and the diagonal terms are approximated
as ρ/8(1)e. Consequently, for example, if we approximate the acceleration using
the central difference method with a time-step width of dt, Eq. (2) at time step
it becomes

Kuit +Map(uit+1 − 2uit + uit−1)/dt2 = Fit, (3)
which enables explicit computation of uit+1. This lumped matrix approximation
is widely used when solving dynamic problems because eliminating the need to
solve large matrix equations reduces the analysis cost significantly. This analysis
method is referred to as VFEM in this paper.

In VFEM, the lumped mass matrix approximation causes numerical dis-
persion, which is particularly noticeable when the distance of the propagation
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Fig. 1: Definition of a voxel element. For a cube of size ds in each direction, a
local coordinate r1r2r3 is defined (−1 ≤ r1 ≤ 1, −1 ≤ r2 ≤ 1, −1 ≤ r3 ≤ 1).
The local node number ranging from 1–8 is defined on each node in the element.
ϕβ is the basis function for node β.

of waves increases. To suppress such numerical dispersion, a VFEM using an
orthogonal basis function has been proposed for the voxel elements [8]. Using
the orthogonal basis functions, the mass matrix becomes diagonal without any
approximation to the voxel elements. We formulate OVFEM using the Hellinger-
Reissner functional:

J(u, σ) =

∫
V

∫
T

−1

2
ρu̇ · u̇− 1

2
σ : c−1 : σ + σ : (∇⊗ u)− u · f dvdt. (4)

Here, σ denotes stress, which can be expressed as σ =
∑
σβψβ using the basis

function ψβ and unknown coefficients σβ . By taking the stationary condition
of Eq. (4) for uα and σβ , a discretized form of the governing equation can be
obtained in the form of Eq. (2). Here, K and M become matrices assembled
using the element stiffness matrix

Ko
e = (ψβ∇ϕα)te · (ψβψβ

′
)−1
e c · (ψβ∇ϕα)e, (5)

and the element mass matrix

Mo
e = ρ(ϕβϕβ

′
)e, (6)

respectively. While the same local coordinates −1 ≤ r1 ≤ 1, −1 ≤ r2 ≤ 1,
−1 ≤ r3 ≤ 1 and node placement of VFEM (Fig. 1) are used, the following
Heaviside function H is used in OVFEM:

ϕβ = H(r̄1r1)H(r̄2r2)H(r̄3r3) (β = 1, 2, ..., 8), (7)

ψ1 = 1, ψ2 = r1, ψ
3 = r2, ψ

4 = r3, ψ
5 = r1r2, ψ

6 = r2r3, ψ
7 = r1r3. (8)

As shown in the definition of Eq. (7), the element mass matrix of Eq. (6) becomes
diagonal, and a stable solution is obtained because the discontinuous functions
H are used together with smooth polynomial functions. Thus, the use of Mo

e
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allows us to solve Eq. (2) explicitly without approximation. OVFEM is expected
to be more accurate than VFEM due to the suppression of numerical dispersion
by the absence of the lumped mass approximation. This indicates that OVFEM
may enable a coarser discretization size compared to VFEM, which can reduce
the analysis costs of three-dimensional dynamic problems considerably.

Some GPUs are equipped with acceleration mechanisms that can perform
certain forms of matrix products at high speed. For example, the A100 80 GB
PCIe GPU [9] has Tensor Cores with peak performance of 624 TOPS for 8-bit
integer matrix operations, which is significantly higher than the 9.7 TFLOPS
peak performance of its FP64 cores. Therefore, effective use of Tensor Cores is
expected to speed up analysis, and Tensor Cores are being used in deep learning
and other applications. However, to apply Tensor Core operations efficiently, it is
necessary to formulate an algorithm such that the amount of matrix operations
of a particular form is dominant while guaranteeing the accuracy of the opera-
tions, which limits the applicability to only a few physics-based simulations. In
particular, with the implicit method, Tensor Cores can be used as a substitute
for part of the analysis by using Tensor Cores to obtain a coarse solution and
then refining it to reduce the analysis cost; however, it is difficult to apply such
a refining process to the explicit method. Thus, the part of the algorithm to
be computed by Tensor Cores must demonstrate accuracy that is equivalent to
that of FP64, and the difficulty in algorithm development lies in the fact that
speedup must be achieved in consideration of the computing performance, data
transfer, and other factors.

Therefore, we propose TCOVFEM, which is an OVFEM transformed to take
advantage of the INT8 Tensor Core arithmetic performance with guaranteed
arithmetic accuracy. Generally, solids can be treated as a linear isotropic dy-
namic elastic body in the most basic approximation; thus, the formulation is
presented using a linear isotropic dynamic elastic body as an example. This
method can be applied to the ultrasonic wave propagation analysis shown in the
application examples presented in this paper and to the analysis of wavefields in
other linear isotropic elastic bodies. The key is determining how to make Ku,
which has the highest analysis cost in Eq. (2), suitable for Tensor Core opera-
tions while guaranteeing FP64 accuracy. First, we consider the computation of
(ψβ∇ϕα)e among the operations given in Eq. (5). Note that there is arbitrariness
in the selection of ψβ in Eq. (8); thus, we select a polynomial that follows the
deformation mode of the cube, which leads to an expression within the range
of low-precision numbers by proper normalization. In contrast, the computa-
tion of (ψβψβ′

)−1
e c requires care. Generally, c does not fall within the range of

low-precision numbers (even if it is linear isotropic); thus, it must be treated
appropriately. In this section, we focus on the independence of the properties of
linear isotropic elastic bodies and derive a formulation that falls within the range
of 8-bit integers. For linear isotropic elastic bodies, c can generally be expressed
by the product of the volume modulus κ, the shear modulus G, and a constant
that fits into low-precision arithmetic. Here, by defining D̄κ = 3

∂(ψβψβ′
)−1
e c

∂κ ds3

and D̄G = 3
∂(ψβψβ′

)−1
e c

∂G ds3 as the contribution of κ and G to (ψβψβ
′
)−1
e c, a
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constant 24× 48 matrix
KINT8
e =

(
Kκ
e , K̄

G
e

)
,

where

Kκ
e = 256/3B̄tD̄κB̄ds4,

K̄G
e = 128B̄tD̄GB̄ds4 − 128I,

can be constructed. Here, B̄ is an equivalent strain displacement matrix and I is
a 24× 24 identity matrix. Using this transformation, the core kernel, which has
the highest analysis cost in finite element analyses, can be computed as follows:

Ko
eue = 1/256κds(KINT8

e ūe + 256/3G/κue). (9)

Here, ūe =
(
ue, 2/3G/κue

)
.

In Eq. (9), we convert most of the analysis cost into operations that fall within
the 8-bit integer range; however, to extract the full performance of Tensor Cores,
it is necessary to implement Tensor Core computations in consideration of both
the operation speed and the data transfer cost. Here, we present a concrete
implementation of the fast Tensor Core-based computation of the dense matrix-
vector product KINT8

e ūe. Here, KINT8
e is a 24×48 constant matrix with values

in the 8-bit integer range (-128 – 127), and ūe is a vector with a length of
48 in FP64. Note that conversion between floating-point numbers and integers
incurs a large cost; thus, we consider fast computation algorithms that minimize
the number of variable conversions while reducing the data transfer cost of the
computation.

First, to save the number of significant digits during integer arithmetic ex-
pansion, the element right-hand side vector is scaled as follows:

ūes =
1

se
ūe. (10)

Here, se = maxi=1,2,...,48 |ūei|, where ūei is the i-th component of ūe. This scales
each component of ūe to be within ±1. Then, ūes is expanded with the product
of FP64 constants times integer value vectors:

ūes =

N∑
i=1

1

ai
ūesINT(i), (11)

where N is the number of integer expansion stages, and ūesINT(i) is a vector
comprising 48 integers:

ūesINT(1) ⇐
INT

aūes, (12)

ūesINT(2) ⇐
INT

a
{
aūes − ūesINT(1)

}
, (13)

ūesINT(3) ⇐
INT

a
{
a2ūes − aūesINT(1) − ūesINT(2)

}
. (14)

...
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Here, ⇐
INT

denotes truncation to integer values. Using these integer vectors, the
element matrix-vector product is computed as follows:

KINT8
e ūe = se

N∑
i=1

1

ai
KINT8
e ūesINT(i). (15)

The above Eqs. (11)–(15) can be expanded and calculated with integers with
an arbitrary number of bits. For example, using a = 27, all integer operations can
be performed with 8-bit integers. However, in this case, Eqs. (12)–(14) must be
calculated for the N stages, which requires many conversions between floating-
point variables and integers, and, therefore, reduces the computational perfor-
mance. For example, N = 8 stages are required to realize 56-bit accuracy which
is equivalent to FP64’s 52 fraction bits, which requires many conversion opera-
tions. Thus, in this study, the number of conversions between the FP64 variables
and integers is reduced using 64-bit integers to perform the conversion only once
and by using a hierarchical expansion in which the 64-bit integer calculation is
further expanded using 8-bit integer operations. In particular, Eqs. (11)–(12) are
expanded using 64-bit integers with a = 256 and N = 1, and the main computa-
tion KINT8

e ūesINT(1) (denoted KINT8
e ūesINT64(1)) is expanded usingM = 8-stages

of computations using 8-bit integers. Here, using b = 27, ūesINT64(1) is expanded
as

ūesINT64(1) =

M∑
j=1

bj−1ūesINT8(1,j) (16)

using 8-bit integers, and KINT8
e ūesINT64(1) is computed as

M∑
j=1

bj−1KINT8
e ūesINT8(1,j). (17)

Figure 2 shows the computation flow of the matrix-vector products when directly
converting data between FP64 and INT8 variables and when hierarchical FP64-
INT64-INT8 conversion is used. While the data conversion and computation are
looped N times in the direct method, the proposed hierarchical method performs
the data conversion outside of the M loop. While the total computation accuracy
is the same when N = M , the number of conversions between the integer and
FP64 variables can be reduced by N -fold when using the hierarchical method.

Tensor Core operations are very fast when applied to matrix-matrix products
of specific sizes; thus, we must transform the computation pattern of the matrix-
vector products to matrix-matrix products suited for Tensor Cores. In addition,
Tensor Core operations are very fast; thus, the cost of other operations must
be suppressed to reduce time costs substantially. In particular, the data transfer
from global memory and the data transfer between shared memory becomes a
bottleneck. In the following, we describe how we map the matrix-vector compu-
tation to Tensor Cores and how we circumvent the data transfer bottlenecks.
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(proposed) Hierarchical FP64-INT64-INT8 
conversion
Load u_FP64[24] from global memory

Scale u_FP64[24] per element
Store u_FP64[24] to shared memory
Load u_FP64[24] from shared memory
Convert u_FP64[24] to u_INT64[48]

Extract u_INT8[48] from u_INT64[48]

Compute INT8 matrix-matrix product

Convert f_INT64[24] to f_FP64[24]

Atomic add to f_FP64[24] in global memory

Direct FP64-INT8 conversion (proposed) Hierarchical FP64-INT64-INT8 conversion
Shared memory store 1152 bytes per element 192 bytes per element

Shared memory load 1152 bytes per element 192 bytes per element

FP64 → integer conversion 48*8 per element 48 per element

integer → FP64 conversion 24*8 per element 24 per element

Direct FP64-INT8 conversion
Load u_FP64[24] from global memory
Scale u_FP64[48] per element

Convert u_FP64[48] to u_INT8[48]

Store u_INT8[48] to shared memory
Load u_INT8[48] from shared memory
Compute int8 matrix-matrix product

Store f_INT32[24] to shared memory
Load f_INT32[24] from shared memory
Convert f_INT32[24] to f_FP64[24]

Atomic add to f_FP64[24] in global memory

loop for 
M=8 times

loop for 
N=8 times

Fig. 2: Computation of matrix-vector products using INT8 Tensor Cores with
direct FP64-INT8 conversion and the proposed hierarchical FP64-INT64-INT8
conversion. Here, 32 elements are computed using 32 threads per thread block.

– Transformation of matrix-vector products to matrix-matrix products: While
KINT8
e ūesINT8(1,j) is a matrix-vector product of size (24×48)×48, we can

compute 32 elements in a single thread block as a matrix-matrix prod-
uct of size (24×48)×(48×32). We compute this using INT8 Tensor Cores
with (n,m, k) = (8, 32, 16): C(8× 32: INT32)=A(8× 16: INT8)×B(16× 32:
INT8). As shown in Fig. 3, a (24×48)×(48×32) matrix-matrix multiplica-
tion is decomposed into 3 × 3 = 9 parts, and each part is computed using
(8 × 16) × (16 × 32) matrix-matrix multiplication. Here, the matrix KINT8

e

is constant in the j-loop; thus, we can load the A fragment once and keep it
in registers.

– Elimination of shared memory loads/stores by direct addition of results to
global memory: As the register mapping of memory fragments for the ma-
trices in Tensor Core operations is complex, an API is provided to exchange
the input and output data between threads via shared memory. However,
when this technique is used for the small-scale matrix-matrix multiplications
targeted in this study, it frequently results in shared memory bottlenecks,
which makes it difficult to fully utilize the available performance of the Ten-
sor Cores. Thus, following the method presented in the literature [6], we skip
the remapping process using shared memory and directly output the data
to global memory. As shown in Fig. 4, rather than remapping the outputs
from the Tensor Core operations and having each thread add element-wise
results to the global memory, the results are added directly to the designated
components in the global memory. Here, the scaling coefficient se for each
element is reflected in this procedure by sharing se among the threads. Simi-
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8 × 32
16 × 32

8 × 16

+= ×

C fragment:
48 × 32 INT32 matrix

A fragment:
Constant INT8 24 × 48 matrix B fragment:

M sets of 48 × 32 INT8 matrix

𝑀𝑀

Fig. 3: Decomposition of (24×48)×(48×32) matrix-matrix product into nine
(8×16)×(16×32) matrix-matrix products. Here, the A fragment can be reused
throughout the M sets of computations. Note that the results in the 32-bit in-
teger C fragment are flushed every M = 3 stages to an INT64 buffer to avoid
overflow.

larly, we can load the B fragments directly from the registers after conversion
from INT64 value inputs by proper element mapping.

– Improving cache reuse when accessing global memory variables: The matrix-
vector product calculation requires reading the nodal data ue from global
memory and adding the nodal result fe to the global vector f . In this study,
32 elements belonging to a single thread block are arranged in the x-direction
to facilitate sequential cache access in the x-direction, and then each thread
block performs calculations continuously in the z-direction. This allows the
reuse of nodal data (u and f) in cache, which results in an approximately
fourfold reduction in the volume of global memory accesses compared to the
case when elements are ordered randomly.

By employing a hierarchical method that reduces the number of conversions
between the floating-point and integer variables, as well as using the data access
reduction methods described above, we can expect high increases in speed com-
pared to the standard FP64 computations without reduction in computational
accuracy.

3 Numerical Experiment

In the following, the efficacy of the proposed TCOVFEM is demonstrated through
ultrasonic analysis using the model illustrated in Fig. 5, which is based on the
literature in [10]. The model is a rebar with a radius of 15 mm embedded in
concrete. An impulse force with a center time of 4.096 × 10−4 s and a cen-
ter frequency of 112.5 kHz with a bandpass of 100–125 kHz is applied in the
z-direction from the input point, and its response is calculated and stored for
8.192×10−4 s at the observation points shown in Table 1. The size of the model
is 324 × 128 × 384 mm and assumes a cylindrical rebar of radius 15 mm cen-
tered at x = 160, z = 100 mm that is penetrating the model in the y-direction.
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C fragment
8 × 32 INT32 matrix
(threadidx != elementidx)

0 1 2 3 4 5 6 7 … 28 29 30 31

0 1 2 3 4 5 6 7 … 28 29 30 31

0 1 2 3 4 5 6 7 … 28 29 30 31

0 1 2 3 4 5 6 7 … 28 29 30 31

0 1 2 3 4 5 6 7 … 28 29 30 31

0 1 2 3 4 5 6 7 … 28 29 30 31

0 1 2 3 4 5 6 7 … 28 29 30 31

0 1 2 3 4 5 6 7 … 28 29 30 31

0 0 0 0 4 4 4 4 … 28 28 28 28

0 0 0 0 4 4 4 4 … 28 28 28 28

1 1 1 1 5 5 5 5 … 29 29 29 29

1 1 1 1 5 5 5 5 … 29 29 29 29

2 2 2 2 6 6 6 6 … 30 30 30 30

2 2 2 2 6 6 6 6 … 30 30 30 30

3 3 3 3 7 7 7 7 … 31 31 31 31

3 3 3 3 7 7 7 7 … 31 31 31 31

Reordering of data 
via shared memory

Atomic add to global memory

Data reordered 
per element
(threadidx == 
elementidx)

Convert to FP64 values using 
scaling factor 𝑠𝑠𝑒𝑒 of own element

Convert to FP64 values 
using scaling factors 𝑠𝑠𝑒𝑒
of mapped element

Colors: threadidx

Direct output of data 
without use of shared 
memory

Reordering of 
data via shared 
memory

𝑠𝑠0  𝑠𝑠1  𝑠𝑠2  𝑠𝑠3  𝑠𝑠4  𝑠𝑠5  𝑠𝑠6  𝑠𝑠7  𝑠𝑠28  𝑠𝑠29  𝑠𝑠30  𝑠𝑠31  

Fig. 4: Elimination of shared memory loads/stores by direct addition of results to
global memory. Note that one out of the three C fragments is shown. 32 elements
are computed using 32 threads per thread block.

The four corner points at the bottom (z = 0) of the model are fixed in three
directions (x, y, and z). Rayleigh damping (100–125 kHz) is used to compute
attenuation in the simulation. The following time history simulations were per-
formed on a single A100 80 GB PCIe GPU [9], and except for the INT8 Tensor
Core operation in the proposed TCOVFEM, all other operations were computed
and stored using FP64 variables.

First, a reference solution was generated using an implicit finite element anal-
ysis with second-order tetrahedral elements without the lumped mass matrix ap-
proximation (hereafter referred to as CFEM), and we compared the waveforms
at the observation points to confirm the accuracy of the proposed TCOVFEM.
As shown in Fig. 5, the finite element mesh used for the reference solution based
on CFEM is sufficiently fine. For example, the area near the rebar is discretized
with an element size of approximately 1 mm (i.e., the nodal spacing becomes
approximately 0.5 mm as second-order tetrahedral elements are used). We used
a model with 2-mm voxel elements for the proposed TCOVFEM, and to com-
pare the accuracy with the conventional VFEM method, we conducted VFEM
analysis for cases with seven element sizes (2.0, 1.5, 1.33, 1.2, 1.09, 1.0, and
0.5 mm). Table 2 shows the error from the reference solution at all observation
points, which is defined as follows for each analysis case.

Err =
1

nc

nc∑
i=1

∑nt

j=1(u
obs
i,j − urefi,j )

2∑nt

j=1(u
ref
i,j )

2
(18)
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Tetrahedral mesh (refined 
two times in actual analysis) Voxel mesh (ds = 2 mm)

Input source

Rebar

Closeup view of mesh around rebar

𝑉𝑉𝑝𝑝 (m/s) 𝑉𝑉𝑠𝑠 (m/s) 𝜌𝜌 (kg/m3) ℎ
Concrete 4000 2500 2300 3.0%
Steel 5920 3240 7800 3.0%

Fig. 5: Model used for the numerical experiment.

Here, nc denotes the number of observation channels (eight observation points
×(x, y, z)-components = 24 channels), nt denotes the number of time steps,
and uobsi,j and urefi,j denote the computed and reference waves at time step j for
channel i, respectively. The results demonstrate that the proposed TCOVFEM
can compute results with high accuracy compared to the conventional method.
The error of CFEM using a coarser mesh (the length of an element edge is twice
that of the mesh used in the reference solution) was 0.00022, which confirms that
the reference solution computed using CFEM with the fine mesh is converged
sufficiently. A comparison of the proposed TCOVFEM with the conventional
VFEM indicates that the proposed method is more accurate than the VFEM
in the case with the same discretization width. Here, the proposed TCOVFEM
with ds = 2 mm achieved accuracy that is equivalent to the VFEM with ds =
1.2 mm. Figure 6, which visualizes the response in the y- and z-directions at
observation point 1, also confirms that the proposed TCOVFEM with ds = 2
mm is considerably more accurate than VFEM at ds = 2 mm (even when viewed
at individual observation points).

Next, we review the effect of INT8 Tensor Core operations on calculation ac-
curacy. Here, we compare the accuracy when computing Eq. (9) without Tensor
Cores using FP128, FP64, and FP32 operations, and computing Eq. (9) with
INT8 Tensor Cores. Specifically, the calculations for multiplying the global stiff-
ness matrix of the ds = 2 mm cubic element model by random vectors with
double precision values were computed with FP128, FP64, and FP32 opera-
tions, and these calculations were compared with the results computed using
INT8 Tensor Core operations. Note that FP128 has 112 fraction bits, FP64 has
52 fraction bits, and FP32 has 23 fraction bits. In contrast, as the resolution of
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Table 1: Coordinates of the input
source and observation points.

x (mm) y (mm) z (mm)
Source point 156 72 384
Obs. point 1 26 60 384
Obs. point 2 60 60 384
Obs. point 3 108 60 384
Obs. point 4 144 60 384
Obs. point 5 180 60 384
Obs. point 6 216 60 384
Obs. point 7 264 60 384
Obs. point 8 300 60 384

Table 2: Comparison of relative error
(TCOVFEM: proposed method; VFEM:
explicit standard voxel FEM).

ds (mm) dt (s) Err

TCOVFEM 2.000 5.0× 10−8 0.03947
VFEM 2.000 5.0× 10−8 0.28057
VFEM 1.500 2.5× 10−8 0.09579
VFEM 1.333 2.5× 10−8 0.05743
VFEM 1.200 2.5× 10−8 0.03602
VFEM 1.091 2.5× 10−8 0.02343
VFEM 1.000 2.5× 10−8 0.01570
VFEM 0.500 1.25× 10−8 0.00104

Table 3: Comparison of computed values for one component of Ku computed
for a random vector u on OVFEM with ds = 2 mm. Values in bold letters are
identical to the FP128 computation results.

Computation type Fraction bits Value
FP128 112 507813.690592559616827867910192902549
FP64 52 507813.6905925632
FP32 23 507814.750

INT8 (M = 4) 28 507813.7802133318
INT8 (M = 8) 56 507813.6905925595

an 8-bit integer is 7 bits, the INT8 Tensor Core calculation is equivalent to 28
fraction bits for N = 4 stages and 56 fraction bits for M = 8 stages. Thus, it is
expected that accuracy equivalent to that of FP32 can be obtained with M = 4
stages and higher than that of FP64 with M = 8 stages in the INT8 calculation.
The results shown in Table 3 demonstrate that the accuracy of the INT8 oper-
ation increases with the number of stages, and that the INT8 operations with
M = 8 stages are equivalent to or higher than that of FP64. In addition, the
INT8 operations with M = 4 stages are equivalent to that of FP32. Thus, we
use M = 8 stages in the proposed TCOVFEM throughout the rest of this paper.

Finally, we compare the elapsed time for the entire time series analysis and
the matrix-vector product kernel (Table 4). In the following, we refer to Kuit in

uit+1 ⇐ 2uit − uit−1 + dt2M−1(Fit +Kuit), (19)

which is obtained by transforming Eq. (3), as the matrix-vector product kernel,
and the rest as other computations. We first compare the proposed TCOVFEM
with M = 8 stages (TCOVFEM INT8 (M = 8)) with OVFEM without Tensor
Cores (OVFEM FP64), which computes Eq. (9) as is with FP64 variables on
the ds = 2 mm model. In the model with ds = 2 mm, the other computations
took 4.62 s. By excluding this, we can evaluate the improved calculation time of
the matrix-vector product operation when using the Tensor Cores. The matrix-
vector product calculation was 43.3/9.62 = 4.5-fold faster using the Tensor Cores,

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63759-9_31

https://dx.doi.org/10.1007/978-3-031-63759-9_31
https://dx.doi.org/10.1007/978-3-031-63759-9_31


TC-based OVFEM for Explicit Elastic Wave Propagation Analysis 13

Fig. 6: Differences in time history displacement response at observation point
1 when compared with the reference solution (y- and z-directions with dt =
5× 10−8 s).

which corresponds to 64.4 TOPS in computational performance. In contrast, the
OVFEM matrix-vector product calculation using FP32 (without Tensor Cores),
which had lower accuracy (Table 3), took 15.5 s. Thus, the proposed TCOVFEM,
which demonstrates computational accuracy that is equivalent to that of FP64
computations, is 1.6 times faster than the FP32 implementation. This improved
calculation time for the matrix-vector product resulted in a 48.3/14.2 = 3.39-
fold speedup of the overall time history simulation compared to the FP64-based
OVFEM without Tensor Cores. We also compared the proposed method with
the conventional VFEM. Note that VFEM uses the element-by-element (EBE)
method in the explicit time integration code, which calculates the matrix-vector
product in an element-by-element manner without keeping the entire stiffness
matrix in memory (all calculations are performed in FP64). Here, the VFEM
EBE (8-point integration) implementation in the paper [11], which achieves high
computational performance as a regular EBE-based VFEM, was used for com-
parison. As shown in Table 2, elements with ds = 1.2 mm are required for the
VFEM to obtain accuracy that is equivalent to that of the proposed TCOVFEM
with ds = 2 mm sized elements. Consequently, since the number of elements is

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63759-9_31

https://dx.doi.org/10.1007/978-3-031-63759-9_31


https://dx.doi.org/10.1007/978-3-031-63759-9_31


https://dx.doi.org/10.1007/978-3-031-63759-9_31

