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Abstract. The paper proposes coupling Parametric Integral Equation System 

(PIES) and Physics-Informed Neural Network (PINN) for solving two-dimensio-

nal potential boundary value problems defined by the Laplace equation. As a re-

sult, the computational domain can be decomposed into subdomains, where so-

lutions are obtained independently using PIES and PINN while simultaneously 

satisfying interface connection conditions. The efficacy of this approach is vali-

dated through a numerical example. 
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1 Introduction 

In recent years, the field of machine learning has attracted considerable attention within 

the scientific community, also due to its ability to solve problems formulated by partial 

differential equations (PDEs). Notably, the application of Physics-Informed Neural Ne-

tworks (PINN) [1] has proven to be successful in addressing both forward and inverse 

problems [2]. PINN transforms a boundary value problem defined by PDE into an opti-

mization problem, where the objective function can be directly defined by the PDE 

through automatic differentiation. The exponential increase in recent publications and 

the diverse range of applications position PINN as a viable alternative to established 

computational methods such as FEM, FDM, and meshless methods. While PINN shows 

promising potential, it faces several challenges, including the computational overhead 

linked with training neural networks, scalability concerns for complex geometries and 

the tendency of networks to learn functions with higher variability at a slower pace than 

those with simpler distributions. Enhancing the efficiency of PINN can be achieved by 

decomposing the computational domain into subdomains and employing a distinct neu-

ral network in each. Different PINN variants, such as cPINN [3], xPINN [4] as well as 

[5], have been introduced using this approach. Moreover, the possibility of accelerating 

computations through the utilization of multiple graphics processing units for network 

training in subdomains has been demonstrated [6]. 
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This paper proposes coupling PINN with Parametric Integral Equation System 

(PIES) for solving two-dimensional boundary value problems. PIES enables a mathe-

matical reduction of the dimension of the given boundary value problem by one. Con-

sequently, the process of obtaining solutions within the computational domain relies on 

analyzing the solution of the problem at its boundary. In the proposed approach, the 

computational domain is decomposed into subdomains, where solutions are indepen-

dently obtained using PIES and PINN while simultaneously satisfying compatibility 

conditions at the interfaces of these subdomains. This approach is facilitated by the fact 

that PIES does not require discretization of the domain, as is the case with the FEM, or 

just the boundary, as in the BEM. The boundary between PIES and PINN subdomains 

can be depicted using parametric curves, while the Chebyshev series can approximate 

the field and flux density functions 

The proposed hybrid approach combines the advantages of domain-based methods, 

such as PINN, with methods based on the analysis of solutions at the boundary, such as 

PIES. PINN solves for unknowns within the domain, whereas PIES only deals with 

unknowns at the boundaries. Moreover, PIES is efficient and relatively straightforward 

to use in treating bounded or unbounded domains with linear material behavior. On the 

other hand, PINN is better suited for domains with inhomogeneities and nonlinearities. 

The experimental section provides a preliminary accuracy analysis of the proposed 

approach using a two-dimensional linear potential problem defined by Laplace's equa-

tion. To the best of the authors' knowledge, this represents the first known attempt to 

integrate PINN with existing computational methods for solving PDEs. 

2 Problem statement 

We consider a boundary value problem defined in the domain 𝛺 bounded by the boun-

dary 𝛤. As shown in Figure 1, this domain can be partitioned into subdomains: 𝛺𝐴 

where the solution is obtained using PINN and 𝛺𝐵, where the solution is determined 

using PIES. 

 
Fig. 1. Declaration of the subdomain 𝛺𝐴 in PINN, the boundary of the subdomain 𝛺𝐵 in PIES, 

with the normal vectors 𝒏𝐼𝐴 and 𝒏𝐼𝐵 to the boundary at the interface of the subdomains. 

In this section, we present a concise overview of these methods and their integration at 

the subdomain interface. The practical aspects of the presented approach are illustrated 

through the analysis of a stationary temperature field problem, mathematically descri-

bed by the Laplace equation. 
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2.1 Parametric Integral Equation System  

Parametric Integral Equation Systems (PIES) is a computational method designed for 

solving boundary value problems. It eliminates the need for discretization of both the 

domain and boundary into elements. The PIES formulation for the 2D problem consi-

dered in this work, described by Laplace's equation, is as follows [7]: 

 0.5𝑢𝑙(𝑠̅) = ∑ ∫ {𝑈𝑙𝑗
∗ (𝑠̅, 𝑠)𝑝𝑗(𝑠) − 𝑃̅𝑙𝑗

∗ (𝑠̅, 𝑠)𝑢𝑗(𝑠)} 𝐽𝑗(𝑠)𝑑𝑠,
𝑠𝑗

𝑠𝑗−1

𝑛
𝑗=1  (1) 

 𝑙 = 1,2, … , 𝑛, 𝑠𝑙−1 ≤ 𝑠̅ ≤ 𝑠𝑙 , 𝑠𝑗−1 ≤ 𝑠 ≤ 𝑠𝑗 . 

As depicted in Figure 1, to obtain solutions, it is necessary to specify solely the boun-

dary of the domain 𝛺, whose shape is analytically embedded in the subintegral func-

tions 𝑈𝑙𝑗
∗ (𝑠̅, 𝑠) and 𝑃̅𝑙𝑗

∗ (𝑠̅, 𝑠) defined as follows: 

 𝑈𝑙𝑗
∗ (𝑠̅, 𝑠) = 𝑙𝑛

1

(𝜂1
2+𝜂2

2)
0.5 , 𝑃̅𝑙𝑗

∗ (𝑠̅, 𝑠) =
𝜂1𝑛𝑗

(1)
(𝑠)+𝜂2𝑛𝑗

(2)
(𝑠)

𝜂1
2+𝜂2

2 , (2a,b) 

 𝜂1 = 𝛤𝑙
(1)(𝑠̅) − 𝛤𝑗

(1)(𝑠), 𝜂2 = 𝛤𝑙
(2)(𝑠̅) − 𝛤𝑗

(2)(𝑠), (3) 

where 𝛤𝑙
(1)

 𝛤𝑙
(2)

 are components of Bézier curves that we use to define the boundary, 

𝑛𝑗
(1)

, 𝑛𝑗
(2)

 denote the the normals to the boundary. Solving the boundary value problem 

in PIES entails determining the field and flux distribution on the boundary, expressed 

in formula (1) through functions 𝑢𝑗(𝑠) and 𝑝𝑗(𝑠) defined on the 𝑗-th Bézier curve. Ba-

sed on these functions in the second stage of the analysis, the solution can be derived 

at any point within the domian. The methodology for obtaining the solution to the bo-

undary value problem in PIES, both on the boundary and within the domain have been 

presented in several earlier works, including [7]. In this study, 𝑢𝑗(𝑠) and 𝑝𝑗(𝑠) are de-

fined through Chebyshev series in the following manner: 

 𝑢𝑗(𝑠) = ∑ 𝑢𝑗
(𝑘)

𝑇𝑗
(𝑘)(𝑠)𝐾−1

𝑘=0 , 𝑝𝑗(𝑠) = ∑ 𝑝𝑗
(𝑘)

𝑇𝑗
(𝑘)(𝑠)𝐾−1

𝑘=0 , (4a,b) 

where 𝑢𝑗
(𝑘)

, 𝑝𝑗
(𝑘)

 are the coefficients of the series associated with the basis functions 

𝑇𝑗
(𝑘)(𝑠), representing Chebyshev polynomials of the first kind, and 𝐾 is the number of 

terms in these series. The functions (4a,b) will be used to integrate with PINN, as de-

scribed in section 2.3. 

2.2 Physics-Informed Neural Network 

PINN is a machine learning technique that utilizes neural networks to obtain approxi-

mate solutions to PDEs. The fundamental idea of PINN is to determine the parameters 

of the neural network, denoted as 𝜭, in such a way that it can approximate the solution 

𝑢(𝒙) = 𝒩(𝒙; 𝜭), satisfying the given PDE for points 𝒙 ∈ 𝛺 and the prescribed boun-

dary conditions for points 𝒙 ∈ 𝛤. This can be expressed as [1]: 

 𝑫[𝑢(𝒙)] = 𝑓(𝒙), 𝒙 ∈ 𝛺,     𝑩[𝑢(𝒙)] = 𝑔(𝒙), 𝑥 ∈ 𝛤, (5a,b) 
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where 𝑫[∙] is the differential operator acting on the function 𝑢(𝒙), and 𝑩[∙] is the bo-

undary operator. The terms 𝑓(𝒙) and 𝑔(𝒙) specify forcing and boundary conditions, 

respectively. In the context of the Laplace's equation examined in this study, the ope-

rators take the following form: 𝑫[∙] =
𝜕2

𝜕2𝒙
, 𝑩[∙] =

𝜕

𝜕𝒙
, with 𝑓(𝒙) being set to zero. Fin-

ding neural network parameters 𝜭 requires minimizing the loss functions linked to the 

partial differential equation and boundary conditions, formulated as:  

𝓛 = 𝓛𝑃𝐷𝐸 + 𝓛𝐵𝐶  

 =
1

𝑁𝑃𝐷𝐸
∑ |𝑫[𝒩(𝒙𝑖; 𝜭)] − 𝑓(𝒙𝑖)|2𝑁𝑃𝐷𝐸

𝑖=1 +
1

𝑁𝐵𝐶
∑ |𝑩[𝒩(𝒙𝑖; 𝜭)] − 𝑔(𝒙𝑖)|2𝑁𝐵𝐶

𝑖=1 . (6) 

In practical implementation, this is achieved through the iterative training of the ne-

twork using a set of 𝑁𝑃𝐷𝐸 points within the domain and 𝑁𝐵𝐶  on the boundary of the 

problem, also referred to as collocation points. 

2.3 Coupling PIES and PINN 

To couple PIES and PINN, it is necessary to take into account compatibility conditions 

at the interface of the Γ𝐼𝐴 and Γ𝐼𝐵 subdomains, as illustrated in Figure 1. These condi-

tions can be formulated as follows: 

 𝑢(𝒙)|Γ𝐼𝐴
= 𝑢(𝒙)|Γ𝐼𝐵

, ∇𝑢(𝒙)|Γ𝐼𝐴
𝒏𝐼𝐴 = −∇𝑢(𝒙)|Γ𝐼𝐵

𝒏𝐼𝐵, (7a,b) 

where 𝒏𝐼𝐴 and 𝒏𝐼𝐵 are normal vectors to the boundary at the interface. It is worth noting 

the distinct representation and obtaining of 𝑢(𝒙) and ∇𝑢(𝒙) for PIES and PINN. In the 

case of PIES, they are defined as 𝑢(𝒙)|Γ𝐼𝐵
= 𝑢𝑗=𝐼𝐵(𝑠) and ∇𝑢(𝒙)|Γ𝐼𝐵

𝒏𝐼𝐵 = 𝑝𝑗=𝐼𝐵(𝑠) 

using Chebyshev series (4a) and (4b), and their values depend on the coefficients 𝑢𝑗=𝐼𝐵
(𝑘)

, 

𝑝𝑗=𝐼𝐵
(𝑘)

, where 𝐼𝐵 is the index of the Bézier curve defining the boundary in PIES at the 

interface with the PINN subdomain. On the other hand, in PINN, an iterative procedure 

is required to determine 𝑢(𝒙)|Γ𝐼𝐴
= 𝒩(𝒙; 𝜭) and ∇𝑢(𝒙)|Γ𝐼𝐴

𝒏𝐼𝐴 = 𝑩[𝒩(𝒙; 𝜭)] for 

𝒙 ∈ Γ𝐼𝐴. As a result, solving the boundary problem in PIES and PINN will be carried 

out through an iterative procedure using a modified form of the objective function com-

pared to (6), given by: 

 𝓛 = 𝓛𝑃𝐷𝐸 + 𝓛𝐵𝐶 + 𝓛𝐼 , (8) 

 𝓛𝐼 =
1

𝑁𝐼
∑ |𝑩[𝒩(𝒙𝑖; 𝜭)] − 𝑝𝑗=𝐼𝐵(𝑠𝑖)|

2𝑁𝐼
𝑖=1 . (9) 

The last term 𝑝𝑗=𝐼𝐵(𝑠𝑖) in formula (9) represents the Chebyshev series (4b) approxima-

ting the value of the flux on the boundary Γ𝐼𝐵, where 𝑠𝑖 denotes the parameter values at 

points corresponding to 𝒙 ∈ Γ𝐼𝐴 on the common interface. To determine the coefficients 

𝑝𝑗=𝐼𝐵
(𝑘)

 of this series, we need to solve PIES, employing the collocation method as de-

scribed in the context of PIES in [7,8]. By expressing formula (1) at collocation points 

identified with 𝑠̅, we obtain a system of algebraic equations that approximate PIES, 

presented in the following matrix formula: 
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 [𝐻] {
𝑝

𝑝𝐼𝐵
} = [𝐺] {

𝑢
𝑢𝐼𝐵

}. (10) 

The generation of the [𝐻] and [𝐺] matrix elements involves calculating the regular and 

singular integrals, with detailed information provided in [8]. In turn, 𝑢 represents the 

set of coefficients of the Chebyshev series in the function 𝑢𝑗(𝑠) (4a) on the outer boun-

dary of the problem, while 𝑢𝐼𝐵 denotes the set of coefficients on the interface Γ𝐼𝐵. Si-

milarly, 𝑝 and 𝑝𝐼𝐵 are sets of coefficients of Chebyshev series approximating the flux 

𝑝𝑗(𝑠) (4b) on the outer boundary and the interface Γ𝐼𝐵, respectively. The coefficients, 

denoted by 𝑢 in (10), are determined using the least squares method for applied boun-

dary conditions specifed on the outer boundary. The coefficients 𝑢𝐼𝐵 are calculated uti-

lizing the same least squares method, but this time relying on the current solution 

𝑢(𝒙)|Γ𝐴
 obtained from the PINN in each iteration. In the following step, we can derive 

𝑝𝐼𝐵 from (10). It should be emphasized that both the matrices [𝐻] and [𝐺], as well as 

𝑢, are determined only once at the beginning of the iterative procedure. The schematic 

of the algorithm cooupling PIES and PINN is presented in Figure 2. 

 
Fig. 2. A schematic diagram illustrating the coupling of PIES and PINN. 

After the iterative procedure, we obtain solutions within both the domain and at the 

boundary in PINN, as well as solutions at the boundary in the case of PIES. The final 

step involves determining the solution within the domain 𝛺𝐵 using the integral identity 

in PIES, as detailed in [9]. 

3 Numerical example 

Below, we present the preliminary studies on the PIES-PINN coupling. We examine a 

two-dimensional boundary value problem defined by Laplace's equation within subdo-

mains 𝛺𝐴 and 𝛺𝐵, as illustrated in Figure 1. The following assumptions are considered: 
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 The square boundary of subdomain 𝛺𝐵 in PIES is defined using 4 first-degree 

Bézier segments determined by 4 corner points 𝑃1, 𝑃2, 𝑃3, 𝑃4, with one of these 

segments used to define the interface Γ𝐼𝐵; 

 In the square subdomain 𝛺𝐴, 100×100 collocation points are uniformly decla-

red, with 100 points on 𝒙 ∈ Γ𝐼𝐴; 

 The functions 𝑢(𝒙)|Γ𝐼𝐵
 and ∇𝑢(𝒙)|Γ𝐼𝐵

𝒏𝐼𝐵 are approximated using the first 5 

terms of the Chebyshev series (4a) and (4b), respectively; 

 The initial analysis presented here utilizes a fully connected neural network 

with 7 hidden layers, each comprising 100 neurons and employing Gaussian 

error linear unit (GELU) activations. Future research is planned to explore 

how different neural network architectures affect calculation accuracy. The 

network takes a two-element vector 𝒙 = {𝑥1, 𝑥2} as the input and produces a 

scalar value 𝑢(𝒙) at the output, representing the approximated pointwise field 

distribution within the domain and on the boundary; 

 Dirichlet boundary conditions are imposed on the outer boundaries of the con-

sidered subdomains for two distinct functions that satisfy Laplace's equation. 

These functions serve as the expected analytical solutions within the problem 

domain: 

 𝑢(𝑥1, 𝑥2) = 𝑥1
2 − 𝑥2

2, (11) 

 𝑢(𝑥1, 𝑥2) = 𝑒𝑥1 cos 𝑥2 + 𝑥1. (12) 

The algorithm is implemented using the PyTorch library. In Figure 3, we present sam-

ple solutions and errors from the PIES-PINN, compared to (11) and (12), after 10000 

iterations in the optimization process controlled by the ADAM optimizer. 
a) b) 

  
  

 

 

 
Fig. 3. PIES-PINN solutions and errors compared to (11) (a) and (12) (b). 
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As shown in Figure 3, the approximation error of PINN reaches the value of 1-3e within 

the subdomain 𝛺𝐴. Meanwhile, the error for PIES is even lower, reaching the value of 

1-5e within the subdomain 𝛺𝐵. It should be noted that the solution in PIES near the 

boundary is inherently subject to an error due to the singular nature of the integral sin-

gularity used for this purpose, known as the boundary layer effect. To eliminate this 

error, the algorithm presented in [9] is applied. 

Furthermore, in Figure 5, plots of the individual components of the loss function (8) 

are depicted for successive iterations. 

a)   b) 

 
Fig. 4. Evolution of losses 𝓛𝑃𝐷𝐸 , 𝓛𝐵𝐶 , 𝓛𝐼 with iterations for (11) (a) and (12) (b). 

We can observe fluctuations in the interface loss 𝓛𝐼 (9) during iterations for both (11) 

and (12) boundary conditions. However, as depicted in Figure 5, the approximated va-

lues of 𝑢(𝒙)|Γ𝐼𝐵
 and ∇𝑢(𝒙)|Γ𝐼𝐵

𝒏𝐼𝐵 at the interface Γ𝐼𝐵 closely match the analytical so-

lutions, which is crucial for the accuracy of coupling PINN and PIES. 
a) b) 

  
Fig. 5. The exact (black solid line) and predicted 𝑢(𝒙)|Γ𝐼𝐵

(red dashed line), ∇𝑢(𝒙)|Γ𝐼𝐵
𝒏𝐼𝐵 (blue 

dashed line) solutions comparison at the interface Γ𝐼𝐵 in PIES for (11) (a) and (12) (b). 

Here, 𝑢(𝒙)|Γ𝐼𝐵
 and ∇𝑢(𝒙)|Γ𝐼𝐵

𝒏𝐼𝐵 are approximated using the first 5 terms of the Che-

byshev series. To enhance the accuracy of this approximation, we can increase the num-

ber of terms 𝐾 in (4a,b). This is the subject of further research. 

4 Conclusions 

The paper proposes the coupling PIES and PINN to solve two-dimensional boundary 

value problems, using Laplace's equation as an example. This is advantageous because 

in PIES, it is only necessary to define the boundary of the domain, while concurrently 
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separating the representation of such a shape into Bézier curves from the approximation 

of solutions on the boundary in the form of Chebyshev series. In the upcoming research 

stage, we aim to assess the proposed initial concept with more complex shapes consi-

sting of numerous sub-domains. Additionally, there are plans to broaden the concept to 

address other problems modeled by different PDEs, such as the Navier-Lamé equation. 

Additionally, there are intentions to apply higher-degree Bézier curves to describe do-

mains with curved boundary shapes. 
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