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Abstract. We address the research gap in evaluating the effectiveness
of network seeding strategies in maximizing the spread of beliefs within
non-progressive competing complex contagions. Our study focuses on
management perspective of devising promotional campaigns for sustain-
able and health behaviors. We conduct an extensive computational anal-
ysis on two empirical datasets, comparing four established strategies in
two different scenarios. Our results show that it is possible to achieve
widespread adoption of beliefs, even under very limited network infor-
mation. However, this success requires a strategic approach that includes
additional efforts to prevent the targeted influencers from abandoning
these attitudes in the future.
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1 Introduction

In 2021 the International Energy Agency published the world’s first compre-
hensive report studying how to achieve net-zero carbon dioxide emissions. Net
Zero by 2050 highlights behavioral change as a crucial factor in decarboniza-
tion. This raises a question of what factors can drive the collective adoption of
sustainable behaviors and how to facilitate it. Kowalska-Pyzalska [7] notes that
environmental behaviors are strongly connected to, i.a., environmental beliefs,
norms and social influence. Similarly, social norms among close ties has been
identified as strong predictors of vaccine intentions [11]. In view of this, our at-
tention centers on harnessing the power of social contagion, with particular focus
on belief spreading. Within the joint realms of complex systems, network science
and social simulation, considerable attention has been focused on network seed-
ing strategies – methods for optimal selection of early adopters that maximizes
the spread of their influence. From the perspective of promotional campaigns,
seeding strategies attempt to answer the question of who to target with the cam-
paign to maximize its outreach potential. For example, one-hop strategy, which
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exploits the friendship paradox to find seed candidates, was shown to yield higher
product adoption and health knowledge dissemination than targeting highly con-
nected individuals [6]. Recently, in the face of empirical findings suggesting that
social spreading is not a simple, but a complex contagion, i.e. it requires the
influence of a group rather than a single individual, Guilbeault and Centola [4]
introduced a new measure for identifying central nodes and shown its efficiency
in maximizing influence across various progressive models. However, progressive
models do not allow the individuals to revert to their previous states. While
this limitation is justified in many cases, our beliefs and behaviors can be highly
variable, and efforts to promote socially responsible attitudes are vulnerable to
being undermined by uncertainty and competition between conflicting views.
The need for influence maximization under reversible opinions has already been
addressed for simple competing contagions within the voter model [3, 12]. Yet
despite the great interest in spreading processes based on complex contagion,
there is little to no research devoted to evaluating the effectiveness of network
seeding strategies in the non-progressive case of competitive complex contagions
[14]. In order to address this gap we perform a simulation study on two empirical
social networks, providing a comparison of selected seeding strategies in facilitat-
ing collective change of beliefs within such a framework. The code is open-source
and available on GitHub: github.com/lipiecki/qvoter-seeding.

2 Methods

Model. To model the non-progressive competing complex contagions we imple-
ment the q-Voter Model (qVM) [2] with n agents placed in nodes of a social
network, where neighborhood N(i) of node i corresponds to the set of ki nodes
directly linked to i. The qVM is a generalization of the voter model, in which
an agent can change its state only when influenced by a unanimous group of
q randomly selected neighbors. In our model each agent can be in one of two
states: adopter or rejecter. We use the term adopter to refer to an agent in the
state that we aim to promote, and rejecter for an agent in the opposite state. A
single elementary update of the model consists of the following steps:

1. Choose a random agent i.
2. Form the q-panel – choose at random q neighbors of i.
3. If all agents in the q-panel are adopters – i becomes an adopter.

Otherwise, if all agents in the q-panel are rejecters – i becomes a rejecter.

The general model of competing complex contagion studied in [14] corresponds
to the qVM in which the q-panel is drawn with replacement. However, drawing
with replacement allows an agent to change its state under the influence of less
than q neighbors due to multiple selections of the same neighbor. In order to
ensure that simple contagion dynamics do not affect the results of simulations, we
adopt the approach of drawing without replacement. Additionally, we examine
two settings of the model with respect to seed behavior: flexible seeds, which
undergo an updating procedure and differ from non-seeds solely in their initial
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state, and inflexible seeds (zealots) [12], which are indefinitely fixed as adopters
and do not change their state.

Seeding Strategies. To provide a concise but comprehensive picture of how
susceptible the qVM is to various seeding methods, we have selected four distinct
strategies, differing in computational complexity and information requirement.
We will refer to the number of nodes that are seeded within a given experiment
as the seeding budget.

High Degree (HD) – seeding nodes with the highest degree, which is one of
the most straightforward node centrality measures. The number of direct neigh-
bors is a simple proxy of node’s importance and does not require full information
of the network structure. Seeding high degree nodes was shown to be an optimal
strategy for the simple voter model [3].

PageRank (PR) – seeding nodes with the highest PageRank centrality,
which was initially introduced for identifying the most important web pages.
Since then PageRank has gained an incredible amount of attention, also in the
context of social influence. It is a promising candidate for evaluating the impor-
tance of nodes in the qVM. To understand why, consider the influence probability
Pij , i.e. the probability that node i selects j ∈ N(i) as part of the q-panel during
an elementary update. Since q sources are drawn, Pij = q/ki. Notice that P/q
is a stochastic matrix of the random walk on the same network. PageRank cen-
trality measure is closely tied to the stationary probability distribution of such
a random walk.

Complex Centrality (CC) – seeding nodes with the highest complex cen-
trality was proposed as an effective strategy in maximizing the spread of complex
contagions [4]. Complex centrality of a node is defined as an average length of
complex paths extending from that node, where the length of a complex path
between nodes i and j is equal to the shortest path length between them in
the subgraph induced by the spread of progressive complex contagion from the
neighborhood of i to node j [4]. Complex centrality depends on the underlying
dynamics of the contagion through thresholds Ti, corresponding to the number
of adopters in N(i) required to activate i within a progressive complex conta-
gion. Hence, to adapt this method to the non-progressive case, we set Ti for each
individual i as a minimal number of adopters in its neighborhood for which the
probability of gathering a unanimous q-panel of adopters is greater or equal to the
probability of gathering a unanimous q-panel of rejecters: Ti = max{q, ⌈ki/2⌉}.

One-hop – this strategy identifies seed nodes through a simple two-step
process, in which we first select a random set of individuals with size equal to
the seeding budget and then query them to nominate one of their neighbors (in
simulations selected at random) as the seed [10]. If the number of nominated
unique seeds is smaller than the budget, we randomly draw nodes from the ini-
tially selected random set. One-hop strategy works under very limited network
information, as it does not require any prior knowledge about the network struc-
ture, and the number of links discovered during the querying is no greater than
the seeding budget. Moreover, due to simplicity of the process, it can be readily
implemented in field experiments, which is a significant advantage from the per-
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spective of promotional strategies. Finally, it is worth noting that the process
of selecting seeds within the one-hop strategy corresponds to performing single-
step random walks starting from random initial nodes, which relates one-hop to
PR centrality and to the influence probability within the qVM.

Simulations. To evaluate the effectiveness of seeding strategies in maximizing
the spread of beliefs, we perform simulation experiments on two empirical net-
works – Facebook dataset from the Stanford Network Analysis Project (SNAP)
[9] and Facebook dataset of verified pages of politicians (Politicians) [13]. Ac-
cording to the model specification, in the process of updating a state of a node,
its q random neighbors are selected. However, it may occur that the degree of a
node is smaller than q. Then we can either omit such nodes and do not update
their state, or assume a different size of the q-panel, equal to the the degree
of a node. We adopt the latter approach, but this raises another issue. In the
empirical networks we study there exist nodes with degree equal to one, which
means that updating such nodes would correspond to a simple contagion dy-
namics. To avoid this, we conduct preprocessing of the network data to ensure
that every node has at least two neighbors. For each node with a single neighbor
we perform a triad formation step of the Holme-Kim algorithm [5], where we
add a link between the single-neighbor node and one of its randomly selected
next-nearest neighbors. Since this preprocessing introduces randomness to the
networks, we conduct simulations on an ensemble of 102 networks generated this
way. The agent systems are evolved for 105 Monte Carlo steps (each consist-
ing of n elementary updates) or until the absorbing state (full adoption or full
rejection) is reached.

3 Results

Fig. 1. The final fraction of adopters with respect to the fraction of randomly seeded
nodes on the SNAP network within the qVM for q = 1 (blue) and q = 2 (orange).
Colored lines represent the ensemble averages (103 networks), while colored circles mark
the individual simulation outcomes. Left panel shows the results for flexible seeds, and
the right panel – for zealots.
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The first question that ought to be answered in the context of maximizing
influence within the qVM is whether there exists a substantial difference between
the spreading behavior in the case of a simple voter model (q = 1) and the non-
linear qVM with complex contagion (q > 1). Fig. 1. presents the comparison of
the percentage of adopters for varying fraction of random seed nodes for q = 1
and q = 2. In the flexible seeds scenario, the simple voter model always evolves
towards either full adoption or total absence thereof. The probability of adoption
increases linearly with the number of seed nodes. The adoption within the 2VM
is qualitatively different, the average number of adopters follows a sharp S-shape
transition pattern with an inflection point at 50%.

Belief dynamics with zealots highlight that collective change is significantly
more difficult if the voter-like dynamics follow complex contagion. For q = 1
agent systems reach full adoption for any non-zero seeding budget, while for q = 2
it is reached only after exceeding a sufficient fraction of seeds. These results show
evident qualitative differences between the susceptibility to collective change of
the simple voter system and the non-linear qVM, which motivates us to examine
influence maximization strategies within complex contagions, i.e. q > 1.

Table 1. Network statistics (size n, average node degree ⟨k⟩, average clustering coef-
ficient ρ, average shortest path length d) and a minimal seeding budget for which the
ensemble median reached a specified adoption level τ within the 2VM.

Flexible Zealots
Network n ⟨k⟩ δ d τ HD PR CC One-hop HD PR CC One-hop

SNAP 4039 43.7 0.62 3.7
80% 40% 25.0% 35.0% 47.5% 17.5% 5.0% 17.5% 10.0%
90% 50.0% 27.5% 37.5% 47.5% 20.0% 7.5% 20.0% 10.0%
95% 50.0% 32.5% 40.0% 50.0% 30.0% 15.0% 27.5% 12.5%

Politicians 5908 14.3 0.49 4.6
80% 25.0% 20.0% 27.5% 37.5% 7.5% 5.0% 10.0% 5.0%
90% 47.5% 25.0% 47.5% 42.5% 10.0% 7.5% 15.0% 7.5%
95% 67.5% 35.0% 67.5% 47.5% 60.0% 20.0% 60.0% 10.0%

We therefore proceed to analyze the seeding experiments for q = 2. Statistics
of the network ensemble and the seeding budgets required for reaching specified
adoption levels are presented in Table 1, while the entire adoption curves are
shown in Fig. 2. Firstly, in the setting of flexible seeds, the strategy based on PR
can be considered as the most efficient among the examined contenders. It signif-
icantly outperforms one-hop, and although HD and CC lead to higher fractions
of adopters for low seeding budgets, they are more costly than PR in reaching
the adoption levels close to 50% and higher (see left panels of Fig. 2.). However,
simulations with zealots paint a different picture, with a surprising performance
of the one-hop strategy. While PR is the most efficient at reaching 80% and 90%
adoption levels (see Table 1.) and leads to highest adoption at small fractions
of seed nodes (see right panels of Fig. 2.), one-hop strategy outperforms PR in
achieving nearly full adoption. For zealots, seeding with HD and CC performs
rather poorly when we aim for widespread adoption, requiring c.a. twice larger
budgets to reach target levels of 80% and above in the SNAP network, and up to
six times larger budget to reach 95% adoption in the Politicians network. More-
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over, one-hop is the only strategy that is consistently, i.e. across all fractions of
seed nodes, no worse that random seeding in the case of zealots. One possible
explanation for this result is the fact that random and one-hop strategies seed
nodes in various parts of the network, while highly central nodes can cluster at
the core of the network, thus leading to higher difficulty in affecting network’s
periphery. In general, given the same seeding budget, adoption levels are signif-
icantly higher when seed nodes behave as zealots, which is to be expected given
that they serve as constant sources of pro-adoption influence.

Fig. 2. The final fraction of adopters with respect to the fraction of seed nodes for
selected seeding strategies within the 2VM. Empty colored circles correspond to en-
semble averages (102 networks), while full colored markers correspond to individual
simulation outcomes. Grey lines correspond to ensemble averages for random seeding.
Top panels correspond to simulations on the SNAP network, while bottom panels – on
the Politicians network. Left panel shows the results for flexible seeds, and the right
panel – for zealots.

Finally, let us examine how the susceptibility of the social network to collec-
tive adoption varies for different sizes of influence group. Since the size of the
q-panel affects the spreading of both adoption and rejection, it is difficult to form
expectations of how it affects the efficiency of seeding strategies. Fig. 3 shows the
comparison between the efficiency of selected strategies in seeding the Facebook
SNAP network for q = 2, 3 and 4. For zealot seeds, all the adoption curves are
visibly shifted to the right, which means that the network is less susceptible to
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seeding by all considered strategies. However, the main conclusion holds across
the examined q values – PR performs best for small seeding budgets, but one-
hop is most efficient in reaching nearly full adoption. Notably, in contrast to
one-hop, final fraction of adopters resulting from PR and CC saturates below
100%, with the saturation level decreasing with q. Similar behavior is observed in
the scenario with flexible seeds, with an exception of one-hop strategy exhibiting
a strong resilience against increasing the complexity of the contagion processes.
The adoption curves obtained from one-hop are not affected by the value of q.

Fig. 3. Comparison of the final fraction of adopters with respect to the fraction of seed
nodes on the SNAP network for selected seeding strategies within the qVM for q = 2, 3
and 4. Values presented on the plots are ensemble averages (102 networks). Left panel
shows the results for flexible seeds, and the right panel – for zealots.

4 Discussion

In the face of current problems that require widespread collective action, such
as reaching herd immunity or climate change mitigation, computational social
science can provide valuable insights to support strategic promotion of environ-
mental and health behaviors [7, 8]. Therefore, in this study we addressed the
research gap in evaluating the effectiveness of network seeding strategies within
the framework of competitive complex contagions, which accounts for both group
influence and variability in opinions. Notably, many problems remain for future
research. For example, considering the spreading behavior with the presence of
zealots that oppose the promoted attitude [12] or examining the effects of net-
work coevolution on the widespread belief adoption [1] can provide insights on
how to facilitate collective change in the presence of high hesitancy and polar-
ization. From the managerial perspective, an important next step is to evaluate
more sophisticated strategies that work under limited network information [10].

Our results indicate that increasing the complexity of competing contagions
decreases the susceptibility of social networks to seeding strategies. Yet influence
maximization methods that do not account for contagion complexity emerged
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as promising solutions. PageRank centrality outperformed all other strategies
in reaching adoption majority in the setting of flexible seeds. In the scenario of
pro-adoption zealots, PageRank was most effective for small seeding budgets,
but one-hop turned out as the best strategy for achieving nearly full adop-
tion. Since one-hop requires very little information about the network and can
be implemented by conducting a single round of surveys, our findings suggest
that facilitating collective adoption of beliefs and behaviors through social influ-
ence is achievable in real-life scenarios. Moreover, zealot seeds required drasti-
cally smaller budgets than flexible ones. Therefore, the key recommendation for
decision-makers managing promotional campaigns is that dedicating resources
for maintaining consistency in the attitudes of targeted influencers can be more
beneficial than acquiring additional network information.
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