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Abstract. When solving numerically partial differential equations such
as the Navier-Stokes equations, higher-order finite difference schemes are
occasionally applied for spacial descretization. Compact finite difference
schemes are one of the finite difference schemes and can be used to com-
pute the first-order derivative values with smaller number of stencil grid
points, however, a linear system of equations with a tridiagonal or pen-
tadiagonal matrix derived from the schemes have to be solved. In this
paper, an asymptotic parallel solver for a reduce matrix, that obtained
from the Mattor’s method in a computation of the first-order deriva-
tives with an eighth-order compact difference scheme under a periodic
boundary condition, is proposed. The asymptotic solver can be applied
as long as the number of grid points of each Cartesian coordinate in
the parallelized subdomain is 64 or more, and its computational cost is
lower than that of the Mattor’s method. A direct numerical simulation
code has also been developed using the two solvers for compressible tur-
bulent flows under isothermal conditions, and optimized on the vector
supercomputer SX-Aurora TSUBASA. The optimized code is 1.7 times
faster than the original one for a DNS with 20483 grid points and the
asymptotic solver achieves approximately a 4-fold speedup compared to
the Mattor’s solver. The code exhibits excellent weak scalability.

Keywords: Asymptotic parallel linear solver · Eighth-order compact
difference scheme · Direct numerical simulation · Finite difference method
· Vector system · SX-Aurora TSUBASA
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1 Introduction

Turbulence is a core physical phenomenon in various natural phenomena and
problems in science and technology, and it is important to understand and elu-
cidate its universal nature. However, the Navier-Stokes equations, which are the
governing equations for fluid flows, are known to be highly nonlinear and difficult
to solve analytically. Therefore, it is effective to study turbulent flows by numeri-
cal simulations using supercomputers. Among numerical simulations of turbulent
flows, a direct numerical simulation (DNS) is widely used for clarifying the uni-
versal properties of turbulence because it solves the governing equations directly
without modeling and resolves eddy motions at the smallest scale[2].

Large-scale DNSs for incompressible turbulence using a Fourier spectral method
with up to 122883 grid points have been performed to study the statistical prop-
erties in the inertial subrange of turbulence at the Taylor-microscale Reynolds
number up to 2300 [3]. For compressible turbulence, on the other hand, such
large-scale DNSs have not yet been performed, and the statistical properties in
the inertial subrange of compressible turbulence at high Reynolds numbers have
not yet been fully studied. Recently, to the best of our knowledge, the largest
DNSs for compressible isothermal turbulence using finite difference methods up
to 40963 grid points have been performed[8]. However, the Reynolds numbers
achieved by these DNSs are not high enough to study inertial subrange prop-
erties. To obtain high-resolution results in DNSs for compressible turbulence
using finite difference methods requires a large number of grid points and a
large amount of computational resources[8]. Compact finite difference schemes
are often used to discretize the convection terms in the Navier-Stokes equations.
Though a high resolution solutions can be obtained compared to usual finite
difference schemes, linear systems have to be solved. Therefore, it is necessary to
develop a fast solver of the systems and a parallel DNS code using the solvers.

In parallel computations, a computation domain is divided into several sub-
domains, calculations of which are assigned to parallel tasks and executed. In this
case, the number of parallel tasks and the method of dividing the computational
domain, which can change the amount of computation and communication in
each task, must be chosen appropriately to obtain results fast. In general, when
a sufficiently large number of grid points is taken so as to calculate the flow
fields precisely, a three-dimensional domain decomposition (cuboid decompo-
sition) can increase the amount of parallelism compared to a two-dimensional
domain decomposition (pencil decomposition), and large-scale computation with
massively parallel supercomputers is expected.

In this paper, we propose an asymptotic parallel linear solver for the linear
system of equations obtained when first-order derivatives in space is discretized
by an eighth-order compact difference method. The solver is then used to de-
velop a finite difference DNS code of three-dimensional homogeneous isotropic
compressible isothermal turbulence in a box with a periodic boundary condition.
The code is parallelized by the cuboid decomposition to increase the number of
parallel tasks. The code is optimized and its performance is evaluated on the
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supercomputer SX-Aurora TSUBASA installed at Cyberscience Center, Tohoku
University.

The remainder of this paper is organized as follows. Section 2 outlines a di-
rect numerical simulation code for compressible turbulent flows under isothermal
conditions. Section 3 describes parallel solutions of the linear systems of equa-
tions obtained by applying an eighth-order compact scheme to the first-order
derivative calculations. Section 4 gives optimization and performance evaluation
results of the code on SX-Aurora TSUBASA. Section 5 concludes the paper.

2 Direct Numerical Simulation Code

We consider the three-dimensional compressible turbulent flows with isothermal
conditions in a cube with a side length of 2π subject to periodic boundary
conditions that obey the following equations;

∂ρ

∂t
+∇ · (ρu) = 0, (1)

∂(ρu)

∂t
+∇ · (ρuu+ pI) = ∇ · τ + F , (2)

p = ρc2, (3)

where t is the time, ρ the density, u the velocity, p the pressure, τ the viscous
stress tensor, and c the speed of sound. F is the forcing terms to maintain the
flows in statistically quasi-steady states. I is the identity matrix.

Here, Equations (1) and (2) are discretized at gird points that equally di-
vide the computational region (the cube), those are (xi, yj , zk) = (i∆, j∆, k∆)
(0 ≤ i, j, k ≤ N) and ∆ = 2π/N , where N is the number of division in each
Cartesian coordinate. Then, N3 ordinary differential equations with respect to
ρi,j,k and (ρu)i,j,k are obtained, where ρi,j,k = ρ(xi, yj , zk) and (ρu)i,j,k =
ρ(xi, yj , zk)u(xi, yj , zk). In disretizing the equations in space, an eighth-order
compact difference scheme (CD8)[5] for the convection terms and an eighth-
order central finite difference scheme (FD8) for the viscous terms are used. This
is because the amount of contribution from the viscous terms is small for high
Reynolds number flows, and a higher precision scheme is not necessary for the
viscous terms. Describing a physical value f(x, y, z) and the first-order partial

derivative in the x-direction ∂f(x,y,z)
∂x at the point (xi, yj , zk) by fi,j,k and f ′i,j,k,

respectively, the CD8 and FD8 schemes are written as follows,

αf ′i−1,j,k + f ′i,j,k + αf ′i+1,j,k =

a
fi+1,j,k − fi−1,j,k

2∆
+ b

fi+2,j,k − fi−2,j,k
4∆

+ c
fi+3,j,k − fi−3,j,k

6∆
,

α =
3

8
, a =

25

16
, b =

1

5
, and c = − 1

80
, (4)
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and

f ′i,j,k = a
fi+1,j,k − fi−1,j,k

∆
+ b

fi+2,j,k − fi−2,j,k
∆

+ c
fi+3,j,k − fi−3,j,k

∆
+ d

fi+4,j,k − fi−4,j,k
∆

,

a =
4

5
, b = −1

5
, c =

4

105
, and d = − 1

280
. (5)

The first-order partial derivative in each y- and z- direction is also written by
the similar formula. To maintain a statistically quasi-steady state of turbulence,
the same forcing terms as Petersen and Livescu [7] are incorporated. That is, the
Fourier coefficients of the external force F is not zero only at low wavenumbers
|k| =

√
k21 + k22 + k23 < 3, where k1, k2, and k3 are wavenumbers corresponding

to each direction of the Cartesian coordinates. Since the number of non-zero
Fourier coefficients is at most 100 out of N3, not fast Fourier transforms but
discrete Fourier transforms (DFT) are used to calculate them to decrease com-
putational costs.

Start

Initialization

TVDRK 1st stage
(ρ, ρu)∗ ← (ρ, ρu) + ∆t RHS((ρ, ρu))

TVDRK 2nd stage
(ρ, ρu)∗ ← 3

4 (ρ, ρu) +
1
4 (ρ, ρu)∗ + 1

4∆t RHS((ρ, ρu)∗)

TVDRK 3rd stage
(ρ, ρu) ← 1

3 (ρ, ρu) +
2
3 (ρ, ρu)∗ + 2

3∆t RHS((ρ, ρu)∗)

Low-pass filter

t < tend

End

t ← t + ∆t

RHS( (ρ, ρu) )

Exchange HALO ((ρ, ρu))

Calculation of viscous
stress tensor τ

Exchange HALO( τ )

Calculation
of convective

terms in Eq. (2)

Calculation of viscous
terms in Eq. (2)

Calculation of forcing
terms in Eq. (2)

Return

Fig. 1: DNS Code Flow

The third-order total variation diminishing Runge-Kutta (TVDRK) scheme[1]
with a constant time step is used for a temporal integration of the equations of
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ρi,j,k and (ρu)i,j,k over time. Additionally, an eighth-order low-pass filter scheme
is applied to remove unphysical numerical oscillations at high wavenumbers. The
code flow is illustrated in Fig. 1.

A uniform grid of dimensions N ×N ×N discretizing the cube is partitioned
into some sets of grid points using a standard cuboid decomposition and those are
assigned to parallel tasks with layout npx×npy×npz. The number of grid points
in a subregion assigned to a task is (N/npx)× (N/npy)× (N/npz). Halo regions
are added around each subregion to perform the CD8 and FD8 calculations
within a task. The number of grids of halo regions that are extended outward
in the direction of each coordinate of the calculation region is 4 so that the
computation of FD8 is possible. Physical values at the grid points in the halo
regions between adjacent tasks are exchanged in the procedure Exchange HALO

in the code flow, and then the CD8 and FD8 values can be calculated using Eqs.
(4) and (5) independent of other tasks. To calculate the viscous terms in Eq.
(2), each element of the viscous stress tensor τ is first calculated using the FD8,
and then the derivative of each element is computed by the FD8 again.

3 Calculation of the System Obtained by the
Eighth-order Compact Scheme

3.1 Linear System Obtained by the Eighth-order Compact Scheme

We consider here a solution for N ×N linear systems of equations to calculate
the first partial derivatives in the x-direction written as a matrix-vector form of
Eq. (4) below:



1 α · · · α
α 1 α

α 1 α
...

. . .
. . .

. . .
... α 1 α
α · · · · · · α 1





f ′1,j,k
f ′2,j,k
...
...

f ′N−1,j,k
f ′N,j,k


=



∆xf1,j,k
∆xf2,j,k

...

...
∆xfN−1,j,k
∆xfN,j,k


(1 ≤ j, k ≤ N), (6)

where

∆xfi,j,k = a
fi+1,j,k − fi−1,j,k

2∆
+ b

fi+2,j,k − fi−2,j,k
4∆

+ c
fi+3,j,k − fi−3,j,k

6∆
.

The matrix is a slightly perturbed form of the tridiagonal matrix with α added to
the upper-right and lower-left elements due to the periodic boundary conditions.
Similar linear systems for each y- and z-direction are obtained.
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3.2 Parallel Solution by the Mattor Method

To simplify the computational procedure, we denote the linear system as Ax = b
as follows,

A =



1 α · · · α

α 1 α
...

α 1 α
...

. . .
. . .

. . .
... α 1 α
α · · · · · · α 1


∈ RN×N ,x =



x1

x2

...

...
xN−1
xN


∈ RN , b =



b1
b2
...
...

bN−1
bN


∈ RN .

(7)

Consider the system Ax = b is solved by P parallel tasks, where N = MP
and M is the number of grid points to be solved in a task. The parallel solver
of a tridiagonal matrix system proposed by Mattor et al. [6] is applied to the
linear system (7). The matrix is divided into P × P blocks and the vectors are
divided into P subvectors as

AM αeMeT1 · · · αe1e
T
M

αe1e
T
M AM αeMeT1

...

αe1e
T
M AM αeMeT1

...
. . .

. . .
. . .

... αe1e
T
M AM αeMeT1

αeMeT1 · · · · · · αe1e
T
M AM





x1

x2

...

...

...
xP−1
xP


=



b1
b2
...
...
...

bP−1
bP


, (8)

where

AM =



1 α

α 1 α 0
α 1 α

. . .
. . .

. . .

0 α 1 α
α 1


∈ RM×M , e1 =



1
0
...
...
0

 ∈ RM , eM =



0
...
...
0
1

 ∈ RM , (9)

xp and bp ∈ RM (p = 1, · · · , P ).

xT stands for a transpose vector of the vector x. The p-th block system is written
as

αe1e
T
Mxp−1 +AMxp + αeMeT1 xp+1 = bp. (10)
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Following the Mattor method, xp is written by three vectors xR
p , x

U
p and xL

p ,
and two scalars sp and tp as

xp = xR
p − tpx

U
p − spx

L
p (p = 1, · · · , P ), (11)

AMxR
p = bp, AMxU

p =


0
...
0
α

 , and AMxL
p =


α
0
...
0

 . (12)

Note that xU
p = FxL

p with a flip matrix F , i.e. xU
p,j = xL

p,M−j+1(j = 1, · · · ,M),
where xp,j stands for the j-th element of vector xp. By substituting xp in Eq.
(10) by Eq. (11) and considering Eq. (12), 2P equations below are obtained.

(xR
p−1,M − tp−1x

U
p−1,M − sp−1x

L
p−1,M )− sp = 0, (13)

(xR
p+1,1 − tp+1x

U
p+1,1 − sp+1x

L
p+1,1)− tp = 0 (p = 1, · · ·P ),

where xR
0,M = xR

P,M , xR
P+1,M = xR

1,M , and so forth in the first and the P-th block

system. Since xU
p,j = xL

p,M−j+1, we obtain a following reduced system (14) whose
matrix size is 2P × 2P , and solve this system to get the coefficients sp and tp
(p = 1, · · · , P ).



xU
1,M xU

1,1 · · · 1

xU
1,1 xU

1,M 1
...

1 xU
2,M xU

2,1

xU
2,1 xU

2,M

. . .
. . .

. . .
...

. . .
. . .

. . .

1 xU
P,M xU

P,1

1 · · · xU
P,1 xU

P,M





s1
t1
s2
t2
...
...
sP
tP


=



xR
1,1

xR
1,M

xR
2,1

xR
2,M
...
...

xR
P,1

xR
P,M


. (14)

The final solution is computed by Eq. (11). Note that the reduced matrix
is organized by the first and M-th elements of the vector xU

p (p = 1, · · · , P )
and the reduced matrix can be assembled once at the initialization phase of the
code by solving the second linear system in Eq. (12). Hereafter, the procedure
is referred to as a normal solver and is shown in Algorithm 1.

3.3 Asymptotic Property of the Reduced Matrix

Here, let us derive the asymptotic property of the system AMxU
p = αeTM , i.e.
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Algorithm 1 (Normal Solver)

Initialization

1: Compute the Cholesky decomposition of the matrix AM in all tasks.
2: Solve the equation AMxU

p = [0, · · · , 0, α]T and assemble the reduced matrix in all
tasks concurrently.

In time advancement loop

1: Solve the equation AMxR
p = bp in each task after computing the vector bp.

2: Assemble the right hand side of the reduced system (14) by using MPI Allgather
function in all tasks.

3: Solve the system in each task in parallel to compute the coefficients sp and tp.
4: Compute the final solution by Eq. (11) in each task.



1 α

α 1 α 0
α 1 α

. . .
. . .

. . .

0 α 1 α

α 1





xU
p,1

xU
p,2

xU
p,3

...

...

xU
p,M


=



0

0
...
...

0

α


. (15)

Applying the Gaussian elimination to the system, we can rewrite the system
with a coefficient matrix having diagonal and super-diagonal elements, that is

β1 α

β2 α 0
β3 α

. . .
. . .

0 βM−1 α

βM





xU
p,1

xU
p,2

xU
p,3

...

...

xU
p,M


=



0

0
...
...

0

α


, (16)

where β1 = 1, βj = 1 − α2

βj−1
(j = 2, · · · ,M). The system can be easily solved

by backward substitution and the solution is

xU
p,M =

α

βM
,

xU
p,j = −

α · xU
p,j+1

βj
=

(−α)M−j+1∏M
k=j βk

(j = M − 1, · · · , 1). (17)

Since limM→∞ βM = 1+
√
1−4α2

2 , xU
p,M = 1−

√
1−4α2

2α and xU
p,1 = 0 (p = 1, · · · , P )

as M reaches infinity. Since α = 3/8, xU
p,M and xU

p,1 converge rapidly as shown
in Table 1.
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Table 1: Valuses of xU
p,M and xU

p,1 when increasing M

M xU
p,M xU

p,1

8 0.451415160966647 −1.372943122571951× 10−3

16 0.451416229641959 −2.367389055633383× 10−6

32 0.451416229645136 −7.038892637296893× 10−12

64 0.451416229645136 −6.222626756534802× 10−23

128 0.451416229645136 −4.863092990426517× 10−45

If the number of grid points M in the x-direction of the subregion is taken
appropriately, at least M ≥ 64, the reduced system (14) can be approximately
expressed with the asymptotic values as follows;

d 0 · · · 1
0 d 1

1 d 0
0 d

...
. . .

. . .
. . .

1 d 0
1 · · · · · · 0 d





s1
t1
s2
t2
...
sP
tP


=



xR
1,1

xR
1,M

xR
2,1

xR
2,M
...

xR
P,1

xR
P,M


, (18)

where d = xU
p,M = 1−

√
1−4α2

2α .
The coefficients sp and tp (p = 1, · · · , P ) can be computed in each task

independently of the others, using Eqs. (19) by transferring xR
p+1,1 and xR

p−1,M
from adjacent tasks. The final solution is computed by Eq. (11). Hereafter, the
procedure is referred to as an asymptotic solver and is shown in Algorithm 2.{

tp = (d · xR
p,M − xR

p+1,1)/(d
2 − 1)

sp = (xR
p−1,M − d · xR

p,1)/(d
2 − 1)

(19)

Algorithm 2 (Asymptotic Solver)

Initialization

1: Compute the Cholesky decomposition of the matrix AM in all tasks.
2: Solve the equation AMxU

p = [0, · · · , 0, α]T in all tasks.

In time advancement loop

1: Solve the equation AMxR
p = bp in each task after computing the vector bp.

2: Send the values xR
p,1 and xR

p,M to the (p−1) and (p+1) task, respectively, by using
MPI Sendrecv function.

3: Compute the coefficients tp and sp by the equations (19).
4: Compute the final solution by Eq. (11) in each task.
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4 Performance Evaluation of the Code on SX-Aurora
TSUBASA

We have first built a parallel DNS code for compressible isothermal turbulence by
the cuboid decomposition, as shown in Fig. 1, without considering optimization.
Both the normal and asymptotic solvers are implemented in the code. When the
first derivatives in a direction of the Cartesian coordinates are computed, the
normal solver is used if the number of grid points in its direction is less than 64.
Otherwise, the asymptotic solver is chosen. We confirmed that the computational
results by the two solvers is the same as the results by the code used in [8].

In this section, an optimization of the first-created code on SX-Aurora TSUB-
ASA is stated. Performance comparison of the two solvers and weak scaling
characteristics of the code are also described.

4.1 Measurement Environment

A vector-type supercomputer AOBA-S installed at Cyberscience Center, Tohoku
University is used for optimization and performance evaluation of the code [4,
9].

AOBA-S consists of 504 compute nodes that are connected by a two-layer fat
tree non-blocking network configured by the 32 Infiniband NDR switches. Each
node, SX-Aurora TSUBASA C401-8, is configured by a vector host (VH) and
eight vector engines (VEs) that are connected by four Peripheral Component
Interconnect express (PCIe) Gen4 switches (Fig. 2a). The VH is a standard x86
server with an AMD EPCY 7736 processor running a standard Linux operating
system, and has two InfiniBand NDR200 Host Channel Adapters connecting to
the fat tree network (Fig. 2b). A VE is a vector accelerator implemented as a
PCIe card, on which a vector engine Type 30A (VE30) and six extended high-
bandwidth memory (HBM2E) modules, 96GB in total, are mounted. The VE30
processor integrates 16 vector cores, a 64MB shared last level cache (LLC), and
a VE direct memory access (DMA) engine that are interconnected through a
two-dimensional network (called Network on Chip) with a total bandwidth of
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VE
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PCIe

SW
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Fig. 2: AOBA-S Configuration
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3.0 TB/s. Peak performance of the core is 307.2 Gflop/s in double precision
floating-point operations, and therefore 4.92 Tflop/s in total for a VE30.

Operating system functions have been run on the VH to the greatest extent
possible so that the VEs are able to effectively use their computational power
by concentrating on program executions with vector instructions. The GNU C
library (glibc) is ported to the VEs and applications can call glibc functions as
normal I/O functions[10]. Vectorization should also be applied to achieve high
computation performance.
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Fig. 3: Top 10 procedures of the code analyzed by Ftrace

4.2 Cost Distribution and Optimization

Computational cost distribution of the code is analyzed by using a performance
analyzer Ftrace equipped on the SX-Aurora TSUBASA. The left bar graph in
Fig. 3 shows the first 10 high-cost parts of the code, in the case that a DNS
with the grid points N3 = 20483 was performed by 512 MPI processes with an
8× 8× 8 layout on 32 VEs (512 cores). Since the number of grid points in each
direction assigned to a process is 256, the asymptotic parallel solver is used.

The first part CD8 X is the first-order derivative calculation in the x-direction.
In the right-hand-side calculation of Eq. (6), since the coefficient matrix is the
same for all gird points (j,k) of the y-z cross-section of an assigned subregion
to an MPI process, all right-hand-side vectors corresponding to the grid points
(j,k) are computed as follows:
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for all grid points (j,k) of the y-z cross-section

for i = is, ie

b(jk,i) = a1*( f(i+1,j,k) - f(i-1,j,k) )

+ b1*( f(i+2,j,k) - f(i-2,j,k) )

+ c1*( f(i+3,j,k) - f(i-3,j,k) )

where a1, b1, and c1 correspond to the coefficients in Eq. (4) and is and ie are
the start and end grid numbers of the x-direction in each subregion. It is clear
that the right-hand-side array “f” accesses memory addresses at equal intervals.

The second part DFT3D B is the backward 3D-DFT used to calculate the
Fourier coefficients of the low wavenumbers side applying external force. The
third part EXCHANGE HALO is a halo region exchange procedure by the MPI Sendrecv

function. The fourth part SOLVE PMATTOR 02 is the asymptotic solver. The fifth
part FILTERING X is the low-pass filter procedure and has almost the similar
memory access pattern to the CD8 X.
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Fig. 4: Comparison of Calculation time between original and tuning codes

An loop order of indexes is changed to obtain the highest performance on the
SX-Aurora TSUBASA, and it is found that the order of k, i, and j from the
outer loop is the best. The right bar chart in Fig. 3 is the top 10 cost-consuming
parts after the loop order exchanges, in that the CD8 X is in the fourth and 4.5
times faster than the original.

Figure 4 shows computational time for both the original and tuning codes.
We confirmed that the results of the two DNS codes are identical. The times of
the parts C terms and Filter of the tuning code, in which the CD8 X or similar
is used, are found to be shorten compared to the original one, resulting in 1.7
times faster.
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Table 2: Computation time for a sigle solver call (in seconds)

Solvers Calculation Communication Synchronization

Normal solver 0.540 0.419 0.041

Asymptotic solver 0.181 0.040 0.031

✄�✄

✄�✁

✄�✂

✄�☎

✄�✆

✝�✄

✝�✁

✞✟✠✡☛☞ ✌✟☞✍✎✠ ✏✌✑✡✒✓✟✓✔✕ ✌✟☞✍✎✠

✖
✗✘
✙
✚✛
✙
✜
✢✣

✤✑✥✕✦✠✟✥✔✧☛✓✔✟✥

★✟✡✡✩✥✔✕☛✓✔✟✥

★☛☞✕✩☞☛✓✔✟✥

Fig. 5: Comparison of parallel solvers
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Fig. 6: Weak scaling characteristics of
the code

4.3 Comparison of the Two Parallel Solvers

Here, the two parallel solvers in Algorithms 1 and 2 are compared for the DNS
with the grid points N3 = 20483. The calculation with the optimized DNS code
is performed on 512 MPI processes with an 8 × 8 × 8 layout on 32 VEs (512
cores). Since the number of grid points in any direction in a process is 256,
the asymptotic solver is usually selected for the calculation of the first-order
derivatives. The normal solver, however, is used for comparison.

Table 2 and Figure 5 show the computation times of both solvers for a single
solver call. These solvers are called multiple times in one time step. Calculation
and communication times are greatly decreased in the asymptotic solver, and
approximately the 4-fold performance of the asymptotic solver is achieved. The
normal solver uses the MPI function MPI Allgather to construct the right-hand-
side in the system (14) in order to calculate the coefficients sp and tp, and has
to solve the same linear system constructed in duplicate in all MPI processes
simultaneously. On the other hand, a function MPI Sendrecv is sufficient to get
the values xR

p+1,1 and xR
p−1,M from the adjacent MPI processes and the values

are calculate by Eq. (19) in all processes concurrently in Algorithm 2.

In addition, the number of compute nodes used increases to solve prob-
lems with a large number of grid points. The communication paths of the
MPI Allgather function among all compute nodes are more complicated than
the MPI Sendrecv neighbor communications, and a larger communication time
is required. Therefore, the asymptotic solver can significantly reduce computa-
tion time not only for large time-steps simulations, but also for simulations with
a larger number of grid points.
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4.4 Weak Scaling Characteristics

Here, the same number of grid points is assigned to all MPI processes to check
for weak scaling characteristics. Three cases of DNSs with

(1) the number of grid points 5123 partitioning into 8 MPI processes with a
2× 2× 2 layout on a VE,

(2) the number of gird point 10243 partitioning into 64 MPI processes with a
4× 4× 4 layout on 4 VEs, and

(3) the number of gird point 20483 partitioning into 512 MPI processes with a
8× 8× 8 layout on 32 VEs

are run on SX-Aurora TSUBASA. The number of grid points computed in one
MPI process is 2563 in all cases. Computation time for the three cases are shown
in Fig. 6.

Computation times for Cases 2 and 3 are longer than that for Case 1. This is
because Case 1 can be carried out within a VE and therefore MPI communica-
tions in the x direction is processed within the VE via interconnection between
cores, whereas data by MPI communications for Cases 2 and 3 are transferred
via PCIe switches in the same node and among four nodes, respectively. The
communication time is slightly increased for Cases 2 and 3. It is found that good
weak scalability of the code is achieved with several VEs.

5 Conclusions

Turbulent flows play an important role in many flow-related phenomena that
occur in various fields of science and technology. It is important to understand
and elucidate their universal nature. DNS of turbulent flows in a widely used
method for clarifying the properties of turbulence because it solves the governing
equations directly without modeling and resolves eddy motion on the smallest
scales.

In this study, at first, the asymptotic parallel solver for the reduced linear
system obtained from the parallelization of the linear system for the compact fi-
nite difference scheme is proposed. A parallel DNS code incorporating the solver
as well the Mattor’s solver has been developed for isothermal compressible tur-
bulent flows in a cube using a finite difference method. The convective terms
of the governing equations are calculated using an eighth-order compact differ-
ence scheme, while the viscous term is calculated using an eighth-order central
difference scheme.

The computational cost of the asymptotic solver is lower than that of the
normal solver in the condition that the number of grid points along a Cartesian
coordinate in a task is greater than or equal to 64. In addition, the code was been
optimized on the supercomputer SX-Aurora TSUBASA. As a result, a 1.7-fold
speedup and excellent weak scalability were performed. A further code tuning
for scalar processors like the supercomputer Fugaku is underway. Larger DNSs
with over 81923 grid points are possible to compute.
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