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Abstract. This is a follow-up study on Zernike moments applicable in
detection tasks owing to a construction of complex-valued integral images
that we have proposed in [3]. The main goal of the proposition was to
calculate the mentioned features fast (in constant-time). The proposed
solution can be applied with success when dealing with single images,
however it is still too slow to be used in real-time applications, for exam-
ple in video processing. In this work we attempted to solve mentioned
problem.
In this paper we propose a technique in order to reduce the detection
time in real-time applications. The degree of reduction is controlled by
two parameters: fs (related to the gap between frames that undergo a
full scan) and nb (related to the size of neighborhood to be searched on
non-fully scanned frames). We present a series of experiments to show
how our solution performs in terms of both detection time and accuracy.

Keywords: Zernike moments · Complex-Valued Integral Images · De-
tection Time Reduction · Object Detection.

1 Introduction

The classical approach to object detection is based on sliding window scans. It
is computationally expensive, involves a large number of image fragments (win-
dows) to be analyzed, and in practice precludes the applicability of advanced
methods for feature extraction. In particular, many moment functions [13], com-
monly applied in image recognition tasks, are often precluded from detection, as
they involve inner products, i.e., linear-time computations with respect to the
number of pixels. This problem becomes more evident when detecting objects
on video. Also, the deep learning approaches cannot be applied directly in dense
detection procedures (sliding window-based), and require preliminary stages of
prescreening or region-proposal.
There exist a few feature spaces (or descriptors) that have managed to by-

pass the mentioned difficulties owing to constant-time techniques discovered for
them within the last two decades. Haar-like features (HFs), local binary patterns
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(LBPs) and histogram of oriented gradients (HOG) descriptor are state-of-the-
art examples from this category [1,5,17]. The crucial algorithmic trick that un-
derlies these methods and allows for constant-time — O(1) — feature extraction
are integral images. They are auxiliary arrays storing cumulative pixel intensities
or other pixel-related expressions. Having prepared them before the actual scan,
one is able to compute fast the wanted sums the so-called ‘growth’ operations.
Each growth involves two additions and one subtraction using four entries of an
integral image.

In our previous work [3] we have introduced mentioned integral images in or-
der to compute Zernike moments (ZMs). We prepared a set of special complex-
valued integral images and an algorithm that allows to calculate Zernike mo-
ments fast, namely in constant time. Thanks to the proposed solution, Zernike
moments become suitable for dense detection procedures, where the image is
scanned by a sliding window at multiple scales, and where rotational invariance
is required at the level of each window. In [8] we indicated numerically fragile
places in our algorithm and identified their causes. Then, in order to reduce
numerical errors, we propose piecewise integral images and derive a numerically
safer formula for Zernike moments. Moreover, in [9] we enrich derived initial
idea by proposing an extended space of Zernike invariants backed with integral
images. This feature space includes not only the moduli of Zernike moments
but also real and imaginary parts of suitable moment products. All mentioned
solutions were supported by a series of experiments.

Recent literature confirms that ZMs are still popular and used in many appli-
cations. In [7] authors used ZMs with K-nearest Neighbors for leaf recognition,
in [10] authors used selected ZMs to determine the rotation angle of the objects.
Authors of [21] proposed to use ZMs and support vector machine for brain tumor
diagnosis. ZMs are applied in many other image recognition tasks e.g: human
age estimation [12] or traffic signs recognition [19]. The authors of [11] proposed
algorithm using image normalization and Zernike moments which allows to rec-
ognize stars based on telescope images. This solution allows to assign stars to
their position in catalog. In 2020 the authors of [18] presented a way to match
terrain using Zernike moments and HOG descriptors based on data from Syn-
thetic Aperture Radar (SAR) and REM Radar. Yet, it is quite difficult to find
examples of detection tasks applying ZMs directly.

Zernike moments are also used for detection task of objects in motion. E.g
[16] shows a way for detection of doubtful or uncommon actions in video sequence
based on Zernike moments and Canny edge detector. In [2] authors used motion
energy image (MEI) with Zernike moments in order to detect humans actions.
In [22], the authors proposed to use two particular Zernike moments (selected
by them) in order to detect moving objects. It is worth noting that also in this
task Zernike moments were not applied directly on video frames but after some
kind of preprocessing or feature selection.

In this paper we address the problem of using Zernike moments for object
detection on video, which requires to calculate them faster than according to the
original algorithm proposed in [3].
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2 Zernike moments theory and calculation using integral
images

2.1 Zernike moments

Zernike moments (ZMs) can be defined in both polar and Cartesian coordinates
as:

Mp,q =
p+ 1
π

∫ 2π
0

∫ 1
0
f(r, θ)

(p−|q|)/2∑
s=0

βp,q,sr
p−2se−iqθ r dr dθ, (1)

=
p+ 1
π

∫∫
x2+y2⩽1

f(x, y)
(p−|q|)/2∑
s=0

βp,q,s(x+ iy) 12 (p−q)−s(x− iy) 12 (p+q)−s dx dy, (2)

where:

βp,q,s =
(−1)s(p− s)!

s!((p+ q)/2− s)!((p− q)/2− s)!
, (3)

i is the imaginary unit (i2=− 1), and f is a mathematical or an image function
defined over unit disk [20,3]. p and q indexes, represent moment order, hence
they must be simultaneously even or odd, moreover p ⩾ |q|.
ZMs are in fact the coefficients of an expansion of function f , given in terms

of Zernike polynomials Vp,q as the orthogonal base:1

f(r, θ) =
∑
0⩽p⩽∞

∑
−p⩽q⩽p
p−|q| even

Mp,qVp,q(r, θ), (4)

where Vp,q(r, θ) =
∑(p−|q|)/2
s=0 βp,q,sr

p−2seiqθ. Note that, Vp,q combines a standard
polynomial defined over radius r and a harmonic part defined over angle θ. In
practical applications, finite partial sums of expansion (4) are used. Suppose ρ
denotes imposed maximum polynomial order and ϱ denotes imposed maximum
harmonic order, additionally ρ ⩾ ϱ. Then, the partial sum that approximates f
can be written down as:

f(r, θ) ≈
∑
0⩽p⩽ρ

∑
−min{p,ϱ}⩽q⩽min{p,ϱ}

p−|q| even

Mp,qVp,q(r, θ). (5)

ZMs are invariant to scale transformations, but only their absolute value is
invariant to rotation. Proof of these properties were presented in [3].

1 ZMs expressed by (1) arise as inner products of the approximated function and
Zernike polynomials: Mp,q = ⟨f, Vp,q⟩

/
∥Vp,q∥2.
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2.2 Zernike moments in detection task

In practical tasks it is more convenient to work with rectangular, rather than
circular, image fragments. Singh and Upneja [15] proposed a workaround to this
problem: a square of size w×w pixels (w is even) becomes inscribed in the unit
disc, as shown in Fig. 1, and zeros are “laid” over the square-disc complement.
This reduces integration over the disc to integration over the square.

Fig. 1. The trick from [15] to calculate OFMMs: square image window inscribed in the
unit circle, zero values laid in the complement of square.

2.3 Constant-time Calculation of Zernike Moments

In [3] we proposed a way to calculate Zernike moments using set of multiple
integral images in order to use those features in reasonable time, during detection
procedure based on sliding window technique.
Let’s concentrate on a scenario of a computer detection procedure. Suppose

a digital image of size nx × ny is traversed by a sliding window of size w ×
w, where w is even (for clarity we discuss only a single-scale scan within the
detection procedure). The situation is presented in Fig. 2. Let (j, k) denote global
coordinates of a pixel in the image. For each window under analysis, its offset
— the top left corner of the window — will be denoted by (j0, k0). Therefore,
the indexes of pixels that belong to the window are: j0 ⩽ j ⩽ j0 + w − 1,
k0 ⩽ k ⩽ k0 +w − 1. Additionally, it will be convenient to introduce a notation
(jc, kc) for the central index of the window:

jc =
1
2
(2j0 + w − 1), kc =

1
2
(2k0 + w − 1). (6)

Let {iit,u} denote a set of complex-valued integral images2:

iit,u(l,m)=
∑∑
0⩽j⩽l
0⩽k⩽m

f(j, k)(k−ij)t(k+ij)u, 0⩽l⩽ny−10⩽m⩽nx−1; (7)

2 In [3] we have proved that integral images iit,u and iiu,t are complex conjugates at
all points, which allows for computational savings.
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Fig. 2. Illustration of detection procedure using sliding window.

Proposition 1 Suppose a set of integral images
{
iit,u

}
, defined as in (7), has

been prepared prior to the detection procedure. Then, for any square window in
the image, each of its Zernike moments can be calculated in constant time —
O(1), regardless of the number of pixels in the window, as follows:

M̂2p+o,2q+o =
4p+2o+2
πw2

∑
2q+o⩽2s+o⩽2p+o

β2p+o,2q+o,p−s

(√
2
w

)2s+o

·
s−q∑
t=0

(
s−q
t

)
(−kc+ijc)s−q−t

s+q+o∑
u=0

(
s+q+o
u

)
(−kc−ijc)s+q+o−u ∆

j0,j0+w−1
k0,k0+w−1

(ii t,u) . (8)

The proof of this is presented in detail in [3].

2.4 Numerical errors and their reduction

Formula (8) contains two numerically fragile places. The first one are integral
images themselves, defined by (7) where global pixel indexes j, k present in power
terms (k− ij)t(k+ ij)u vary within: 0 ⩽ j ⩽ ny − 1 and 0 ⩽ k ⩽ nx− 1. Hence,
for an image of size, e.g., 640 × 480, the summands vary in magnitude roughly
from 100(t+u) to 103(t+u). Obviously, the rounding-off errors amplify as the iit,u
sum progresses towards the bottom-right image corner.
The second fragile place are: (−kc + ijc)s−q−t and (−kc − ijc)s+q+o−u, in-

volving the central index, see (8). Their products can too become very large in
magnitude as computations move towards the bottom-right image corner.
The solution to this numerical problem, presented in [8], is based on integral

images that are defined piecewise. We partitioned every integral image into a
number of adjacent pieces, say of size W ×W (border pieces may be smaller
due to remainders), where W was chosen to exceed the maximum allowed width
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for the sliding window. Each piece obtains its own “private” coordinate system.
Informally speaking, the (j, k) indexes that are present in formula (7) become
reset to (0, 0) at top-left corners of successive pieces. Similarly, the values accu-
mulated so far in each integral image iit,u become zeroed at those points. For
more details see [8].

2.5 Extended feature space of Zernike invariants

During our previous research [9] we proposed a technique to extend the feature
space. The central role is played by expression for generating the invariants:

Mp,q
n Mv,s, nq + s = 0.

In that context we considered which tuples (n, p, q, v, s) should be allowed into
the final collection of feature indexes and what information they carry. We dis-
tinguished and presented several groups among them.
Remembering that Mp,q

n Mv,s is a complex number, we used both its real
and imaginary parts as separate features, if it was possible. For that purpose
we extended the tuples to consist of six members: (n, p, q, v, s, i), where the last
index i ∈ {0, 1} indicates, whether we used real or imaginary part ofMp,qn Mv,s.
Knowing the indexation scheme, we presented the actual extraction proce-

dure to be invoked for each analyzed window in (see [9] for details).
Table 1 shows counts of features in both extended and non-extended spaces.

Both spaces may constitute a useful input information for machine learning and
rotationally-invariant detection.

Table 1. Number of features in extended (black) and non-extended (gray) feature
spaces.

ρ
ϱ 0 1 2 3 4 5 6

0
1
1

1
1
1
2
2

2
2
2
3
3
6
4

3
2
2
6
4
11
5
16
6

4
4
3
8
5
20
7
25
8
34
9

5
4
3
13
6
29
8
45
10
56
11
63
12

6
7
4
16
7
43
10
59
12
87
14
94
15
111
16

Proposed solution demonstrates how to generate a large number of constant-
time Zernike invariants using computations supported by integral images (complex-
valued). Thanks to that, we can provide many useful features which is a beneficial
for machine learning.

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63751-3_5

https://dx.doi.org/10.1007/978-3-031-63751-3_5
https://dx.doi.org/10.1007/978-3-031-63751-3_5


Title Suppressed Due to Excessive Length 7

3 Frame skipping technique

Zernike invariants, even with the computationally fast form (with use of integral
images), are still not fast enough to be applied for object detection on video. In
this section we present an approach that allows to reduce the detection time for
that purpose.
The idea is based on performing a full scan on the image from the camera,

but not on each frame. For better explanation, let’s assume that every 5th frame
is scanned fully in order to find (detect) some objects. Once this is done we need
to memorize their positions in the image. With this information at disposal, in
the next frame the sliding window shall only be placed in close neighborhood of
detected objects, and once they are redetected their positions can be updated.
For yet another frame, the sliding window shall take advantage of neighborhoods
from two previous frames, etc. After 4 frames, the image would be re-scanned,
which would enable, e.g., finding objects that just appeared on it.
We will now proceed to a more detailed description of the proposed solution.
For the purpose of presented solution we introduce two parameters fs and

nb. The first of them fs determines how many frames the full search of the
entire image takes place, e.g., if the value of this parameter is 4, there are 3
frames among the full scans for which the full scan will not be performed. When
fs = 1, a full scan will occur every frame. The second parameter, neighborhood
(radius), determines size of area around the found windows with objects that
will be searched — in case of images from camera without a full search. For
Example, if window with found object has size 100 × 100 of pixels, nb is set to
0.5, it means the searched area will be of size 200 × 200 — we are adding 50

Fig. 3. Illustration of nb parameter for detection procedure using sliding window and
frame skipping technique.
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pixels (50% from 100) to each side of window marked as positive. Note that, the
size of searched area depends on the window size marked as positive. The bigger
the window, the bigger the area that will be searched.
Figure 3 presents a situation where one positive window was found in a

full image scan. It is easy to see the advantages of using the presented solution.
Instead of searching the entire ny×nx image with a sliding window (which comes
in various sizes and scales), we will only search the area around the positive
window, i.e., w · (1 + 2 · nb) × w · (1 + 2 · nb), which will save us a lot of time.
This partial scan will be performed for fs− 1 frames.

Algorithm 1 Detection procedure with frame skipping technique
procedure DetectObject(I, Wd, frn, nb, fs, clf)

▷ Wd contain coordinates of windows classified as positive on previous step.
Create list Wr for storing coordinates of windows classified as positive.
if frn mod fs = 0 then
for w ∈ GenDetCoords(Iw, Ih, detection parameters) do
Use cls to classify fragment of I at coordinates w.
if cls return 1 then
Append w to Wr.

else
if Areas contained in Wd intersect with each other then
Merge areas to avoid redundancy.

for w ∈ Wd do
Expand area represented by w by adding margin equal to nb
for coords ∈ GenDetCoords(wexpand, detection parameters) do
Use cls to classify fragment of I at coordinates coords.
if cls return 1 then
Append coords to Wr.

return Wr

Algorithm 1 presents a detection procedure using frame skipping technique.
clf represents a classifier, frn is frame number, nb neighborhood, fs skip, I video
frame. Wd is a coordinate vector in the form of [x, y, w, h], which describes the
area that needs to be processed by standard detection procedure. In code below
you can see two GenDetCoords procedure calls. The first one is a standard
detection procedure, where whole the video frame is processed. The second one
generates coordinates only in indicated areas — specified by positive frames and
neighborhood.

4 Experiments

4.1 Learning algorithms and general settings

In experiments we apply RealBoost+bins as the main learning algorithm pro-
ducing ensembles of weak classifiers. Each weak classifier is based on a single
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selected feature. Bins are equally wide and set up regularly, once 1% of outliers
has been removed. The responses of classifiers are real-valued and calculated
using the logit transform. For more details we address the reader, e.g., to [6,14].
It is worth remarking that we use Jaccard index (ratio of intersection and

union areas) in two places in experiments: (1) to postprocess detected windows
and (2) to check positive indications against the ground truth in tests. Typically,
a detector produces a cluster of many positive windows around each target. At
the postprocessing stage, we group such clusters into single indications. This
means that at each step within the postprocessing loop, two windows with the
highest Jaccard index become averaged. Later, when comparing positive indica-
tions against the ground truth, we expect each indication to have an index of at
least 0.5 with respect to some target position in order to be counted as a true
positive. Otherwise, it becomes a false alarm.
In experiment we have arranged a data set containing capital letters from

the modern English alphabet. Pictures containing the characters from computer
fonts were retrieved from the set prepared by T.E. de Campos et al. [4]. We
have limited the subset representing the letter ‘A’ to several fonts with similar
characteristics and treated it as our base for creating positive examples. Subsets
with other letters were combined to prepare the negative examples.
Fig. 4 depicts the source graphical material used in the experiment. Images,

for both training and testing, were generated by randomly placing objects over
random backgrounds.

(a)

(b)

(c)

Fig. 4. Sample images and all backgrounds used to generate the data. Positives: letters
A (a), negatives: other letters (b), backgrounds (c).

In training images, letters were allowed to rotate randomly within a limited
range of ±45◦. In the testing material letters were allowed to rotate randomly
within the full range of 360◦.
For detection procedure we created a video sequence from an image. We set

a certain frame size, and move it around the given image and with the offset set
according to pattern presented in Fig. 5.
Tab. 2 presents the experimental setup.
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Fig. 5. Illustration of how video from image was generated.

Table 2. Experimental setup.

train data
quantity / parameter value additional information
no. of positive examples 20 384 windows with letter ‘A’
no. of negative examples 323 564 windows with letters other than ‘A’

plus random samples of backgrounds
train set size 343 948 positive and negative examples in total

test data
no. of images 100
no. of positive examples 213 windows with letter ‘A’
no. of negative examples 1 858 587 implied by detection procedure
test set size 1 858 800 positive and negative examples in total
no. of negative examples 100 419 sampled on random from negatives

detection procedure (scanning with a sliding window)
video frame resolution 640× 480 imposed resolution
no. of detection scales 5
window growing coefficient 1.2
smallest and largest window size 100× 100, 208× 208
window jumping coefficient 0.05
frame skip (fs) {1, 5, 10}
radius (nb) {15, 30, 50, 100}

When reporting results of experiments, we use the following names: M, M-
NER, E and E-NER — they define the type of features that was used. M stands
for the moduli of Zernike moments, E extended product invariants. The ’-NER’
suffix stands for numerical errors reduction. r parameter suggests that ring-
based variation to increase number of features (by a factor of 2R− 1) was used.
Experiments were conducted parallel on Intel Xeon E5-2699 v4 CPU, 22/44
core/thread, 55MB cache.

4.2 Detection performance

Tables 3, 4, 5, 6 present results of detection performance. FPS stands for ’frames
per second’, total is the total time of detection on whole video and avg is the
average time of detection for single video frame.
As can be seen, both nb and fs have influence on time performance. The

lower the value of nb is, the more significantly the time of the detection procedure
decreases. The higher the value of fs, the lower the time of detection. It is worth
paying a particular attention to FPS parameter. For the traditional detection

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63751-3_5

https://dx.doi.org/10.1007/978-3-031-63751-3_5
https://dx.doi.org/10.1007/978-3-031-63751-3_5


Title Suppressed Due to Excessive Length 11

Table 3. Detection performance for moduli of Zernike moments and p = 8, q = 8,
r = 8.

fs nb = 0.1 nb = 0.2 nb = 0.3 nb = 0.4
M FPS total avg FPS total avg FPS total avg FPS total avg
1 1.5 32352 652 1.5 34081 686 1.5 33462 676 1.6 31942 643
5 7.4 8756 135 6.4 9142 156 5.8 9444 171 5.3 9953 188
10 13.7 6183 73 12 6155 83 10.2 5970 98 8.6 6498 116
M-NER FPS total avg FPS total avg FPS total avg FPS total avg
1 0.4 128685 2658 0.3 149028 3085 0.3 151250 3127 0.4 129931 2683
5 1.6 31627 611 1.6 31079 623 1.6 31771 638 1.4 35805 726
10 3.4 16683 293 3.3 15841 303 2.7 188893 374 2.5 20481 406

Table 4. Detection performance for extended product invariants of Zernike moments
and p = 8, q = 8, r = 8.

fs nb = 0.1 nb = 0.2 nb = 0.3 nb = 0.4
E FPS total avg FPS total avg FPS total avg FPS total avg
1 0.5 97185 2000 0.5 100212 2067 0.5 103255 2127 0.5 97824 2012
5 2.2 23936 457 2.2 23521 463 2 24984 498 1.8 27708 560
10 4.9 12249 204 4.1 13457 245 3.5 14595 286 3.2 16042 316
E-NER FPS total avg FPS total avg FPS total avg FPS total avg
1 0.3 157316 3252 0.3 166613 3446 0.3 178216 3690 0.3 157205 3251
5 1.5 33360 652 1.4 36835 740 1.3 37729 768 1.2 41399 841
10 2.7 20094 366 2.5 20865 403 2.5 20437 408 2.1 23746 477

procedure with sliding window and Zernike moments, its value is never bigger
than 2. When using the proposed solution with frame skipping technique, the
FPS was even 13.7 for moduli of Zernike moments.
Table 3 presents the results obtained for moduli of Zernike moments (with

and without numerical error reduction) and p = 8, q = 8, r = 8. For features
of type M we can observe the greatest gain in terms of time performance. The
algorithm was able to process 13.7, 12, 10.2 and 8.6 frames per second, respec-
tively for nb being set to 0.1, 0.2, 0.3 or 0.4 and fs equals to 10. For fs set to
5, we can also see a noticeable decrease in window processing time.
The time needed to generate features in M −NER version is greater, and thus
the profit from introducing modification is smaller, but still visible.

Table 5. Detection performance for moduli of Zernike moments and p = 10, q = 10,
r = 8.

fs nb = 0.1 nb = 0.2 nb = 0.3 nb = 0.4
M FPS total avg FPS total avg FPS total avg FPS total avg
1 1 49575 1013 1 51485 1052 0.9 51718 1054 1 48780 996
5 4.6 12632 218 4.1 12878 243 3.9 13482 257 3.6 14223 276
10 9.3 7790 107 7.8 7782 129 6.8 7992 146 5.9 8976 169
M-NER FPS total avg FPS total avg FPS total avg FPS total avg
1 0.3 187889 3892 0.2 198526 4110 0.2 196523 4070 0.3 179710 3725
5 1.3 33334 790 1.2 42119 860 1.1 43122 878 1 48386 984
10 1.9 27711 523 1.9 25793 520 2 24524 493 1.8 27313 551

Table 4 presents the results obtained for extended product invariants of
Zernike moments (with and without numerical error reduction) and p = 8, q = 8,
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r = 8. In this case, the base time was lower, and therefore the time after the
modification also. However, you can see that for the parameter set to 10, the
number of windows processed per second increased in every case.
Tables 5 and 6 present detection performance for moduli and extended prod-

uct of Zernike moments, for p = 10, q = 10, r = 8. The results in the tables
confirm the previously described observations.

Table 6. Detection performance for extended product invariants of Zernike moments
and p = 10, q = 10, r = 8.

fs nb = 0.1 nb = 0.2 nb = 0.3 nb = 0.4
E FPS total avg FPS total avg FPS total avg FPS total avg
1 0.3 150883 3119 0.3 147192 3045 0.3 152779 3131 0.3 1568289 3240
5 1.4 35619 701 1.4 35215 711 1.3 37181 755 1.2 39936 812
10 2.8 19649 353 2.6 19637 379 2.3 21447 426 2 25020 497
E-NER FPS total avg FPS total avg FPS total avg FPS total avg
1 0.2 249028 5161 0.2 266057 5517 0.2 265249 5500 0.2 256278 5313
5 1 51050 1024 0.9 54793 1121 0.9 56915 1164 0.8 63597 1305
10 1.6 28700 540 1.7 28998 576 1.5 32045 650 1.4 35738 720

4.3 Detection accuracy

Tables 7, 8, 9, 10 show accuracy of our detection experiments. Table 7 presents

Table 7. Detection results for moduli of Zernike moments and p = 8, q = 8, r = 8.

fs nb = 0.1 nb = 0.2
M accuracy sensitivity FAR accuracy sensitivity FAR
1 0.999993831 1 6.169·10−6 0.999993831 1 6.169·10−6
5 0.999948604 0.25 1.028·10−6 0.99999486 0.95833333 1.028·10−6
10 0.999937297 0.11458333 1.028·10−6 0.999977384 0.72916667 1.028·10−6
M-NER accuracy sensitivity FAR accuracy sensitivity FAR
1 0.999997944 1 2.056·10−6 0.999997944 1 2.056·10−6
5 0.99995066 0.27 1.028·10−6 0.999996916 0.97916667 1.028·10−6
10 0.99993825 0.125 1.028·10−6 0.999986635 0.875 1.028·10−6
fs nb = 0.3 nb = 0.4
M accuracy sensitivity FAR accuracy sensitivity FAR
1 0.999993831 1 6.169·10−6 0.999993831 1 6.169·10−6
5 0.999996916 0.97916667 1.028·10−6 0.999996916 0.979 1.028·10−6
10 0.999986635 0.875 1.028·10−6 0.999986635 0.875 1.028·10−6
M-NER accuracy sensitivity FAR accuracy sensitivity FAR
1 0.999997944 1 2.056·10−6 0.999997944 1 2.056·10−6
5 0.999996916 0.97916667 1.028·10−6 0.999996916 0.97916667 1.028·10−6
10 0.999986635 0.875 1.028·10−6 0.999986635 0.875 1.028·10−6

the results obtained for moduli of Zernike moments (with and without numerical
error reduction) and p = 8, q = 8, r = 8. For the version of features without
numerical error reduction (M) it can be seen that the sensitivity stabilizes for
nb = 0.3. For lower values, especially for 0.1, there is a significant decrease in
sensitivity compared to the version without using the proposed solution. For
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Table 8. Detection results for extended product invariants of Zernike moments and
p = 8, q = 8, r = 8.

fs nb = 0.1 nb = 0.2
E accuracy sensitivity FAR accuracy sensitivity FAR
1 0.999990744 1 9.256·10−6 0.999990744 1 9.256·10−6
5 0.999956827 0.39583333 2.057·10−6 0.999994859 0.97916667 3.085·10−6
10 0.999941408 0.20833333 2.057·10−6 0.999998458 0.875 3.085·10−6
E-NER accuracy sensitivity FAR accuracy sensitivity FAR
1 0.999993831 1 6.169·10−6 0.999993831 1 6.169·10−6
5 0.999958832 0.41666667 1.028·10−6 0.999996916 0.97916667 1.028·10−6
10 0.999942437 0.20833333 1.028·10−6 0.999986636 0.875 1.028·10−6
fs nb = 0.3 nb = 0.4
E accuracy sensitivity FAR accuracy sensitivity FAR
1 0.999990744 1 9.256·10−6 0.999990744 1 9.256·10−6
5 0.999995887 0.97916667 2.056·10−6 0.999995887 0.97916667 2.056·10−6
10 0.999985604 0.875 2.057·10−6 0.999985604 0.875 2.057·10−6
E-NER accuracy sensitivity FAR accuracy sensitivity FAR
1 0.999993831 1 6.169·10−6 0.999993831 1 6.169·10−6
5 0.999996916 0.97916667 1.028·10−6 0.999996916 0.97916667 1.028·10−6
10 0.999986636 0.875 1.028·10−6 0.999986636 0.875 1.028·10−6

version with numerical error reduction (M-NER) sensitivity stabilizes for nb =
0.2, and further increasing the value of this parameter is no longer beneficial.
Table 8 presents the results obtained for extended product invariants of

Zernike moments (with and without numerical error reduction) and p = 8, q = 8,
r = 8. For both versions of features, with and without numerical error reduction
it can be seen that the sensitivity stabilizes for nb = 0.2.

Table 9. Detection results for moduli of Zernike moments and p = 10, q = 10, r = 8.

fs nb = 0.1 nb = 0.2
M accuracy sensitivity FAR accuracy sensitivity FAR
1 0.999995887 0.96180556 0 0.999995887 0.96180556 0
5 0.999947575 0.23263889 0 0.999995888 0.96180556 0
10 0.999936269 0.09722222 0 0.999985607 0.85763889 0
M-NER accuracy sensitivity FAR accuracy sensitivity FAR
1 0.999995888 1 4.113·10−6 0.999995888 1 4.113·10−6
5 0.999947576 0.23958333 1.028·10−6 0.999996916 0.97916667 1.028·10−6
10 0.999937297 0.11458333 1.028·10−6 0.999986635 0.875 1.028·10−6
fs nb = 0.3 nb = 0.4
M accuracy sensitivity FAR accuracy sensitivity FAR
1 0.999995887 0.96180556 0 0.999995887 0.96180556 0
5 0.999995888 0.96180556 0 0.999995888 0.96180556 0
10 0.999985607 0.85763889 0 0.999985607 0.85763889 0
M-NER accuracy sensitivity FAR accuracy sensitivity FAR
1 0.999995888 1 4.113·10−6 0.999995888 1 4.113·10−6
5 0.999996916 0.97916667 1.02·10−68 0.999996916 0.97916667 1.028·10−6
10 0.999986635 0.875 1.028·10−6 0.999986635 0.875 1.028·10−6

Table 9 presents the results obtained for moduli of Zernike moments (with
and without numerical error reduction) and p = 10, q = 10, r = 8. For both
versions of features, with and without numerical error reduction, it can be seen
that the sensitivity stabilizes for nb = 0.2.
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Table 10 presents the results obtained for extended product invariants of
Zernike moments (with and without numerical error reduction) and p = 10,
q = 10, r = 8. As in previous cases, for both versions of features, with and
without numerical error reduction, it can be seen that the sensitivity stabilizes
for nb = 0.2.

Table 10. Detection results for extended product invariants of Zernike moments and
p = 10, q = 10, r = 8.

fs nb = 0.1 nb = 0.2
E accuracy sensitivity FAR accuracy sensitivity FAR
1 0.999995887 0.96180556 0 0.999995887 0.96180556 0
5 0.999956827 0.38888889 0 0.999995887 0.96180556 0
10 0.999941408 0.19097222 0 0.999985608 0.87563889 0
E-NER accuracy sensitivity FAR accuracy sensitivity FAR
1 0.99999383 1 6.17·10−6 0.99999383 1 6.17·10−6
5 0.999956827 0.38541667 1.028·10−6 0.999996916 0.97916667 1.028·10−6
10 0.999942437 0.20933333 1.028·10−6 0.999986636 0.875 1.028·10−6
fs nb = 0.3 nb = 0.4
E accuracy sensitivity FAR accuracy sensitivity FAR
1 0.999995887 0.96180556 0 0.999995887 0.96180556 0
5 0.999995887 0.96180556 0 0.999995887 0.96180556 0
10 0.999985605 0.87563889 0 0.999985605 0.87563889 0
E-NER accuracy sensitivity FAR accuracy sensitivity FAR
1 0.99999383 1 6.17·10−6 0.99999383 1 6.17·10−6
5 0.999996916 0.97916667 1.028·10−6 0.999996916 0.97916667 1.028·10−6
10 0.999986636 0.875 1.028·10−6 0.999986636 0.875 1.028·10−6

5 Conclusion

We have proposed an algorithm that allows for faster rotationally-invariant ob-
ject detection based on Zernike moments in comparison to standard detection
procedure involving full scans by the sliding window. The presented technique
takes advantage of frame skipping and is applicable only for video sequences. Al-
though the detection time can be significantly reduced, it is fair to remark that
the sensitivity measure can drop when number of skipped frames is set to a too
large value. Of course, everything depends on the speed of movement, whether
it’s the camera or the object in the scene. Selecting a larger nb parameter pro-
vides more flexibility, but of course it takes more computation time.

References

1. Acasandrei, L., Barriga, A.: Embedded face detection application based on local
binary patterns. In: 2014 IEEE Intl Conf on High Performance Computing and
Communications (HPCC,CSS,ICESS). pp. 641–644 (2014)

2. Aly, S., sayed, A.: An effective human action recognition system based on zernike
moment features. In: 2019 International Conference on Innovative Trends in Com-
puter Engineering (ITCE). pp. 52–57 (2019)

3. Bera, A., Klęsk, P., Sychel, D.: Constant-Time Calculation of Zernike Moments
for Detection with Rotational Invariance. IEEE Transactions on Pattern Analysis
and Machine Intelligence 41(3), 537–551 (2019)

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63751-3_5

https://dx.doi.org/10.1007/978-3-031-63751-3_5
https://dx.doi.org/10.1007/978-3-031-63751-3_5


Title Suppressed Due to Excessive Length 15

4. de Campos, T.E., et al.: Character recognition in natural images. In: Proceedings
of the International Conference on Computer Vision Theory and Applications,
Lisbon, Portugal. pp. 273–280 (2009)

5. Dalal, N., Triggs, B.: Histograms of Oriented Gradients for Human Detection. In:
Conference on Computer Vision and Pattern Recognition (CVPR’05) – Volume 1.
pp. 886–893. IEEE Computer Society (2005)

6. Friedman, J., Hastie, T., Tibshirani, R.: Additive logistic regression: a statistical
view of boosting. The Annals of Statistics 28(2), 337–407 (2000)

7. Jia, Z., Liao, S.: Leaf recognition using k-nearest neighbors algorithm with zernike
moments. In: 2023 8th International Conference on Image, Vision and Computing
(ICIVC). pp. 665–669 (2023)

8. Klęsk, P., Bera, A., Sychel, D.: Reduction of numerical errors in zernike invariants
computed via complex-valued integral images. In: Computational Science – ICCS
2020. pp. 327–341. Springer International Publishing (2020)

9. Klęsk, P., Bera, A., Sychel, D.: Extended zernike invariants backed with complex-
valued integral images for detection tasks. Procedia Computer Science 192, 357–
368 (2021)

10. Lai, W., Lei, G., Meng, Q., Shi, D., Cui, W., Wang, Y., Han, K.: Single-pixel detect-
ing of rotating object using zernike illumination. Optics and Lasers in Engineering
172, 107867 (2024)

11. Liang, X., Ma, W., Zhou, J., Kong, S.: Star identification algorithm based on image
normalization and zernike moments. IEEE Access 8, 29228–29237 (2020)

12. Malek, M.E., Azimifar, Z., Boostani, R.: Facial age estimation using Zernike mo-
ments and multi-layer perceptron. In: 22nd Int. Conference on Digital Signal Pro-
cessing (DSP). pp. 1–5 (2017)

13. Mukundan, R., Ramakrishnan, K.: Moment Functions in Image Analysis — Theory
and Applications. World Scientific (1998)

14. Rasolzadeh, B., et al.: Response Binning: Improved Weak Classifiers for Boosting.
In: IEEE Intelligent Vehicles Symposium. pp. 344–349 (2006)

15. Singh, C., Upneja, R.: Accurate Computation of Orthogonal Fourier-Mellin Mo-
ments. Journal of Mathematical Imaging and Vision 44(3), 411–431 (2012)

16. Vengurlekar, S.G., Jadhav, D., Shinde, S.: Object detection and tracking using
zernike moment. In: 2019 International Conference on Communication and Elec-
tronics Systems (ICCES). pp. 12–17 (2019)

17. Viola, P., Jones, M.: Rapid Object Detection using a Boosted Cascade of
Simple Features. In: Conference on Computer Vision and Pattern Recognition
(CVPR’2001). pp. 511–518. IEEE (2001)

18. Wang, K., Wang, H., Wang, J.: Terrain matching by fusing hog with zernike mo-
ments. IEEE Transactions on Aerospace and Electronic Systems 56(2), 1290–1300
(2020)

19. Xing, M., et al.: Traffic sign detection and recognition using color standardization
and Zernike moments. In: 2016 Chinese Control and Decision Conference (CCDC).
pp. 5195–5198 (2016)

20. Zernike, F.: Beugungstheorie des Schneidenverfahrens und seiner verbesserten
Form, der Phasenkontrastmethode. Physica 1(8), 668–704 (1934)

21. Zheng, N., Zhang, G., Zhang, Y., Sheykhahmad, F.R.: Brain tumor diagnosis based
on zernike moments and support vector machine optimized by chaotic arithmetic
optimization algorithm. Biomedical Signal Processing and Control 82 (2023)

22. Zhou, Z., Liu, P., Chen, G., Liu, Y.: Moving object detection based on zernike
moments. In: 2016 5th International Conference on Computer Science and Network
Technology (ICCSNT). pp. 696–699 (2016)

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63751-3_5

https://dx.doi.org/10.1007/978-3-031-63751-3_5
https://dx.doi.org/10.1007/978-3-031-63751-3_5

