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Abstract. In response to the growing threat of Advanced Persistent
Threat (APT) in network security, our research introduces an innovative
APT malware attribution tool, the APTMalKG knowledge graph. This
knowledge graph is constructed from comprehensive APT malware data
and re�ned through a multi-stage graph clustering process. We have in-
corporated domain-speci�c meta-paths into the GraphSAGE graph em-
bedding algorithm to enhance its e�ectiveness. Our approach includes
an ontology model capturing complex APT malware characteristics and
behaviors, extracted from sandbox analysis reports and expanded in-
telligence. To manage the graph's granularity and scale, we categorize
nodes based on domain knowledge, form a correlation subgraph, and
progressively adjust similarity thresholds and edge weights. The re�ned
graph maintains crucial attribution data while reducing complexity. By
integrating domain-speci�c meta-paths into GraphSAGE, we achieve im-
proved APT attribution accuracy with an average accuracy of 91.16%,
an F1 score of 89.82%, and an average AUC of 98.99%, enhancing perfor-
mance signi�cantly. This study bene�ts network security analysts with
an intuitive knowledge graph and explores large-scale graph computing
methods for practical scenarios, o�ering a multi-dimensional perspec-
tive on APT malware analysis and attribution research, highlighting the
value of knowledge graphs in network security.

Keywords: APT malware · attribution analysis · graph clustering ·

graph embedding · ensemble machine learning.

1 Introduction

In the realm of cybersecurity, Advanced Persistent Threats (APTs) are a major
concern. APTs are intricate and covert threats, designed to in�ltrate networks
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for extended periods with the goal of stealing sensitive information or executing
destructive attacks. These threats often employ sophisticated malware to bypass
traditional security defenses [33, 10]. Understanding and mitigating APT attacks,
especially APT malware, are crucial.

Researchers have employed various techniques like machine learning, behav-
ioral analysis, code signature recognition, and malware sandbox testing to en-
hance APT malware detection and attribution [15, 13]. However, cybersecurity
faces challenges due to the evolving nature of APT attacks and the complexity
of large-scale networks and datasets [5].

Knowledge graphs have proven e�ective in network security analysis. They
provide a comprehensive way to understand malware, attacker behavior, and
attack chains by integrating data from various sources [11, 17, 26]. However, con-
structing and analyzing complex knowledge graphs pose challenges, such as the
scale of nodes and edges in large networks [20]. Traditional knowledge graphs
derived from abstract data sources struggle to support multidimensional attri-
bution analysis.

Therefore, we propose a re�ned representation of an APT malware knowledge
graph: APTMalKG. Based on in-depth analysis of malware, covering static and
dynamic features, rule-based TTPs, and communication behavior, among other
information. Through the construction of the APTMalKG knowledge graph, we
capture multidimensional features and behaviors in a structured manner, pro-
viding a more comprehensive view for network security analysts. However, due
to the �ne-grained nature of knowledge graphs, their vast scale and complexity
pose challenges for e�cient graph computation. To address this issue, we intro-
duce a multi-stage graph clustering method, which organizes nodes e�ectively
into related heterogeneous subgraphs based on node attributes and structural
similarity, thereby achieving e�cient node fusion and graph re�nement. Addi-
tionally, we consider the optimization of graph representation, de�ning malware
aggregation features and abstract features as two dimensions of graph represen-
tation, gradually reducing graph complexity while preserving critical attribution
information. Finally, we apply domain-de�ned meta-path-enhanced GraphSAGE
graph embedding methods, guided by domain knowledge-de�ned malware behav-
ior paths, to provide a streamlined and e�cient APT attribution classi�cation
model. In summary, our research o�ers several key advantages:

� Firstly, the construction of knowledge graphs enables us to capture various
features and behaviors of malware in a structured manner, providing a more
comprehensive view.

� Secondly, the multi-stage graph clustering method re�nes knowledge graphs
and optimizes graph representations, reducing graph complexity while re-
taining important information.

� Lastly, domain-de�ned meta-path-enhanced GraphSAGE graph embedding
enhances attribution classi�cation accuracy and e�ciency, enabling us to
better understand and respond to APT threats.

Our study aims to delve into how to construct and optimize knowledge graphs
from the perspective of APT malware, providing robust support for attribution
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analysis. Simultaneously, we provide a new multidimensional visualization graph
for APT malware analysis and attribution research, aiding security teams in bet-
ter understanding and responding to APT threats, and showcasing the potential
value of knowledge graphs in the �eld of network security.

2 Related Work

In recent years, APT malware has emerged as a major concern in cybersecurity.
The in-depth analysis and accurate attribution of such attacks are crucial. Re-
searchers have been focusing on leveraging machine learning and deep learning
to enhance the identi�cation and attribution of APT attacks. Methods like deep
learning algorithms and transfer learning have been instrumental in classifying
APT malware, particularly in understanding API behaviors [31]. Techniques
such as sequence pattern feature mining and combining BERT with LSTM have
also been explored for improved detection [4, 2].

APT attribution research confronts challenges like data scarcity and attacker
deception. To combat these, various methodologies, including attack pattern
analysis and cross-domain data fusion, are being utilized to gain more precise
insights [25, 23, 24]. Di�erent feature dimensions like static, dynamic, and net-
work features each provide unique perspectives for malware analysis.

The construction of knowledge graphs, representing malware attributes and
relationships, has become a vital tool in APT malware analysis [8, 17, 22]. These
graphs use standardized malware descriptions covering functionality, behavior,
and targets to support analysis and detection tasks [1].

Graph representation learning, converting data into vector representations,
has advanced in malicious software classi�cation and attribution. Techniques like
graph clustering, graph embedding, and graph convolution are being applied to
improve the precision of malware classi�cation and attribution [30, 32, 14, 3, 19].

In summary, current research highlights the importance of a multidimensional
approach, knowledge graph construction, and attribution research in addressing
APT threats. However, challenges in constructing high-quality APT malware at-
tribution graph data and selecting appropriate models persist. Addressing these
issues is crucial for the development of graph representation learning in mal-
ware classi�cation and attribution. This study aims to construct a re�ned APT
malware knowledge graph through multi-stage graph clustering, enhancing the
e�ectiveness of attribution research.

3 Proposed Method

Fig. 1 illustrates the construction of APTMalKG, which involves the analysis
of malware in both static and dynamic dimensions, incorporating Tactics, Tech-
niques, and Procedures (TTPs) as well as location data. The process employs
a multi-stage graph clustering approach to re�ne the graph, reduce complex-
ity, and enhance the GraphSAGE algorithm with domain-speci�c metapaths to
enable e�cient APT attribution.

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63749-0_6

https://dx.doi.org/10.1007/978-3-031-63749-0_6
https://dx.doi.org/10.1007/978-3-031-63749-0_6


Fig. 1. System architecture of APTMalKG attribution model.

Initially, the research extracts multidimensional malware data and constructs
a comprehensive knowledge graph. Subsequently, the multi-stage graph cluster-
ing method creates node-associated subgraphs based on attribute and structural
similarity, optimizing the graph's representation while simplifying its complexity.
The article distinguishes between two graph dimensions: aggregate and abstract
malware features, further enhancing information processing e�ciency. Lastly,
the incorporation of malware metapaths enhances GraphSAGE, resulting in a
more e�ective APT attribution model tailored for network security analysis.

3.1 APT Malware Ontology Mode

In the evolving �eld of network security, constructing and applying APT knowl-
edge graphs has become vital. This approach organizes complex information
about APT malware and its activities to enhance network security analysis. We
introduce the APT malware ontology model, re�ning existing APT knowledge
graphs. Our new framework categorizes entities into static properties, functional
behaviors, communication resources, and threat indicators. We select 20 feature
dimensions from malware analysis, including static, dynamic, and intelligence as-
pects. These dimensions help form a comprehensive ontology model, as depicted
in Fig. 2, providing insights into APT attacks and improving defense strategies.

In this model, we de�ne four core classes: APT Malware, Functional Behav-
iors, Communication Resources, and Threat Indicators. APT Malware captures
static analysis information, Functional Behaviors describe system-level behav-
iors, Communication Resources cover network-related information, and Threat
Indicators highlight signatures and classi�cations. Associations between entities
are categorized into interactions with causality and process-centered calls, out-
puts, and mapping edges. This ontology model enhances our understanding of
APT attacks and aids network security analysts.
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Fig. 2. APT Malware Ontology Model.

3.2 Multistage Graph Clustering & Graph Representation

Optimization

In APT malware attribution analysis, the typical method involves examining
shared code functionality, attack resources, or TTPs families to uncover the
groups and intentions behind APT attacks. Our study constructs a knowledge
graph using various behaviors and resource associations from malware analy-
sis, aiming to identify key association dimensions to pinpoint the APT malware
group. To handle the complexity of APT malware hiding among other behaviors,
we use a multi-stage graph clustering method to reduce graph volume and com-
plexity, improving computational e�ciency while maintaining analysis quality.
We streamline the graph volume and optimize representation post-re�nement to
enhance the accuracy and e�ciency of APT malware attribution analysis.

Since there is no dynamic interaction between static features, this paper
considers static properties as APT Malware node attributes in the graph cal-
culation. In addition to the Malware node, we subdivided sample information
into three categories: functional behaviors, communication resources, and threat
indicators, assigning a uni�ed unique identi�er (uniStr) to each node type for
e�cient data preprocessing. Then, we introduced a multi-stage graph clustering
method and de�ned two graph representation dimensions: aggregation features
and abstract features. The aggregation dimension simpli�es the graph by merg-
ing similar nodes, revealing malware macrostructure and behavioral patterns.
The abstract dimension focuses on extracting abstract characteristics, improv-
ing graph representation e�ciency. By dividing malware feature dimensions into
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Algorithm 1 Multi-Stage Graph Clustering for Aggregation Dimension

Require: Original �ne-grained graph G�ne-grained, number of stages S, similarity
thresholds {θs}Ss=1

Ensure: Re�ned graph Gnew

1: Preprocessing: Initialize Gclustering_dimension with node embeddings from
G�ne-grained: χ← embBert(uniStr)

2: Stage 1 - Pairwise Similarity Calculation:
3: Get pair (vi, vj) based on shared neighbors.
4: for each node pair (vi, vj) in G�ne-grained do
5: Calculate Sim(vi, vj) = µ1Prosim(vi, vj) + µ2Strusim(vi, vj), µ1 + µ2 = 1
6: Form edges in Gclustering_dimension using these similarities: ζ ← Sim(vi, vj)
7: end for
8: Stage 2 - Multi-Stage Community Clustering:
9: for stage s = 1 to S do
10: Use θs to �lter edges ζ in Gclustering_dimension.
11: Apply graph community detection algorithms on Gclustering_dimension.
12: Merge nodes and edges based on communities to update Gclustering_dimension.
13: end for
14: Stage 3 - Final Normalization:
15: Normalize weights from nodes X to Y based on the statistical frequency of records

pointing to the aggregated node using the formula: Normalsum(X,Y ) =
∑

wX→Y∑
wX∗

16: Update the edge weight ω ← Normalsum(X,Y ) on Gclustering_dimension

17: return Gnew ← Re�neGraph(Gclustering_dimension)

aggregate and abstract dimensions, we reduce computational resource require-
ments and enhance information processing e�ciency.

Aggregate Dimension Represention Optimization. In the aggregation
dimension, our focus is on handling nodes characterized by random strings and
large quantities, which are often challenging to obtain through simple traversal.
To reduce the graph's complexity, we cluster and merge nodes that are similar or
strongly related, thus preserving essential structural and informational features.
We calculate the similarity between node pairs, considering both structure and
attributes, and introduce new edges and weights to construct a re�ned hetero-
geneous graph. We perform multiple stages of graph clustering calculations to
enhance the graph's structure. To ensure the unsupervised graph clustering's
credibility, we employ various graph community detection algorithms. During
these stages, we carry out node fusion and replacement within the same com-
munity. We also de�ne the attributes and edge weights for the merged nodes,
creating a detailed and enriched APT malware knowledge graph, as illustrated
in Algorithm 1. The optimized graph representations are stored in the graph
structure, with χ and γ denoting node feature representations in di�erent aggre-
gation and abstract dimensions. The weight representations ω and δ are used to
quantify the strength and relevance of connections between nodes.

Where, embBert(uniStr) represents the embedding vector of a node obtained
by processing uniStr using the BERT model. Prosim(vi, vj) indicates the at-
tribute similarity determined by the node's embedding vector, while Strusim(vi, vj)
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signi�es the structural similarity in�uenced by the graph's topology. The term∑
wX→Y represents the cumulative original weights of edges originating from

node X and pointing towards the merged node Y , whereas
∑
wX∗ denotes the

total weight of all edges originating from node X and directed towards any other
node. In this approach, the community clustering algorithm integrates various
clustering techniques [18], which are instrumental in revealing the community
structure and behavioral patterns of malware in APT malware analysis.

Abstract Dimension Representation Optimization. Unlike the aggre-
gation dimension, the abstract dimension deals with types that have clear nam-
ing conventions and a limited number of nodes. These nodes can be traversed
within a certain time frame, allowing for deeper and more speci�c analysis. In
the abstract dimension, we enhance the quality and usability of the knowledge
graph by precisely capturing and expressing the key features of these limited
nodes.

At the same time, for measuring the importance of terms this paper intro-
duces the Feature Node Importance (FNI) metric. FNI is used to measure the
uniqueness of node features for certain categories, reducing the in�uence of fea-
tures that appear in almost all categories in subsequent community partitioning.
The speci�c formula for calculating FNI is as follows:

ϕFNI(j) = 1−
(∑

(gj)− 1∑
(G)

)2

, gj = Uniq (Rij) (1)∑
(G) refers to the total count of all cluster categories across the entire

graph, and
∑

(gj) refers to the count of distinct cluster categories associated
with a particular feature node after deduplication.

In equation (1),
∑

(G) represents the total number of cluster categories in-
cluded, and Rij represents the set of relevant edges connecting samples in cluster
i to feature node j. gj represents the set of cluster associations contained in fea-
ture node j after deduplication based on feature node j.

∑
(gj) represents the

number of cluster categories associated in feature node j. To capture the trend
of decreasing in�uence as features become more general, a non-linear decreasing
function ϕFNI(j) is �tted. Based on the importance indicator, we de�ne edge
weights in the abstract dimension as follows:

δ : ω · ϕFNI(j) (2)

Furthermore, nodes evaluate their impact on classi�cation by computing the
attribute γ for node i, as expressed by the equation (3). Where F (i) represents
the total frequency of feature node i in the sample set.

∑
C∈class All

represents
the summation over all categories class C. f(i, C) represents the frequency of
feature node i included in category C within the sample set.

γ : ImportClass(i) =
∑

C∈class All

f(i, C)

F (i)
(3)

This formula accounts for node i's in�uence across di�erent classi�cations,
considering both its frequency within the sample set and its distribution among
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Fig. 3. Graph Embedding Representation Based on Metapath.

various categories. The resulting node attribute γ quanti�es the extent of nodes'
impact on di�erent classi�cations.

3.3 Threat Actor Groupal Attribution Based on Meta-Path Graph

Embedding

In this research, we propose a graph embedding method based on meta-paths,
which improves upon the GraphSAGE algorithm to construct an accurate and
e�cient APT attribution classi�cation model. This method leverages malware
behavior paths de�ned by domain knowledge, e�ectively focusing on the most
relevant structures in the graph, and captures critical information about nodes
and their neighbors through speci�c aggregation functions. This guided Graph-
SAGE strategy contributes to the achievement of a more precise and e�cient
APT attribution classi�cation model.

As shown in Fig. 3, the representation of the symbols corresponds to the
descriptions provided in the previous section. It should be noted that ζ is em-
ployed for multi-stage graph clustering and is not part of the graph embedding
calculations. By utilizing domain meta-paths de�ned for Functional Behavior,
Communication Resources, and Threat Indicators, we partition the graph into
di�erent subgraphs aligned with these meta-paths. Subsequently, we apply the
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GraphSAGE algorithm to extract information surrounding Malware center nodes
as described below.

hkv = σ
(
W k · CONCAT

(
hk−1v ,AGG

(
{hk−1u ,∀u ∈ N(v)}

)))
(4)

Here, hkv is the hidden state of node v at layer k,N(v) is the set of neighboring
nodes of v, W k is the weight matrix at layer k, σ is the activation function, and
AGG is the aggregation function.

To combine the advantages of di�erent aggregation strategies and comprehen-
sively capture information from neighboring nodes, we use a hybrid aggregation
function that combines direct concatenation, pooling, long short-term memory
networks (LSTM), and graph convolutional networks (GCN) to generate di�er-
ent embeddings as follows:

AGG(S) = (SPLICE(S),POOL(S),LSTM(S),GCN(S)) (5)

Here, S is the feature set of neighboring nodes. This hybrid aggregation
approach preserves the integrity of the original features while enhancing the
extraction of information from neighboring nodes through di�erent strategies.

Next, we combine these graph embedding results with ensemble machine
learning and use an auto-sklearn [9] for ensembled model selection and pa-
rameter tuning. We explore di�erent machine learning models and parameter
con�gurations to �nd the best combination. GraphSAGE primarily focuses on
structural feature extraction in this process, while ensemble learning is respon-
sible for model selection and parameter optimization. This ensemble method
combines multiple machine learning techniques to improve prediction accuracy
and generalization.

With this optimization approach, our model retains the information of the
graph data structure while achieving e�ective model selection and optimization.
This combination of meta-path-guided graph embedding and ensemble machine
learning techniques provides an innovative and e�cient solution for APT attri-
bution classi�cation.

4 Evaluation & Discussion

In this chapter, we compare our ontology-based APT malware knowledge graph
with existing research on APT-related knowledge graphs. We focus on evaluat-
ing whether graph re�nement negatively impacts classi�cation performance and
comparing di�erent graph computation methods using meta-path graph embed-
dings. Our goal is to demonstrate the advantages of our domain graph embedding
approach based on the re�ned knowledge graph in APT group recognition tasks.

We collected APT malware from public intelligence sources [12, 6, 21] using
VirusTotal [29], excluding samples that were either reused pieces of malware or
could not be analyzed in sandboxes. We focused on 10 groups from di�erent
countries and regions for experimental veri�cation and obtained labeled samples
that were manually veri�ed by security experts. This study also encompasses
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Table 1. APT Malware Distribu-
tion and Corresponding Threat Actor
Groups.

Country Threat Actor Groups Number
Iran APT-C-07 139
USA Equation 464
Turkey PROMETHIUM 203
Vietnam APT32 1243
North Korea Lazarus Group 4028
Russia BlackEnergy 101
South Korea Darkhotel 525
India Patchwork 1380
India APT-C-35 379
Russia Carbanak 557

COUNT 10 9019

Table 2. Comparisons with APT Malware
Classi�cation Approaches.

Node Type Finegrained Re�ned Knowledge Graph
Abstract Aggregation All

API 208061 3935 3935
ATTCK 143 164 164
Location 56262 49722 49722
Domain 3605 1761 1761
Family 3142 717 717
File_Behavior 982223 12039 12039
IOC 27846 107 107
IP 3109741 291169 291169
Malware 9019 9019
Mutex 3161 1655 1655
Other_Behavior 2053 27 27
Process 15516 8633 8634
Register 82104 3850 3850
Signature 481 477 477

All Nodes 4503357 383276
Related Edge 14085227 1249510

the analysis of APT groups with imbalanced samples, ranging from just over
100 samples for the least represented group to over 4,000 samples for the most
represented group. The speci�c distribution of APT malware and their corre-
sponding group lists are shown in Tab. 1.

The �ne-grained knowledge graph constructed through the ontology model
in this paper contains various types of nodes, such as API, ATT&CK, location,
Domain, etc., with a total of approximately 4.5 million nodes. Through multi-
stage graph clustering methods, these nodes are signi�cantly reduced in the
aggregation dimension, ultimately reducing the total number of nodes in the
"Re�ned Knowledge Graph" to approximately 380,000, as shown in Tab. 2.

4.1 Discussion1: Whether the Key Information of APT Malware

Knowledge Graph Attribution is Reduced After Re�ning

We visualize the similarity relationship between two malware samples by con-
sidering the associated nodes around them, using a relationship-based layout
as depicted in Fig. 4. The results show signi�cant associations within the same
group. This highlights the e�ectiveness of the ontology model we propose for
constructing the APTMalKG, especially in classifying APT groups.

Furthermore, the analysis indicates that the Re�ned Knowledge Graph's per-
formance is on par with that of the Fine-grained Knowledge Graph, showing a
slight advantage in di�erentiating certain groups. For instance, the distinction
between PROMETHIUM (green) and Lazarus Group (pink) is more distinct,
and the separation of Darkhotel (blue) from other groups is clearer. This sug-
gests that while we reduced the graph's complexity, essential features for groupal
analysis have been e�ectively retained.
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Fig. 4. Comparative Analysis of Association E�ects in APT Threat Actor Groups:
Fine-Grained vs. Re�ned Knowledge Graphs of Malware Samples. (left: the �ne-grained
knowledge graph, right: re�ned knowledge graph, nodes: individual malware samples,
colors: 10 group categories.)

4.2 Discussion2: What is the E�ect of Re�ned APT Malware

Knowledge Graph Attribution Analysis

In this section, we delve into the attribution analysis of re�ned APT malware
knowledge graphs. Through a comprehensive comparison of various graph com-
putation methods and ensemble machine learning techniques, we showcase their
performance in APT malware attribution analysis.

Table 3. Comparison with Other Graph Calculation Methods on F1 score.

Group RGCN Hetro-
GNN

Graph-
SAGE

SAGE-
Metapath

Ensemble
(our)

Lazarus Group 0.8151 0.8351 0.7984 0.834 0.9373
Patchwork 0.6909 0.705 0.6277 0.6996 0.9274
APT32 0.7 0.692 0.6186 0.6891 0.8722

Darkhotel 0.5161 0.5579 0.7089 0.7264 0.8128
Carbanak 0.6827 0.6698 0.9278 0.9326 0.8768
Equation 0.8432 0.8508 0.6712 0.7199 0.9348
APT-C-35 0.609 0.5854 0.5979 0.5998 0.8050

PROMETHIUM 0.8648 0.8266 0.8919 0.8981 0.9512
APT-C-07 0.84 0.8727 0.6455 0.8679 1
BlackEnergy 0.6444 0.5589 0.7331 0.7947 0.8648

F1Macro 0.72062 0.71542 0.7221 0.77621 0.8982
Test ACC 0.7533 0.7572 0.7641 0.8021 0.9116
Test AUC 0.9253 0.9205 0.9506 0.9612 0.9899

First, Tab. 3 data illustrates the signi�cant performance of our speci�c method,
which combines GraphSAGE embeddings based on metapath with an ensemble
of machine learning models (denoted as SAGE_Metapath+Ensemble), across
all APT groups. Particularly, in the cases of "Lazarus Group" and "Equation,"
this combined method outperforms others with F1 scores of 0.9373 and 0.9348,
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(a) GraphSAGE_Base (b) GraphSAGE_Metapath

(c) SAGE_Base+Ensemble (d) SAGE_Metapath+Ensemble(*)

Fig. 5. Confusion Matrices for Test Data Set with Model Selection (* indicates the
�nal chosen model)

respectively. This indicates the e�ectiveness of our composite approach in iden-
tifying complex and covert APT activities compared to traditional methods like
RGCN, Hetero-GNN, and standalone GraphSAGE.

Table 4. Comparison with Other Inte-
grated Machine Learning Methods.

Model ACC AUC F1_Macro
GraphSAGE_XGBoost 0.8620 0.9802 0.8286
GraphSAGE_CatBoost 0.8242 0.9731 0.7652
GraphSAGE_LightGBM 0.8624 0.9823 0.8274

SAGEMetapath_XGBoost 0.9082 0.9874 0.8927
SAGEMetapath_CatBoost 0.9054 0.9880 0.8856
SAGEMetapath_LightGBM 0.9060 0.9884 0.8884

Our 0.9116 0.9899 0.8982

Table 5. Comparisons with APT Malware
Classi�cation Approaches.

Model ACC AUC F1_Macro
Shudong et al. [16] 0.7401 0.9497 0.7610
Adem et al. [28] 0.8286 0.9414 0.8092
Hrishabh et al. [27] 0.8054 0.9038 0.7850
Do Xuan et al. [7] 0.8398 0.9541 0.8217
Our 0.9116 0.9899 0.8982

We further compare the performance of our ensemble machine learning method
in Tab. 4. Our method, which is a combination of SAGE_Metapath and Ensem-
ble learning, excels in terms of accuracy (ACC), area under the curve (AUC),
and macro-average F1 score (F1Macro), highlighting its e�ciency and accuracy
when dealing with complex datasets.

The confusion matrices in Fig. 5 further con�rms the superiority of our
method. The SAGE_Metapath+Ensemble model performs best in correctly clas-
sifying APT groups, demonstrating its highly precise classi�cation capabilities.
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Our research indicates that a comprehensive approach combining the strengths
of multiple advanced algorithms enhances overall prediction accuracy and ro-
bustness. The SAGE-Metapath algorithm improves feature representation of
malicious software samples, e�ectively capturing key features and intricate be-
havioral patterns of APT malware, thus enhancing classi�cation accuracy. More-
over, our method exhibits outstanding performance across diverse APT group
samples, demonstrating its broad applicability and robustness. This is particu-
larly crucial in the context of the increasing diversity and complexity of APT
malware.

4.3 Discussion3: How meaningful is our research in comparison

with similar studies in the �eld of APT malware analysis

Nowadays, existing research on related knowledge graphs primarily relies on
manual intelligence sources, requiring manual processing and often lacking in-
depth behavioral characteristics. We have completed the data collection on the
malware side through APT malware analysis. This connects detailed low-level
behavioral analysis with broader infrastructure and threat intelligence informa-
tion. Despite the raw nature of the data obtained from samples, which has not
undergone manual processing, our graph data encompasses a more comprehen-
sive range of dimensions available at the sample level. After constructing an
extensive dataset, we re�ned it to capture critical groupal classi�cation features.

In the realm of APT group classi�cation research, we conducted experi-
ments on our dataset using feature processing techniques from established multi-
classi�cation models in malware studies. As shown in Tab. 5, this highlights the
comparison models' limitations in classifying high-level APT groups, emphasiz-
ing the need for more targeted research. And our methodology proves e�ective
in APT group classi�cation.

Due to constraints like the experimental environment and parameters, our
study focused on basic model replication without parameter tuning or address-
ing unknowns, potentially not reaching the reference models' optimal perfor-
mance. Nevertheless, considering the highly unbalanced nature of the APT group
dataset, these results remain credible, especially given their reliance on super�-
cial malware features, possibly missing complex APT attack behavior patterns.
Additionally, these methods may struggle with malware's semantic and struc-
tural information, limiting their e�ectiveness in complex APT scenarios. Our
approach, integrating deep graph networks and ensemble learning techniques,
thoroughly analyzes APT malware's multidimensional features, showcasing its
potential in complex APT attack classi�cation.

5 CONCLUSION

In summary, re�ning the knowledge graph reduces complexity while preserving
attribution information. This research aims to enhance APT malware analy-
sis and attribution, aiding network security analysts in countering threats ef-
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�ciently. The APTMalKG is constructed through graph clustering and opti-
mization, utilizing metapath-enhanced graph embedding methods. It integrates
various data dimensions, enhancing attribution accuracy by capturing malware
behaviors comprehensively. In the future, we plan to enhance the model's ability
to generalize to new categories by combining multiple approaches such as em-
beddings and attribute learning. This approach empowers analysts with a more
re�ned knowledge graph, bolstering their capabilities against APT threats and
strengthening network security.

References

1. Malware attribute enumeration and characterization (maec).
https://maecproject.github.io/, accessed: 2023-11-11

2. Balan, G., Gavriluµ, D.T., Luchian, H.: Using api calls for sequence-pattern feature
mining-based malware detection. In: Information Security Practice and Experience.
pp. 233�251. Springer (2022)

3. Busch, J., Kocheturov, A., Tresp, V., Seidl, T.: Nf-gnn: Network �ow graph neu-
ral networks for malware detection and classi�cation. In: Proceedings of the 33rd
International Conference on Scienti�c and Statistical Database Management. p.
121�132. Association for Computing Machinery (2021)

4. Chang, H.Y., Yang, T.Y., Zhuang, C.J., Tseng, W.L.: Ransomware detection by
distinguishing api call sequences through lstm and bert models. The Computer
Journal 13, 5439 (2023)

5. Cremer, F., Sheehan, B., Fortmann, M., Kia, A.N., Mullins, M., Murphy, F.,
Materne, S.: Cyber risk and cybersecurity: a systematic review of data availabil-
ity. The Geneva Papers on Risk and Insurance - Issues and Practice 47, 698�736
(2022)

6. CyberMonitor, Robert Haist, k., et al.: Apt & cyber-
criminals campaign collection. GitHub repository (2022),
https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections

7. Do Xuan, C., Huong, D.: A new approach for apt malware detection based on
deep graph network for endpoint systems. Applied Intelligence 52(12), 14005�
14024 (2022)

8. Dutta, S., Rastogi, N., Yee, D., Gu, C., Ma, Q.: Malware knowledge graph: A
comprehensive knowledge base for malware analysis and detection. In: 2021 IEEE
Network Security and Privacy Protection International Conference (NSPW) (2021)

9. Feurer, M., et al.: auto-sklearn: Automated machine learning toolkit (2023),
https://automl.github.io/auto-sklearn/master/, gitHub repository

10. Hasan, M.M., Islam, M.U., Uddin, J.: Advanced persistent threat identi�cation
with boosting and explainable ai. SN Computer Science 4, 271�279 (2023)

11. Kiesling, E., Ekelhart, A., Kurniawan, K., Ekaputra, F.: The sepses knowledge
graph: An integrated resource for cybersecurity. In: The Semantic Web - ISWC
2019. pp. 198�214. Springer (2019)

12. Kiran Bandla, S.C.: Aptnotes data. GitHub repository (2021),
https://github.com/aptnotes/data

13. Lee, K., Lee, J., Yim, K.: Classi�cation and analysis of malicious code detection
techniques based on the apt attack. Applied Sciences 13, 2894 (2023)

14. Li, S., Zhou, Q., Zhou, R., Lv, Q.: Intelligent malware detection based on graph
convolutional network. The Journal of Supercomputing 78, 4182�4198 (2022)

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63749-0_6

https://dx.doi.org/10.1007/978-3-031-63749-0_6
https://dx.doi.org/10.1007/978-3-031-63749-0_6


15. Li, S., Zhang, Q., Wu, X., Han, W., Tian, Z.: Attribution classi�cation method of
apt malware in iot using machine learning techniques. Security and Communication
Networks 2021 (2021)

16. Li, S., Zhang, Q., Wu, X., Han, W., Tian, Z., Yu, S.: Attribution classi�cation
method of apt malware in iot using machine learning techniques. Security and
Communication Networks 2021, 12 (2021)

17. Li, Z., Zeng, J., Chen, Y., Liang, Z.: Attackg: Constructing technique knowledge
graph from cyber threat intelligence reports. In: Computer Security - ESORICS
2022. pp. 589�609. Springer (2022)

18. MLG at Neo4j: Community detection (2022), https://neo4j.com/docs/graph-data-
science/current/algorithms/community/

19. Moon, H.J., Bu, S.J., Cho, S.B.: Directional graph transformer-based control �ow
embedding for malware classi�cation. In: International Conference on Arti�cial
Neural Networks. pp. 506�518. Springer (2021)

20. Peng, C., Xia, F., Naseriparsa, M., Osborne, F.: Knowledge graphs: Opportunities
and challenges. Arti�cial Intelligence Review 56, 13071�13102 (2023)

21. RedDrip7: Apt_digital_weapon: Indicators of compromise (iocs) collected from
public resources and categorized by qi-anxin. GitHub repository (2022)

22. Ren, Y., Xiao, Y., Zhou, Y., Zhang, Z., Tian, Z.: Cskg4apt: A cybersecurity knowl-
edge graph for advanced persistent threat organization attribution. IEEE Trans-
actions on Knowledge and Data Engineering 35, 5695�5709 (2023)

23. Renz, M., Kröger, P., Koschmider, A., Landsiedel, O., de Sousa, N.T.: Cross domain
fusion for spatiotemporal applications: taking interdisciplinary, holistic research to
the next level. Informatik Spektrum 45, 271�277 (2022)

24. Sahoo, D.: Cyber Threat Attribution with Multi-View Heuristic Analysis, pp. 271�
277. Springer (2022)

25. Sharma, A., Gupta, B.B., Singh, A.K., Saraswat, V.K.: Advanced persistent threats
(apt): evolution, anatomy, attribution and countermeasures. Journal of Ambient
Intelligence and Humanized Computing 14, 9355�9381 (2023)

26. Sikos, L.F.: Cybersecurity knowledge graphs. Knowledge and Information Systems
65, 3511�3531 (2023)

27. Soni, H., Kishore, P., Mohapatra, D.P.: Opcode and api based machine learning
framework for malware classi�cation. In: 2022 2nd International Conference on
Intelligent Technologies (CONIT). pp. 1�7 (2022)

28. Tekerek, A., Yapici, M.M.: A novel malware classi�cation and augmentation model
based on convolutional neural network. Computers & Security 112, 102515 (2022)

29. VirusTotal: Virustotal: Analyse suspicious �les and urls to detect malware. Website
(2022), https://www.virustotal.com/

30. Wai, F.K., Thing, V.L.L.: Clustering based opcode graph generation for malware
variant detection. In: 2021 18th International Conference on Privacy, Security and
Trust (PST). pp. 1�11 (2021)

31. Wei, C., Li, Q., Guo, D., Meng, X.: Toward identifying apt malware through api
system calls. Security and Communication Networks 2021, 8077220 (2021)

32. Wu, X.W., Wang, Y., Fang, Y., Jia, P.: Embedding vector generation based on
function call graph for e�ective malware detection and classi�cation. Neural Com-
puting and Applications 34, 8643�8656 (2022)

33. Xuan, C.D., Dao, M.H.: A novel approach for apt attack detection based on com-
bined deep learning model. Neural Computing and Applications 33, 13251�13264
(2021)

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63749-0_6

https://dx.doi.org/10.1007/978-3-031-63749-0_6
https://dx.doi.org/10.1007/978-3-031-63749-0_6

