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Abstract. Virtual planning tools that provide intuitive user interac-
tion and immediate hemodynamic feedback are crucial for cardiologists
to effectively treat coronary artery disease. Current FDA-approved tools
for coronary intervention planning require days of preliminary process-
ing and rely on conventional 2D displays for hemodynamic evaluation.
Immersion offered by extended reality (XR) has been found to bene-
fit intervention planning over traditional 2D displays. To bridge these
gaps, we introduce HarVI, a coronary intervention planner that lever-
ages machine learning for real-time hemodynamic analysis and extended
reality for intuitive 3D user interaction. The framework uses a predefined
set of 1D computational fluid dynamics (CFD) simulations to perform
one-shot training for our machine learning-based blood flow model. In a
cohort of 50 patients, we calculated fractional flow reserve (FFR), the
gold standard biomarker of ischemia in coronary disease, using HarVI
(FFRHarV I) and 1D CFD models (FFR1D). HarVI was shown to al-
most perfectly recapitulate the results of 1D CFD simulations through
continuous and categorical validation scores. In this study, we establish a
machine learning-based process for virtual coronary treatment planning
with an average turnaround time of just 74 minutes, thus reducing the
required time for one-shot training to less than a working day.

Keywords: coronary artery disease · machine learning · virtual reality.

1 Introduction

Enabling intervention planning can give physicians an intuitive approach to per-
forming virtual interventions and receiving real-time hemodynamic feedback to
guide clinical decision making. By integrating patient-specific computational
fluid dynamics (CFD) models, our planning tool offers a seamless and intu-
itive platform to perform virtual interventions in extended reality (XR). The
role of immersion beyond traditional 2D displays has been explored and shown
to improve user interaction for intervention planning [1, 2, 3, 4, 5, 6, 7]. More
importantly, our tool also provides real-time hemodynamic feedback, which is
crucial for informed clinical decision making. Advances in personalized CFD
have already demonstrated the ability to non-invasively and accurately deter-
mine key hemodynamic metrics vital for decision-making processes. For example,
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fractional flow reserve (FFR) [8] is a pressure-based metric that indicates coro-
nary ischemia [9]. There is even FDA-approved coronary intervention planning
software that predicts FFR in response to treatment [10, 11]. However, these
state-of-the-art models face limitations in turnaround time and user interaction.

In coronary artery disease (CAD), stent implantation is the leading percuta-
neous coronary intervention (PCI) to treat functionally significant lesions (i.e.,
FFR ≤ 0.80), with more than 600,000 stents implanted annually in the United
States alone [12]. However, 25 % of the patients evaluated for a successful PCI
procedure still have residual ischemia associated with long-term adverse out-
comes [13]. This issue of incomplete functional revascularization could be miti-
gated by allowing interventional cardiologists to interactively experiment with a
variety of possible PCI strategies and their impact on the hemodynamics of that
patient to determine how best to relieve ischemia. Another use case is in complex
coronary lesions. Bifurcation lesions represent 20 % of cases and occur in arterial
bifurcations or branch points [14]. Determining how best to treat these lesions
remains a particular challenge, as they can affect the main branch (MB), the
side branch (SB), or both vessels, and bifurcation stenting is associated with a
higher risk of adverse cardiac events [15]. Using intervention planning, we could
rapidly test strategies in MB, SB, or both lesions to help identify options to
achieve complete revascularization and improve outcomes.

Machine learning has emerged as a promising option to predict FFR with-
out explicitly running CFD simulations [10]. The only FDA-approved coronary
intervention planning tool uses an interpolation model, which requires running
a series of 3D CFD simulations as part of model training [10]. Although accu-
rate, these models require 24-48 hours of processing time before a clinician can
apply the planning tool. 3D [8] and 1D CFD models of FFR [16] have both been
shown to recover invasive FFR accurately, and we hypothesized that real-time
predictors of post-intervention FFR derived from reduced-order models would
accurately recapitulate virtual PCI hemodynamics with short turnaround times.
Enabling a faster turnaround time is helpful for some patient subgroups with un-
stable coronary disease, such as patients with ST-elevated myocardial infarction,
where door-to-balloon time – the time from hospital admission to intervention
– is recommended to be less than 90 minutes [17].

In addition to efficiently training machine learning models, another essential
part of intervention planning is enabling intuitive interaction with 3D geometries
to simulate intervention. The utility of intervention planning tools can benefit
from the immersion offered by XR devices. The role of immersion in intervention
planning and evaluating hemodynamic feedback has been extensively explored
through user studies. Visualizing complex anatomy in traditional 2D displays
could be challenging with vessel overlap and foreshortening effects [18]. These
user studies [1, 2, 3, 4] have demonstrated that immersive displays are beneficial
over 2D displays in the analysis of hemodynamic maps and performing some
intervention planning tasks. There is well-established geometry editing software
in the literature [5, 19], but all of these frameworks do not provide instantaneous
hemodynamic updates for geometric modification. The only FDA-approved coro-
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nary intervention planning tool that provides instantaneous hemodynamic feed-
back uses 2D displays. To our knowledge, no intervention planning tool exists
with a turnaround time of one working day and is compatible with commonly
available XR headsets.

To enable intervention planning with short turnaround times that leverage
XR, we present HarVI (HARVEY [20]Virtual Intervention). HarVI is the back-
end that predicts post-PCI FFR. On the user interaction side, we used Harvis [2]
– an established computational platform to modify geometries, deploy massively
parallel simulations, and visualize hemodynamic results [2]. We introduce an in-
novative tool for intuitive clinical decision support by leveraging the real-time
flow prediction we establish here with HarVI alongside the immersive anatomical
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Fig. 1. Overview of the HarVI pipeline. (A) Clinically validated patient-specific
modeling pipeline for coronary arteries. The computational domain was derived from
coronary angiogram reconstructions. Boundary conditions were informed by clinical
measurements. Quality control was performed to ensure reconstruction accuracy com-
pared to coronary angiogram analysis. (B) A set of modifications was made to the
reconstructed geometries to sample probable intervention scenarios. This step is a one-
shot learning process and was invoked once per patient. The results of this training
process were used to train a machine learning model to enable real-time prediction
of post-intervention FFR. (C) After training the HarVI model, users could plan a
revascularization strategy using extended reality headsets and receive real-time hemo-
dynamic feedback in the Harvis GUI. HarVI refers to the machine learning model used
for intervention planning. We coupled HarVI with Harvis – a virtual reality platform
for patient-specific modeling.
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editing capabilities from Harvis (Figure 1). HarVI uses a clinically validated
1D FFR modeling pipeline [16] to train the machine learning model for real-
time flow prediction (Figure 1A-B). This process is invoked only once per
patient as part of a training routine. The results of the training process are
used to create a machine learning model to predict post-PCI FFR in real-time.
Finally, Harvis allows users to perform a virtual intervention in an immersive
environment and visualize updated hemodynamic results, and HarVI provides
instantaneous hemodynamic feedback (Figure 1C). This paper takes a founda-
tional step in the establishment of immersive, intuitive, and real-time techniques
for clinical decision support for CAD interventions.

2 Methods

2.1 Personalized hemodynamic analysis using reduced-order models

Image-derived data provided the complex 3D geometries needed for this study.
Using anonymized and deidentified data from previous research [16], our analysis
incorporated clinical measurements from 50 patients who had confirmed coro-
nary artery disease by angiography. These data were originally collected during
invasive coronary angiography procedures, to create patient-specific blood flow
models. The key clinical measurements used for this purpose included cardiac
output, cuff pressure, heart rate, and hematocrit.

We applied our in-house 1D blood flow simulator to create patient-specific
1D blood flow models of the coronary arteries [16, 21]. Our approach differs from
FDA-approved software [16]. For flow simulations, image-derived 3D anatomies
were required. In this study, we use anonymized 3D meshes from our previous
work [16]. These 3D anatomies were reconstructed from coronary angiograms
using the SnakeTree3D software described in [18]. The 1D computational domain
was defined by computing centerlines and corresponding hydraulic diameters
from the 3D reconstructed geometry using Mimics (Materialise, Leuven, BE).

Reduced-order blood flow simulations to compute pre-intervention FFR were
performed using a well-established 1D blood flow simulator [16, 22]. Pre-intervention
FFR calculated from the 1D simulator has been clinically validated against inva-
sively measured FFR in all 50 patients in this study [16]. We maintain the same
model assumptions as in [16] where blood was modeled as an incompressible
Newtonian fluid with a density of 1060 kg/m3 and dynamic viscosity evaluated
per patient. Pulsatile flow rate waveforms were incorporated at the inlet, and
2-element Windkessel models (resistance and compliance) were employed at the
outlets. All simulations were tuned to simulate hyperemic conditions.

2.2 Integrating with Harvis and editing 3D stenosis geometry

The first part of establishing a new virtual intervention tool was to enable users
to easily edit 3D coronary geometries to emulate intervention. Within Harvis,
the user would place two dots to delineate the endpoints of the stenosis and

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63749-0_4

https://dx.doi.org/10.1007/978-3-031-63749-0_4
https://dx.doi.org/10.1007/978-3-031-63749-0_4


Establishing HarVI for intervention planning 5
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Fig. 2. Geometry modification process. Solid 3D geometry represents baseline
anatomy and wireframes show mesh transformations used to treat the vessel. Vertices
belonging to the stenosis were selected by the user and then translated following a
sinusoidal function to simulate intervention. For the vessel expansion case, we show an
extreme case displaying the sinusoidal nature of the modification process.

intervention to be simulated. The user-defined dots act as landmarks to identify
all vertices in the mesh to be edited. The distance between the two dots was taken
as the length of the stenosis for the intervention. Once the two dots are placed, a
slider pops up that controls the radius of the stenosis. The mesh vertices between
the dots would be displaced radially outward, normal to the vector between the
two dots. The displacement of the vertices follows a sinusoidal function such
that the vertices at the minimal luminal diameter, typically at the center, expand
radially outward the most and the vertices closer to the endpoints do not expand
much [2]. To illustrate this point, Figure 2 demonstrates the vessel expansion
process for one patient in our study cohort. As the geometry modification process
involves only displacing vertices, no further post-processing was required for
blood flow simulations.

From the user’s perspective, stenosis modification occurs within the Harvis
GUI (Figure 3). Users would first load the baseline 3D geometry of the coronary
arteries before intervention in the format of .off into Harvis. At this point, the
one-shot training process shown in Figure 1A-B would be completed. The pre-
intervention FFR map could then be displayed. If the FFR map shows locations
with FFR < 0.80, an intervention would be required, as shown in Figure 3.
To perform a virtual intervention, two dots would be placed at the endpoints of
a stenosis. A slider would appear to allow the user to control the diameter of
the stenosis, and the distance between the two dots would control the length of
the stenosis. The corresponding stenosis length and radius specified by the user
would be relayed from the Harvis GUI to the HarVI machine learning backend to
query the resulting post-intervention FFR map. This planning stage corresponds
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to Figure 1C and can be performed any number of times without running any
new 1D computational fluid dynamics simulations.

1  Load geometry to Harvis
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2  Pan to focus on stenosis

3  View baseline FFR result 4  Virtual intervention

5  Save edits and query HarVI 6  View post-intervention FFR
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Fig. 3. Intervention planning workflow for the end user. Geometry modifica-
tion was enabled using Harvis. The steps for virtual coronary intervention include: 1
loading baseline geometry into Harvis, 2 panning around the geometry to focus on the
stenosis of interest, 3 evaluating baseline FFR results, 4 modifying stenosis to plan for
intervention, 5 saving geometry modification and querying HarVI for hemodynamic
feedback, and 6 evaluating and visualizing the resulting post-intervention FFR.
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Fig. 4. Machine learning architecture for HarVI. Each predefined intervention
scenario (TN ) for training consisted of creating a 2D matrix with 3D centerline data and
corresponding FFR results from 1D simulations. Each of these intervention scenarios
ran on 1 CPU, and all the 1D simulations were deployed simultaneously on a compute
cluster in parallel. Each centerline point was fitted with a bivariate cubic-spline inter-
polation model. When queried a test radius and length, the resulting predictors would
return a post-intervention FFR prediction per centerline point. The centerline points
(interrupted green line) with post-intervention FFR predictions were then projected
to the triangles of the modified geometry mesh (solid green arrow) to create an FFR
map. Note that the cylinder shown is just an idealized case for illustration.

2.3 Establishing a real-time prediction model of post-intervention
hemodynamics using machine learning

To improve clinical decision support, it is critical to quickly evaluate how var-
ious intervention strategies can influence the hemodynamics of that particular
patient. In this work, we developed a machine learning model to quickly and ac-
curately predict post-intervention FFR maps from a set of 1D CFD simulations
used for training, directly addressing this need. The training set was constructed
from a series of randomly sampled geometric modifications, in terms of stenosis
length and radius, and then 1D CFD simulations were performed to obtain post-
intervention FFR maps. Intuitively, the larger the set of 1D CFD simulations
reserved for training, or in other words, the more samples used for training, the
better the machine learning model would perform. Our objective in designing
the interpolation model was to sample the parameter space of the radius and
length of the stenosis more efficiently to minimize the training set while ensuring
that the interpolation model would adequately capture the variance in the FFR
distribution in response to intervention.
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To this end, we applied Latin Hypercube Sampling (LHS) from the SALib

library that implements the algorithms presented in [23, 24]. To minimize sam-
pling and achieve faster convergence, we opted for a quasirandom over pseu-
dorandom sampling method so that samples would be more evenly distributed
in the parameter space. We initialized the LHS for all patients from 90 % the
minimal luminal diameter to 110 % the unstenosed radius (or radius if there was
no stenosis). The radius not stenosed (Runstenosed) was calculated according to
the following equation:

%stenosis =
(
1− Rstenosed

Runstenosed

)
× 100% (1)

where the degree of stenosis (%stenosis) and Rstenosis were both labeled by
intervention cardiologists. We added these bounds to buffer our predictions and
minimize uncertainty at the extreme bounds. Similarly, lengths were sampled
from 50 % to 150 % of the pre-intervention stenosis length labeled by inter-
ventional cardiologists. Radii and lengths were uniformly sampled between the
standardized bounds we set for all patients and used as input to generate an
LHS sample matrix.

The training matrix was applied to automatically modify the coronary ge-
ometries to reflect the scenarios in the training set. So far, all operations have
been performed locally. To run the 1D simulations and generate the training
set, all input files and coronary geometries were transferred to the Duke Com-
pute Cluster (Figure 4). For each training instance (TN ), each 1D simulation
was allocated one CPU and all simulations were deployed simultaneously. This
parallel approach allowed us to complete the training process in the time it
takes to run one 1D simulation. The post-intervention FFR was computed at
all centerline points for all training scenarios. Centerline-parsed FFR data was
transferred back to the local machine to construct the machine learning model.
Bivariate cubic splines were fitted for each centerline point as a function of the
radius of the stenosis and the lengths of the LHS. The specific bivariate cubic
spline interpolation we applied was from SciPy and based on implementations
from FITPACK [25, 26]. The centerline points were spaced at 100 µm resolution
and compact enough to run efficiently on local machines. To generate the post-
intervention FFR map, K-d trees were constructed to efficiently project the FFR
data at the centerline to the nearest surface triangles on the 3D mesh.

2.4 Experimental protocol to establish and validate HarVI

To establish HarVI, the first pertinent step was to determine the level of sampling
needed to accurately capture the hemodynamic changes in response to interven-
tion. The number of samples impacts the accuracy of the machine learning model
– the more samples, the better the interpolation. The objective was to find the
minimum level of sampling that would result in the same FFR 2D heatmaps
predicted using HarVI as the ground-truth with high sampling. We determined
the level of sampling needed for all patients through convergence studies, where
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we assumed a ground-truth sampling with n = 250 and compared it with inter-
polation results with progressively fewer samples. We created a 5, 000 × 5, 000
grid to uniformly evaluate the 2D parameter space between the minimum and
maximum bounds of stenosis radius and length. In short, we made 25 million
predictions for each sampling level. To compare with the ground-truth, we com-
puted the maximum and average percentage error over all grid points. We set
the error tolerances at 5 % for maximum error and 1 % for average error.

Once we determined the level of sampling needed across patients, we evalu-
ated how closely FFRHarV I compares to FFR1D. We performed two test inter-
vention cases that were held out during the training process. Specifically, we took
treatment 1 (Rx 1) as 0.8Runstenosed and 1.2Lstenosis and treatment 2 (Rx 2)
as Runstenosed and 0.8Lstenosis. All baseline geometries were modified to match
these test intervention configurations. Post-intervention FFR was validated us-
ing continuous metrics and categorical metrics. The post-intervention FFR1D

ground-truth was generated by running 1D simulations with the corresponding
test geometry modifications.

Lastly, we measured the total turnaround time for HarVI to compare with
state-of-the-art FDA approved software. The turnaround time consisted of aver-
ages for all 50 patients for the patient-specific modeling pipeline (reconstruction
and quality control) and the processing time needed for one-shot model training
approach. Comparing the turnaround time of HarVI with established methods
was important to gauge clinical translatability.

0.50 1.00FFR

n=18 n=25 n=50

Fig. 5. Evaluating convergence in sampling stenosis radius and length.
Ground-truth was assumed to have 250 samples. For all patients (n=50), we evalu-
ated the maximum and average percentage errors for increasing number of samples as
compared to the ground-truth. The area around the maximum error curve represents
standard errors across all patients. For a representative patient, we showcase three in-
sets at 18, 25, and 50 samples that show sampling on the left and resulting FFR 2D
prediction heatmaps on the right.
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3 Results and Discussion

3.1 Few samples are needed to capture post-intervention fractional
flow reserve accurately

To establish HarVI, it was important to determine the minimum level of sampling
needed to capture changes in hemodynamics as a result of intervention. Figure
5 demonstrates that the maximum error curve and average error curve decreases
to below 5 % and 1 %, respectively, when using 25 samples. The 2D heatmaps
presented in Figure 5 show that sampling with 18 intervention configurations
was insufficient. Although we show heatmaps for one representative case, there
were apparent aberrations in the 2D heatmap that correspond to sites with a
paucity of samples. 2D heatmaps for the 25 and 50 sample cases show nearly
identical patterns without aberrations. Inter-patient variability was small for
the maximum error curve and negligible for the average error curve. This result
demonstrates that the convergence in sampling was predictable between patients.
All lesions investigated in this study were intermediate focal stenoses, which may
explain why a similar level of sampling was found to be sufficient for all patients.

3.2 Post-intervention fractional flow reserve predicted using HarVI
agrees with 1D ground-truths

After determining the level of sampling needed for convergence, we validated
HarVI against 1D ground-truths for two test intervention configurations. The

r = 0.99
p < 0.001

r = 0.99
p < 0.001

Mean ± SD: 0.00±0.00 Mean ± SD: 0.00±0.01

Rx 1 Rx 2

Fig. 6. Continuous validation of post-intervention FFR. For validation, two test
cases (Rx 1 - left and Rx 2 - right) were used to compare FFRHarVI against FFR1D. The
top row show scatter plots with correlation scores and the bottom row show Bland-
Altman plots with bias and imprecision scores.
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correlation coefficient was 0.99 (p < 0.001) and the bias was 0.0004± 0.0020 for
Rx 1. The correlation coefficient was 0.99 (p < 0.001) and the bias was −0.0006±
0.0060 for Rx 2. In short, FFRHarV I almost perfectly recovers FFR1D for
continuous metrics with negligible bias (Figure 6) in both test treatments. For
context, FDA-approved software in the literature has reported a bias of around
0.01 ± 0.05 [27, 8] when comparing FFR computed using CFD to invasively
measured FFR. The percentage discrepancy between FFRHarV I and FFR1D

was on average 0.2 % and 0.3 % for Rx 1 and Rx 2, respectively.
The diagnostic performance of FFRHarV I to discern stenoses with ischemia

is summarized in Table 1. Diagnostic performance perfectly matched FFR1D

for Rx 1. Although there was a drop in sensitivity for Rx 2, there was, in fact, only
one case misclassified in the Rx 2 test set. One case had post-intervention FFR1D

of 0.799 – right at the 0.80 threshold. The FFRHarV I prediction was slightly
above the threshold at 0.812, which resulted in a false negative. Except for the
single case located right at the ischemic threshold, HarVI classified patients in
full agreement with 1D CFD ground truths for both test cases.

3.3 End-to-end turnaround time to enable intervention planning
within one working day

The clinical translatability of HarVI depends on the turnaround time required
for the one-shot training process before real-time predictions could be made.
FDA-approved software was estimated to require 24-48 hours of processing time,
including the entire segmentation workflow, CFD simulations, and quality con-
trol, before allowing intervention planning [28, 29, 30, 31, 11, 10]. For the HarVI
end-to-end pipeline, reconstructions took 15-30 minutes [18], quality control to
ensure adequate reconstruction required another 30 minutes, and the process-
ing time for all patients was on average 14 minutes (Figure 7). Therefore, the
total turnaround time for HarVI was only 74 minutes on average, which fits in
the door-to-balloon clinical standards of 90 minutes for patients with myocar-
dial infarction [17]. After the one-shot training process, updating FFRHarV I

in response to intervention took an average of 0.4 s for all centerline points
using local machines. If interventional cardiologists only want to view the re-
sulting post-intervention FFR at the distal location of pressure measurement,

Table 1. Categorical validation of post-intervention FFR using 0.80 as the cut-off.
Ground-truth was taken as post-intervention FFR1D.

Metric Rx 1 FFRHarV I Rx 2 FFRHarV I

Sensitivity 100.0 (59.0-100.0) 83.3 (35.9-99.6)
Specificity 100.0 (91.8-100.0) 100.0 (92.0-100.0)
Positive predictive value 100.0 (59.0-100.0) 100.0 (47.8-100.0)
Negative predictive value 100.0 (91.8-100.0) 97.8 (88.0-99.6)
Accuracy 100.0 (92.9-100.0) 98.0 (89.4-99.9)
Area under the curve 1.00 1.00
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36 hrs

Real-time (0.4 sec)

90 mins

74 mins

Training
Fig. 7. Gantt chart showing timing breakdown for HarVI compared to clini-
cal standards and FDA approved software. Top section (purple) shows estimated
total turnaround time for FDA-approved intervention planning software and clinical
standards for door-to-balloon time. Bottom section (pink) shows timing breakdowns
(reconstruction, quality control, processing and sampling) for the one-shot training
process needed for HarVI. After the training process, with an average turnaround time
of 74 minutes, intervention planning in HarVI is near-instantaneous, requiring only 0.4
seconds per query (red box with interrupted lines).

FFRHarV I updates in only 0.3 ms. HarVI would enable clinicians the ability to
test a series of intervention scenarios pre-operatively within the same working
day a patient is admitted.

4 Conclusion

Real-time virtual treatment technology is a recent innovation [11, 10, 31] and
can give interventional cardiologists the option to interactively experiment with
a variety of possible strategies to determine how best to relieve ischemia. How-
ever, the current turnaround time required to train FDA-approved software per
patient ranges from 24-48 hours [29, 8]. This long turnaround time hinders the
ability of cardiologists to test intervention strategies within the same day a pa-
tient is admitted and, perhaps more pertinently, prevents planning for patients
who require immediate treatment, such as those with ST-elevated myocardial
infarction. Moreover, current software in the literature relies on conventional
2D displays and is not deployed on immersive devices that help with intuitive
evaluation of resulting post-intervention hemodynamics. To address both unmet
needs, we established HarVI, a coronary intervention planning software that
minimizes turnaround time to enable virtual intervention within one working
day and leverages extended reality hardware.

In this study, we developed a machine learning model to predict FFR in re-
sponse to intervention. We employed LHS to efficiently capture the variance in
FFR in response to any possible intervention scenario in terms of radius and
length of stenosis. For intuitive user interaction, interventions were captured as
geometric modifications to 3D coronary meshes in virtual reality. We coupled the
HarVI backend to the Harvis GUI, which is deployable on multiple XR headsets
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with varying levels of immersion [2]. Enabling intuitive and immersive anatomi-
cal editing is important for more accurate treatment planning. Coronary arteries
have high spatial complexity with many points of arterial branching and vessels
with high tortuosity. The use of XR headsets for geometric modification and flow
visualization improves intervention planning compared to traditional 2D displays
[4, 32]. On the backend, we applied bivariate cubic spline interpolation models
to predict post-intervention FFR from the training set of pre-configured inter-
vention scenarios. Through convergence studies, we found that 25 samples were
sufficient for the machine learning model to accurately predict FFR. To evaluate
HarVI, we tested two held-out stenting procedures and compared them with 1D
CFD ground truths. HarVI was able to recapitulate the 1D CFD results accu-
rately (0.2-0.3 % error) as evaluated using continuous and categorical validation
metrics for the 50 patients in the cohort. Finally, we recorded the time needed
in critical parts of the HarVI pipeline and found that the average end-to-end
turnaround time required to enable virtual intervention was 74 minutes.

In this study, we have taken initial steps toward integrating machine learning
and extended reality for real-time planning of coronary interventions, focusing
on focal lesions. The findings suggest a promising direction for expanding this
approach to more complex diseases, such as serial and bifurcation lesions. HarVI
offers a more streamlined method for interventional cardiologists to evaluate
different treatment options within hours instead of days. The bivariate cubic
spline model used here demonstrates strong accuracy. Future exploration of other
machine learning-based approaches could further improve accuracy and reduce
turnaround time. While the developments presented here are in their early stages,
they lay the critical foundation for improving the efficiency of clinical decision
making in cardiology.
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