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Abstract. Modern programming languages are very complex, diverse,
and non-uniform in their structure, code composition, and syntax. There-
fore, it is a difficult task for computer science students to retrieve relevant
code snippets from large code repositories, according to their program-
ming course requirements. To solve this problem, an AI-based approach
is proposed, for students to better understand and learn code semantics,
with solutions for real-world coding exercises. First, a large number of
solutions are collected from a course titled “Algorithms and Data Struc-
tures” and preprocessed, by removing unnecessary elements. Second, the
solution code is converted into a sequence of words and tokenized. Third,
the sequence of tokens is used to train and validate the model, through
a word embedding layer. Finally, the model is used for the relevant code
retrieval and classification task, for the students. In this study, a bidi-
rectional long short-term memory neural network (BiLSTM) is used as
the core deep neural network model. For the experiment, approximately
120,000 real-world solutions from three datasets are used. The trained
model achieved an average precision, recall, F1 score, and accuracy of
94.35%, 94.71%, 94.45%, and 95.97% for the code classification task, re-
spectively. These results show that the proposed approach has potential
for use in programming education.

Keywords: Code Semantics · Deep Learning · Programming Education
· Software Engineering · Natural Language Processing

1 Introduction

Nowadays, the importance of programming is increasing due to the information
and communication technology (ICT) needs of modern society. Thus, higher edu-
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cational institutions are placing more emphasis on improving students’ program-
ming skills [15, 13]. In addition, there is a relationship between programming and
other academic courses. For instance, a data-driven analysis found that better
programming skills have a positive impact on overall academic performance [15].
Therefore, it is important to provide more meaningful and effective support for
the programming learning process. In this case, an AI model can provide more
dynamic support, such as code searching, relevant code suggestions, algorithm
identification, and classification. In particular, code classification is considered
one of the main foundations of many of coding-related activities. However, clas-
sifying a large number of code fragments 5, in a non-automated manner, is a
formidable task. Considering this problem, the aim of this work is to establish if
machine learning models can be effectively used to understand the meaning of
code and become the basis for supporting coding-related activities.

In recent years, many academic and industrial research experiments have
been conducted to facilitate programming tasks. For example, identifying the
location of errors in code [18, 5], error detection, code refactoring [16, 10], code
evaluation and repair [9], etc. In addition, deep neural network (DNN) models
are effectively used for coding tasks [2]. Considering the need to handle lines
of programming code, recurrent neural networks (RNNs) are widely used to
develop models for programming tasks. RNN models include long short-term
memory (LSTM) and bi-directional long short-term memory (BiLSTM), and
their variants are also commonly used in this context. In [21], structural features
of the solution code were used to identify the algorithm in the code, using the
convolutional neural network (CNNs) model. Also, binary code classification,
code completion, code repair, and code evaluation are performed using different
BiLSTM and LSTM models [9, 8].

Due to its unidirectional processing of input sequences [3], the LSTM model
performed worse than the BiLSTM [19] model in coding tasks [14]. On the other
hand, the BiLSTM model can process input sequences in both directions (for-
ward and backward). Since variables, functions, and classes may depend on past
or future lines of code, the BiLSTM model is more effective in such cases. The
aim of this contribution is to build an AI engine, using BiLSTM neural networks,
to better understand the semantics of code, and to generate better code-related
services. For this purpose, real-world program code fragments have been collected
from an “Algorithms and Data Structures” (ADS) programming course. Next,
data preprocessing, word tokenization, word embedding, model training, valida-
tion, and evaluation were performed. The experimental results show that the
model achieves significant success in code classification. Moreover, the trained
model can be integrated with an AI-enabled web client, in a programming learn-
ing platform, to provide students more with convenient coding-related services.
Hence, this work delivers the following key contributions:

– An AI engine based on BiLSTM neural networks was trained on a large
dataset of real-world solution code collected from a programming course. The

5 The terms code, source code, solution code, and program code are used to denote a
similar meaning.
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engine was used to build an AI-based framework for learning code semantics.
Experimental results show that the trained model obtained very good results
in classifying code fragments.

– The integration scheme of the proposed approach with a programming learn-
ing platform is investigated.

– The proposed code semantics learning model can be useful for teachers to
identify students’ deficiencies in programming, and these problems can be
discussed in class.

2 Related Work

Programming techniques and programming environments have evolved signif-
icantly over the past few decades, and intelligent coding platforms such as
Crescendo [20], scratch [17], and CloudCoder [4] have been used to alleviate
selected basic challenges faced by programmers while coding. However, these
platforms have had limited success when programmers attempted to solve highly
structured problems, using C, C++, and Python [20]. On the other hand, pro-
gramming support platforms are also being developed for learning programming,
with many of them focused on only one programming language [24, 12, 25]. Abe
et al. proposed a programming environment dedicated to the C language, with
basic functions such as variable declarations, expressions, and statements [1].
Similarly, Nguyen and Chua [11] proposed a web-based interface for PHP pro-
gramming. In their study, rules for various expressions, such as for-loop, while-
loop, and equality conditions, are developed. Our proposed approach for learning
code semantics using the BiLSTM model is different from the existing methods
because the proposed AI model is designed to understand the semantics of mul-
tilingual (e.g., C, C++, and Python) code. Therefore, the proposed AI model
can be more effective within a programming learning platform, to assist stu-
dents in coding. Moreover, the proposed AI model was trained with diverse,
real-world multilingual solution code fragments, in order to provide support for
many programming languages.

3 Motivation

In a recent study [15], a data-driven analysis was conducted, based on evaluation
logs of solution code in a programming learning platform. The evaluation logs
were collected from the works of 357 students in the ADS course. The results
showed that about 37.27% of all submissions were accepted, while the remaining
62.73% were rated as incorrect. It was also found that the error verdicts were
categorized into 5 main groups, i.e., Wrong Answer (WA), Compile Error (CE),
Presentation Error (PE), Runtime Error (RE), and Resource Limit Error (RLE).
RLE includes Time Limit Exceedance (TLE), Memory Limit Exceedance (MLE),
and Output Limit Exceedance (OLE). Figure 1 shows the detailed breakdown
of errors. Here, approximately 44% were WA, 21.25% were CE, 13% were RE,
10.5% were PE, and 11.25% were RLE.
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Fig. 1: Breakdown of errors, based on solution code evaluation.

In general, CE errors were caused by syntax errors in the solution code,
while non-CE errors were caused by logical errors and inefficiency in the code.
Figure 1 shows that a large percentage of submitted solutions received error deci-
sions for the above reasons. To address this important problem in programming
learning, and to help students improve their programming skills by providing
coding-related services (e.g., code refactoring, code suggestions, code search,
and classification), a machine learning model has been developed.

4 Proposed Approach

Figure 2 presents the outline of the proposed framework for AI-based code se-
mantics learning. In the first stage of the process, the solution code fragments of
the ADS course are collected from the Aizu Online Judge (AOJ) platform [22,
23]. AOJ is a globally-recognized learning and competition platform for pro-
gramming. In the second stage, the code is preprocessed by removing irrelevant
elements such as comments, whitespaces, and tabs6.

Next, in the tokenization step, the preprocessed code fragments are converted
into a sequence of words, and each word is encoded with a unique integer number.
Let I = {i1, i2, i3, · · · , il} be the sequence of words of a code fragment, and
K = {k1, k2, k3, · · · , kl} be the corresponding integer IDs for words. The overall
process of code tokenization is shown in Figure 3.

Each tokenized word sequence is converted into a vector of real numbers
through the embedding layer. The embedding matrix is S ∈ Rl×d, where l is the
token dictionary size and d is the embedding size. For this study, the dimensions
of the embedding matrix are S ∈ R10000×200. The vectorized data is passed

6 Which elements are irrelevant depends on the programming language.
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Fig. 2: AI-based code semantics learning framework

Fig. 3: Code tokenization process for the BiLSTM model training

to the BiLSTM neural network [19]. The bidirectional information processing
nature of the BiLSTM model enables it to understand the complex context of
the long dependent information, i.e., solution code fragments. Here, the final
code classification is performed in the output layer.

Figure 4 presents the integration of the proposed AI Engine built with BiL-
STM, the trained AI model, and the web client in the programming learning
platform. To provide the programming services, the web client connects the AI
Engine and the trained AI model.

Fig. 4: AI Engine-enabled platform for programming learning
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Table 1: Description of the datasets
Dataset Classes Class names Avg. sol. len. # solutions
Sorting 8 CountingSort, StableSort, Bubble-

Sort, InsertionSort, MergeSort, Se-
lectionSort, ShellSort, QuickSort

840.44 53,308

Searching 5 ExhaustiveSearch, StringSearch,
LinearSearch, BinarySearch, Pat-
ternSearch

650.22 25,994

Graphs
and trees

14 TreeWalk, BinaryTrees, MST
(Minimum Spanning Tree), Pro-
jection, Graph, Area, BST (Binary
Search Tree), Reflection, SP
(Shortest Path), CBT (Complete
Binary Tree), Convex, Puzzle,
RootedTrees, Intersection

1658.46 38,761

5 Experimental Results

5.1 Datasets

For the experiments, all correct solutions from the AOJ platform, of the ADS
course7 were collected. There are 15 topics in this course and each topic in-
volves solving 3 or 4 programming problems. The problems include various algo-
rithms (e.g., sorting, searching, graphs, and trees), elementary data structures
(e.g., stack, queue, and linked list), and numerical computations. For the ex-
periments, three datasets were built, that group the problems thematically into:
sorting, searching, and graphs and trees. Table 1 shows the details of the datasets
including number of classes, average solution code length, and total number of
solutions in each dataset.

5.2 Evaluation Methods

In this paper, we used four evaluation metrics, i.e., precision (P), recall (R),
F1 score, and accuracy (A), to evaluate the classification performance of the
model. These methods are dependent on the false positive (fp), true positive
(tp), false negative (fn), and true negative (tn) rates. A detailed description of
these performance evaluation methods can be found in [14].

5.3 Implementation Details

When implementing the BiLSTM classification model, several different sets of
hyperparameters were tried, by manual fine-tuning, to achieve better results.
In this paper, the reported number of training epochs is 50, the batch size
is 32, the maximum code sequence length is 500, the learning rate is α =

7 https://onlinejudge.u-aizu.ac.jp/courses/lesson/1/ALDS1/1
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{0.01, 0.005, 0.001}, the number of BiLSTM nodes is 400 (
−→
200 +

←−
200), the number

of nodes in the dense layer is 200, the training data ratio is 80%, the validation
data ratio is 13%, the test data ratio is 7%, the activation function for the dense
layer is ReLU [6] and the optimization function is Adam [7]. In addition, sparse
categorical cross-entropy is used as the loss function (L) for the multiclass classi-
fication model [19]. These hyperparameters resulted in best overall performance.
However, the aim of this work was not to exhaustively search the hyperparameter
space. Hence, no claim is made that this set of hyperparameters is optimal. All
experimental tasks are computed in Google Colab using the Keras+TensorFlow
(2.11.x) framework and Python 3.

5.4 Results

Figure 5 shows the accuracy of BiLSTM model training and validation, on all
three datasets (e.g., sorting, searching, graphs and trees) when α = 0.001. Fig-
ure 6, on the other hand, shows the model training and validation losses for
these datasets. From Figures 5 and 6, the following observations can be made:
(i) the model achieved the highest training and validation accuracy for the sort-
ing dataset and the lowest for the graph and tree dataset, (ii) the validation
accuracy curve in the searching dataset shows the inconsistency during vali-
dation, and (iii) the model has the highest validation losses for the searching
dataset.

(a) Sorting dataset (b) Searching dataset (c) Graph and tree dataset

Fig. 5: Comparison of training and validation accuracy of BiLSTM models on
three datasets

Tables 2, 3, and 4 show the class-wise P, R, and F1 values for three datasets.
The following observations can be made from these tables: (i) the model achieved
higher P, R, and F1 values between 96% and 99% for most classes in the sorting
dataset, (ii) the model achieved relatively lower P, R, and F1 values for the Ex-
haustiveSearch, BinarySearch, and LinearSearch classes in the searching dataset,
(iii) in contrast, the model obtained very low P, R, and F1 values for many
classes in the graph and tree dataset. This is due to the greater heterogeneity,
complexity, classes, and code length in the graph and tree dataset.

Table 5 shows the average P, R, and F1 values for all datasets. Experimental
results show that the BiLSTM model achieved P, R, and F1 of 98.37%, 98.04%,
and 98.20%, respectively, for the sorting dataset. This is due to the lower diversity
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(a) Sorting dataset (b) Searching dataset (c) Graph and tree dataset

Fig. 6: Comparison of training and validation losses of BiLSTM models on three
datasets

Table 2: Class-wise P, R, and F1 for the sorting dataset
Classes P R F1

CountingSort 0.98 0.96 0.97
StableSort 0.99 0.98 0.98
BubbleSort 0.97 0.99 0.98
InsertionSort 1.00 0.99 0.99
MergeSort 0.98 0.99 0.99
SelectionSort 0.97 0.96 0.96
ShellSort 0.99 0.99 0.99
QuickSort 0.99 0.98 0.99

Table 3: Class-wise P, R, and F1 for the searching dataset
Classes P R F1

ExhaustiveSearch 0.91 0.91 0.91
StringSearch 0.99 0.99 0.99
LinearSearch 0.90 0.91 0.90
BinarySearch 0.86 0.92 0.89
PatternSearch 0.99 0.99 0.99

Table 4: Class-wise P, R, and F1 for graph and tree dataset
Classes P R F1

TreeWalk 0.77 0.82 0.80
BinaryTrees 0.96 0.99 0.97
MST 0.98 0.98 0.98
Projection 0.99 0.99 0.99
Graph 0.93 0.95 0.94
Area 0.99 0.98 0.98
BST 0.89 0.83 0.86
Reflection 0.99 0.94 0.96
SP 0.87 0.71 0.78
CBT 1.00 0.99 1.00
Convex 0.50 0.71 0.59
Puzzle 0.98 0.98 0.98
RootedTrees 0.98 0.99 0.98
Intersection 1.00 0.98 0.99
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and higher similarity of the solutions for the sorting algorithms. In contrast, the
model achieved relatively low P, R, and F1 of 91.56%, 91.77%, and 91.45% for
the graph and tree datasets, respectively.

Table 5: Average P, R, and F1 values for all datasets
Dataset P(%) R(%) F1(%)

Sorting 98.37 98.04 98.20
Searching 93.13 94.32 93.70
Graph and Tree 91.56 91.77 91.45

A comparison of F1 and A values is shown in Figure 7. It can be seen that (i)
the F1 and A values for the datasets sorting and searching are mostly similar,
and (ii) the difference between F1 and A value for the dataset graph and tree
is comparatively high. This is due to the unbalanced instances in the classes of
this dataset.
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Fig. 7: Comparison of F1 and A values for all datasets

Separately, Figures 8, 9, and 10 show the confusion matrices for these three
datasets, which also demonstrate the effectiveness of the BiLSTM model for
classification tasks. These higher values of F1 and A ensure that the model
better understands the semantics of the code.
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Fig. 8: Confusion matrix for Sorting dataset

Fig. 9: Confusion matrix for Searching dataset
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Fig. 10: Confusion matrix for Graph and Tree dataset

In addition, further experiments have been conducted with different learning
rates i.e. α = {0.01, 0.005, 0.001}, as shown in Table 6. It can be seen that the
BiLSTM model achieves higher P, R, F1 and A values when α = 0.001 is used
for all datasets. It also indicates that, as could be expected, the model learns
the semantics of the code better, when the learning rate becomes slower.

6 Discussion

A data-driven analysis shows that a significant number of solutions, provided
by students, are evaluated as incorrect, i.e., 62.73% in a programming learning
platform [15]. We believe that AI-based support can be useful for students in
solving problems, and can reduce the number of wrong answers. In this paper,
we investigated the performance of the BiLSTM neural network model for code
semantics learning. For this purpose, real-world solution code fragments were
collected, the code was preprocessed and tokenized, and the model was trained.
In performed experiments, the model achieved an average F1 of 94.45% and
A of 95.97% for all three datasets (see Table 5 and Figure 7). These results
indicate that the BiLSTM model learned the semantics of the code well, which
can be useful for coding-related services in the programming learning platform.
More importantly, AI Engine enabled programming learning platform can be
useful for students to understand the code errors, algorithms, and syntax, by
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Table 6: Average P, R, F1, and A values for all datasets when α =
{0.01, 0.005, 0.001}

Dataset α P(%) R(%) F1(%) A

Sorting
0.010 96.49 96.09 96.26 95.79
0.005 97.77 97.32 97.53 97.26
0.001 98.37 98.04 98.20 98.10

Searching
0.010 92.54 91.98 92.14 92.08
0.005 94.51 94.19 94.33 92.19
0.001 93.13 94.32 93.70 93.17

Graph and Tree
0.010 85.14 83.83 83.86 93.99
0.005 85.40 86.58 85.72 95.68
0.001 91.56 91.77 91.45 96.65

receiving code suggestions, refactoring, and classification services during coding.
Additionally, the proposed approach can support multilingual coding tasks.

7 Concluding remarks

In this study, code semantics learning approach using BiLSTM neural networks
has been proposed. A substantial number of real-world solutions, delivered by
the students of the University of Aizu, have been collected from an operational
programming learning platform (i.e., AOJ). To this data, standard preprocessing
was applied and obtained data was used to train and evaluate the BiLSTM model
for three different datasets (e.g., sorting, searching, and graph and tree), while
applying various hyperparameters. The model achieved an average P, R, F1,
and A values of 94.35%, 94.71%, 94.45%, and 95.97%, respectively, in classifying
solutions. These results also indicate that the BiLSTM model understands code
semantics with a high degree of accuracy. Moreover, the proposed AI model
can be useful in the programming learning platform to provide students with
various programming-related services such as code suggestion, code refactoring,
classification, etc. Future work will consider improving the model performance
with more diverse datasets.
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