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Abstract. Floating-point arithmetic (FP) is taught at universities in the frame-
work of different academic courses, for example: Numerical Analysis, Com-
puter Architecture or Operational Systems. In this paper we present some simple
„pathological” and „non-pathological” examples for comparison with symbolic
calculations which lie behind calculations in FP with double precision. The CAS
programs: Mathematica and wxMaxima are used for calculation. We explain, by
making calculations directly from the definition of double precision, why in the
presented examples such final results were obtained. We present a didactic ex-
periment for students of the Informatics Faculty of Warsaw University of Life
Sciences within the course of Numerical Methods.

Keywords: floating-point arithmetic · symbolic calculation · mathematical di-
dactic · CAS

1 Introduction

The FP [3,4,2,5,6,7,1] is ubiquitous in scientific computing. It is taught at universities
in the framework of Numerical Analysis, Computer Architecture, Operational Systems
and other courses. A rigorous approach to FP is seldom taught in academic courses and
also not enough students, scientists and programmers study numerical analysis in details
[3]. In this paper we present some didactic examples of symbolic calculations which lie
behind calculations in FP (with double precision [2,1]). These examples were prepared
by us for students of Informatics faculty of Warsaw University of Life Sciences and
demonstrated to them in the framework of Numerical Methods course. Each operation
in FP is performed according to a precise-symbolic algorithm. In spite of the fact that
FP is based on symbolic operations, it gives approximate results with some exceptions,
e.g.: adding, subtracting and multiplying integers; adding, subtracting, multiplying and
dividing negative integer powers of 2. We present in this paper simple examples using
Mathematica and wxMaxima where the result of operations depend on the interpreta-
tion of the user input data (numbers) by CAS functions (such as Solve, Limit, Det) – as
symbolic or approximate. The result may also depend whether these CAS functions use
more or less clever algorithms. In the second part of this paper, by making calculations
directly from the definition of double precision, we explain why in the examples pre-
sented such final results were obtained. The didactic approach presented in this article

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36030-5_56

https://dx.doi.org/10.1007/978-3-031-36030-5_56
https://dx.doi.org/10.1007/978-3-031-36030-5_56


2 J. Krupa and W. Wojas

is multidisciplinary - it combines theoretical issues in the field of numerical analysis
with the use of practical CAS computing tools.

2 Didactic motivations

Sauer’s book "Numerical Analysis" [6] presents the basics of calculations in FP with
double precision with examples not found in our opinion in other literature. The exam-
ples presented in this article are, on the one hand, inspired by the examples in this book,
but on the other hand, complement and extend them. Such examples are extremely im-
portant in teaching FP arithmetic with double precision. The calculations with double
precision presented in this article were exercise tasks for students of Informatics fac-
ulty of Warsaw University of Life Sciences within the subject of Numerical Methods.
These students were presented with floating point arithmetic, including double preci-
sion in the subjects: Computer Architecture and Operating Systems. In the framework
of these subjects, students calculated with double precision, e.g.: 1+ 2−5, 1+ 2−52,
1+ 3 · 2−53− 1. Such examples are important in double precision arithmetic, but the
calculations presented in our examples are a significant complement to them, deep-
ening the understanding of double precision calculations, although they require more
tedious calculations (but still within the reach of students’ skills).

3 "Pathological” and “Non - Pathological” example of linear
equations system solution

Example 1. (“Pathological”)

Consider the following system of linear equations and solve them in Mathematica
and Maxima{

3x+ y = 0,
0.3x+0.1y = 1.

Example 2. (“Non - Pathological”)

Consider the following system of linear equations and solve them in Mathematica
and Maxima{

2x+ y = 0,
0.2x+0.1y = 1.

Let’s us notice that generally in double precision we have:
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Listing 3.1: Mathematica code:

In[1]:=0.1+0.1−0.2
Out[1] =0
In[2]:=0.1+0.1+0.1−0.3

Out[2] =5.551115123125783∗10^−17
In [3]:=N[2^(−54),16]

Out[3] =5.551115123125783∗10^−17

Listing 3.2: Mathematica code:

In[4]:=−0.3+0.1+0.1+0.1
Out[4] =2.775557561562891∗10^−17 (= 2−55)

It follows that in double precision we have:
−0.3+0.1+0.1+0.1 6= 0.1+0.1+0.1−0.3 (no additivity).

Let’s solve the Example 1. First, we solve it standardly using function Solve in
Mathematica and solve in Maxima. Next, we solve it again in Mathematica and Maxima
using Cramer’s rule.

Listing 3.3: Mathematica code for Example 1:

In [1]:=eq1={3 x + y == 0, 0.3 x + 0.1 y == 1};
In [2]:= Solve[eq1, {x, y}]

Out[2] = {}
In [3]:= NSolve[eq1, {x, y}]

Out[3] = {}
In [4]:=M = {{3, 1}, {0.3, 0.1}};
In [5]:=Det[M]

Out[5] =5.551115123125783∗10^−17
In [6]:={M0 = Det[M],
M1 = {{0, 1}, {0.3, 0.1}}; MatrixForm[M1], M10 = Det[M1],
M2 = {{3, 0}, {0.3, 1}}; MatrixForm[M2], M20 = Det[M2],
r1 = {x −> M10/M0, y −> M20/M0}}

Out[6] =r1={x −> −2.40192∗10^16, y −>7.20576∗10^16}
In [7]:=eq1 /. r1

Out[7] ={True, True}
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Listing 3.4: Maxima code for Example 1:

(%i1) solve ([3∗x+1∗y=0,0.3∗x+0.1∗y=1],[x,y ]);
rat : replaced 0.3 by 3/10 = 0.3
rat : replaced 0.1 by 1/10 = 0.1
(%o1) []
(%i2) M:matrix([3, 1],[0.3,0.1]);
(M) matrix(

[3, 1],
[0.3, 0.1]

)
(%i3) d: determinant (M);
(%o3) 5.551115123125783∗10^−17
(%i4) [M1:matrix ([0,1],[1,0.1]), M2:matrix ([3,0],[0.3,1])];
(%o4) [matrix(

[0, 1],
[1, 0.1]

), matrix(
[3, 0],
[0.3, 1]

)]
(%i5) [d1:determinant (M1),d2:determinant(M2)];
(%o5) [−1,3]
(%i6) [x0:d1/d,y0:d2/d ];
(%o6) [−1.801439850948199∗10^16,5.404319552844595∗10^16]
(%i7) [xy:matrix ([x0 ],[ y0 ]), b:matrix ([0],[1]), M.xy−b];
(%o7) [matrix(

[−1.801439850948199∗10^16],
[5.404319552844595∗10^16]

), matrix(
[0],
[1]

), matrix(
[0.0],
[0.0]

)]

We get the following results. Using functions Solve in Mathematica and solve in
Maxima we get that system of equations has no solution. But using Cramer’s rule in
double precision we get a single solution of the system. Solutions in Mathematica and
Maxima are different.

Let’s solve the Example 2 in Mathematica and Maxima.
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Listing 3.5: Mathematica code for Example 2:

In [1]:=eq1={2 x + y == 0, 0.2 x + 0.1 y == 1};
In [2]:= Solve[eq1, {x, y}]

Out[2] = {}
In [3]:= NSolve[eq1, {x, y}]

Out[3] = {}
In [4]:=M = {{2, 1}, {0.2, 0.1}};
In [5]:=Det[M]

Out[5] =0

Listing 3.6: Maxima code for Example 2:

(%i1) solve ([2∗x+1∗y=0,0.2∗x+0.1∗y=1],[x,y ]);
rat : replaced 0.2 by 2/10 = 0.2
rat : replaced 0.1 by 1/10 = 0.1
(%o1) []
(%i2) M:matrix([2, 1],[0.2,0.1]);
(M) matrix(

[2, 1],
[0.2, 0.1]

)

(%i3) determinant (M);
(%o3) 0.0

We get the same results in Mathematica and Maxima that system of equations has
no solution. The determinant of the coefficient matrix is equal to 0 so we cannot use
Cramer’s rule.

4 “Pathological” and “Non - Pathological” example of limit of a
real function

Example 3. (“Pathological”)

Let us calculate the following limit: lim
x→0.1−

1
−3x+0.3

Example 4. (“Non - Pathological”)

Let us calculate the following limit: lim
x→0.1−

1
−2x+0.2

Let’s solve the Examples 3 and 4 in Mathematica and Maxima.

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36030-5_56

https://dx.doi.org/10.1007/978-3-031-36030-5_56
https://dx.doi.org/10.1007/978-3-031-36030-5_56


6 J. Krupa and W. Wojas

Listing 4.1: Mathematica code for Examples 3 and 4:

In [5]:= f [x_] = 1/(−3 x + 0.3);
In [6]:= Limit[ f [x ], x −> 0.1, Direction −> 1]
Out[6] =∞

In [7]:= f [0.1]
Out[7]=−1.80144∗10^16
In [8]:=g[x_] = 1/(−2 x + 0.2)’
In [9]:= Limit[g[x ], x −> 0.1, Direction −> 1]
Out[9] =∞

In [10]:=g [0.1]
Power:: infy : Infinite expression 1/0. encountered . >>
ComplexInfinity

Listing 4.2: Maxima code for Examples 3 and 4 :

(%i1) f (x):=1/(0.3−3∗x);
(%o1) f (x):=1/(0.3−3∗x)
(%i2) f (0.1);
(%o2) \−1.801439850948199∗10^16
(%i4) limit ( f (x ), x ,0.1);
(%o4) \−1.801439850948199∗10^16
(%i5) g(x):=1/(0.2−2∗x);
(%o5) g(x):=1/(0.2−2∗x)
(%i6) g (0.1);
(%o6) expt : undefined : 0 to a negative exponent. −− an error . To debug this

try : debugmode(true)
(%i7) limit (g(x ), x ,0.1);
(%o7) infinity

We get in Mathematica and Maxima that limit in Example 3 of function f (x) at
point 0.1 is equal to infinity but the value of function f (x) at point 0.1 is finite. But in
Example 4 the limit of function g(x) at point 0.1 is equal to infinity and the value of
function g(x) at point 0.1 is undefined.

5 Floating-point arithmetic: some basic definitions

In this section, we present a model for computer arithmetic of floating point numbers
see [6,3,4,2,5,7,1]. There are several models, but to simplify matters we will choose one
particular model and describe it in detail. The model we choose is the so-called IEEE
754 Floating Point Standard.

Rounding errors are inevitable when finite-precision computer memory locations
are used to represent real, infinite precision numbers.

The IEEE standard consists of a set of binary representations of real numbers. A
floating point number consists of three parts: the sign (+ or -), a mantissa, which con-
tains the string of significant bits, and an exponent. The three parts are stored together in
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a single computer word. There are three commonly used levels of precision for floating
point numbers: single precision, double precision, and extended precision, also known
as long-double precision. The number of bits allocated for each floating point number
in the three formats is 32, 64, and 80, respectively. The bits are divided among the parts
as follows: all three types of precision work essentially the same way. The form of a

precision sign exponent mantissa
single 1 8 23
double 1 11 52
long double 1 15 64

normalized IEEE floating point number is
±1.bbb . . .b×2p,

where each of the N b’s is 0 or 1, and p is an M = 11 (or 8 or 15) bit binary number rep-
resenting the exponent. Normalization means that, as shown in, the leading (leftmost)
bit must be 1.

When a binary number is stored as a normalized floating point number, it is leftjus-
tified, meaning that the leftmost 1 is shifted just to the left of the radix point.

The shift is compensated by a change in the exponent. For example, the decimal
number 9, which is 1001 in binary, would be stored as +1.001× 23 because a shift
of 3 bits, or multiplication by 23, is necessary to move the leftmost one to the correct
position. The number machine epsilon, denoted εmach, is the distance between 1 and the
smallest floating point number greater than 1. For the IEEE double precision floating
point standard, εmach = 2−52.

We must truncate the binary representation of a number in some way, and in so
doing we necessarily make a small error. The most common method of the truncation
is rounding. In base 10, numbers are customarily rounded up if the next digit is 5 or
higher, and rounded down otherwise. In binary, this corresponds to rounding up if the
bit is 1. Specifically, the important bit in the double precision format is the 53rd bit to
the right of the radix point, the first one lying outside of the box.

The default rounding technique, implemented by the IEEE standard, is to add 1 to
bit 52 (round up) if bit 53 is 1, and to do nothing (round down) to bit 52 if bit 53 is 0,
with one exception: if the bits following bit 52 are 10000. . . , exactly halfway between
up and down, we round up or round down according to which choice makes the final bit
52 equal to 0. (Here we are dealing with the mantissa only, since the sign does not play
a role.) Why is there the strange exceptional case? Except for this case, the rule means
rounding to the normalized floating point number closest to the original number–hence
its name, the Rounding to Nearest Rule. The error made in rounding will be equally
likely to be up or down. Therefore, the exceptional case, the case where there are two
equally distant floating point numbers to round to, should be decided in a way that
doesn’t prefer up or down systematically. This is to try to avoid the possibility of an
unwanted slow drift in long calculations due simply to a biased rounding. The choice
to make the final bit 52 equal to 0 in the case of a tie is somewhat arbitrary, but at least
it does not display a preference up or down.
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IEEE Rounding to Nearest Rule For double precision, if the 53rd bit to the right of
the binary point is 0, then round down (truncate after the 52nd bit). If the 53rd bit is 1,
then round up (add 1 to the 52 bit), unless all known bits to the right of the 1 are 0’s, in
which case 1 is added to bit 52 if and only if bit 52 is 1.

Definition. Denote the IEEE double precision floating point number associated to x,
using the Rounding to Nearest Rule, by fl(x). In computer arithmetic, the real number
x is replaced with the string of bits fl(x).

absolute error (of approximation x by fl(x)) = |fl(x)− x|,
and

relative error (of approximation x by fl(x)) = |fl(x)− x|/x, (x 6= 0).

In the IEEE machine arithmetic model, the relative rounding error of fl(x) is no
more than one-half machine epsilon: |fl(x)− x| ≤ 1

2 εmach

Example 5. (Double precision representation of 9)
From the above description we can formulate the three steps algorithm which de-

termines the double precision representation of real number. We will illustrate it on the
example of number 9.

First step: find enough binary digits of 9: 9 = (1001.000 . . .0)2.
Second step: normalise the expansion from the first step:
9 = (1.001000 . . .0)2×23.
When a binary number is stored as a normalized floating point number, it is leftjus-

tified, meaning that the leftmost 1 is shifted just to the left of the radix point.
The shift is compensated by a change in the exponent. For example, the decimal

number 9, which is 1001 in binary, would be stored as +1.001× 23 because a shift
of 3 bits, or multiplication by 23, is necessary to move the leftmost one to the correct
position.

Third step: Apply IEEE Rounding to Nearest Rule:
9 = (1.001000 . . .0︸ ︷︷ ︸

52digits

)2×23.

The number machine epsilon, denoted εmach, is the distance between 1 and the
smallest floating point number greater than 1. For the IEEE double precision floating
point standard, εmach = 2−52.

In the next sections we will use the three steps algorithm illustrated in example 5.

6 Double precision representation of
1

10

0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57

Fig. 1: First step: find enough binary digits of 1
10
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2-4 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

Fig. 2: Second step: Normalisation of binary expansion of 1
10

2-4 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

Fig. 3: Third step: Rounding of binary expansion of 1
10

7 Double precision representation of
2

10

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

Fig. 4: First step: find enough binary digits of 2
10

2-3 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

Fig. 5: Second step: Normalisation of binary expansion of 2
10

2-3 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

Fig. 6: Third step: Rounding of binary expansion of 2
10

8 Double precision representation of
1

10
+

1
10

2-4 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 0
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

Fig. 7: First step: Binary addition of 1
10 +

1
10

2-3 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 0
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53

Fig. 8: Second step: Normalisation of binary addition of 1
10 +

1
10

2-3 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

Fig. 9: Third step: Rounding of binary expansion of 1
10 +

1
10
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Comparing double precision representations of 2
10 and 1

10 +
1
10 we get:

2-3 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

Fig. 10: Third step: double precision representations of 2
10

2-3 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

Fig. 11: Third step: double precision representations of 1
10 +

1
10

Finally, we can see that: 2∗0.1−0.2 = 0

9 Double precision addition of 1
10 +

1
10 +

1
10

We have already double precision representation of 1
10 +

1
10 and 1

10 :

2-3 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

Fig. 12: Double precision representations of 1
10 +

1
10

2-4 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

Fig. 13: Double precision representations of 1
10

and we determine double precision representation of
(

1
10 +

1
10

)
+ 1

10 :

“Pre normalisation” of Double precision representation of 1
10 +

1
10 and 1

10 :

2-3 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 0
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53

Fig. 14: “Pre normalisation” of double precision representations of 1
10 +

1
10

2-3 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53

Fig. 15: “Pre normalisation” of double precision representations of 1
10

2-3 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 0
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53

Fig. 16: Binary addition of
(

1
10 +

1
10

)
+ 1

10
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2-2 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 0
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

Fig. 17: Second step: Normalisation of binary addition of
(

1
10 +

1
10

)
+ 1

10

2-2 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 0
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

Fig. 18: Rounding of binary expansion of
(

1
10 +

1
10

)
+ 1

10

10 Double precision representation of 3
10

0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

Fig. 19: First step: Binary digits of 3
10

2-2 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

Fig. 20: Second step: Normalisation of binary expansion of 3
10

2-2 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

Fig. 21: Third step: Rounding of binary expansion of 3
10

Comparison of double precision addition of 1
10 +

1
10 +

1
10 and of 3

10

2-2 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 0
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

Fig. 22: Third step: Rounding of binary expansion of 1
10 +

1
10 +

1
10

2-2 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

Fig. 23: Third step: Rounding of binary expansion of 3
10

So, we can see that in double precision: 3∗0.1−0.3= 2−54 = 5.551115123125783∗
10−17 6= 0.

Similarly we can see that in double precision: −0.3 + 0.1 + 0.1 + 0.1 = 2−55 =
2.775557561562891∗10−17 6= 0

We can see also that:
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1. The absolute error= |0.1−fl(0.1)|= |2−4(2−52+2−569
1

1−2−4 −2−51)|= 2−56 2
5
=

2−55 1
5

. Thus the relative error = |0.1−fl(0.1)|/0.1 = 2−54 < (1/2)εmach = 2−53.
Of course there are other good ways to calculate the absolute error.

2. See Figs. 10, 11. The absolute error= |0.2−fl(0.2)|= 2−3(2−52−251+2−569
1

1−2−4 )=

2−55 2
5

. Thus the relative error = |0.2−fl(0.2)|/0.2 = 2−54 < (1/2)εmach = 2−53.

3. |0.3−fl(0.3)|= |2−22−563
1

1−2−4 |= 2−54 1
5

. Thus |0.3−fl(0.3)|/0.3 = 2−54 2
3
<

(1/2)εmach = 2−53.
4. Because fl(0.1+0.1)= fl(0.2), thus the relative error = |0.2−fl(0.1+0.1)|/0.2=

2−54 < (1/2)εmach = 2−53.
5. We saw that fl(0.1+ 0.1+ 0.1)− fl(0.3) = 2−54 (See Figs. 22, 23). Thus |0.3−

fl(0.1+0.1+0.1)|= |0.3−fl(0.3)+fl(0.3)−fl(0.1+0.1+0.1)|= |2−54 1
5
−2−54|=

2−54|1/5−1|= 2−52/5. Thus |0.3−fl(0.1+0.1+0.1)|/0.3= 2−522/3> 2−521/2=
2−53 = (1/2)εmach = 2−53. Thus the relative error of approximation (in double
precision) 0.3 by fl(0.1+0.1+0.1) exceeds (1/2)εmach = 2−53.

6. Similarly like in Figures 12–18 we can perform 0.3− 0.1 in double precision and
get: fl(0.2)−fl(fl(0.3)−fl(0.1)) = 2−55. Thus |0.2−fl(fl(0.3)−fl(0.1))|= |0.2−
fl(0.2)+fl(0.2)−fl(fl(0.3)−fl(0.1))|= 7

5
2−55. Thus |0.2−fl(fl(0.3)−fl(0.1))|/0.2=

7 ·2−55 > 2−53 = (1/2)εmach. Thus the relative error of approximation (in double
precision) 0.2 by fl(0.3)−fl(0.1) exceeds (1/2)εmach = 2−53.

7. Similarly like in Figures 12–18 we can perform 0.3− 0.1− 0.1 in double preci-
sion and get: fl(0.1)−fl(fl(0.3)−fl(0.1)−fl(0.1)) = 2−55. Thus |0.1−fl(fl(0.3)−
fl(0.1)−fl(0.1))|= |0.1−fl(0.1)+fl(0.1)−fl(fl(0.3)−fl(0.1)−fl(0.1))|= 1

5
2−55+

2−55 =
3
5

2−54. Thus |0.1− fl(fl(0.3)− fl(0.1)fl(0.1))|/0.1 = 3 · 2−53 > 2−53 =

(1/2)εmach. Thus the relative error of approximation (in double precision) 0.1 by
fl(0.3)−fl(0.1)−fl(0.1) exceeds (1/2)εmach = 2−53.

8. Similarly like in Figures 12–18 we can perform 0.3−0.1−0.1−0.1 in double pre-
cision and get: fl(fl(0.3)−fl(0.1)−fl(0.1)−fl(0.1))=−2−55. Thus |0−fl(fl(0.3)−
fl(0.1)−fl(0.1)−fl(0.1))|= 2−55. The relative error is not definite.

After the above examples, student can easily see that 1+2−53 = 1 in double precision
and is prepared to study the very important "pathological” examples in [5,3,4].

11 The didactic experiment with Examples 1-4

The experiment was carried out in two independent auditorium groups (group A and
group B) of third-year students of the Informatics Faculty of Warsaw University of Life
Sciences within the course of Numerical Methods. Groups A and B consisted of 28 and
31 students, respectively. Students of both groups solved a test consisting of two tasks
1 and 2 with subquestions a) and b) in each task. The time allotted for the test was 30
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minutes in each group. But in group B, the test was preceded by a 30-minute presenta-
tion in which the double precision numerical representations presented in chapters 6-10
of this article were shown and discussed. Group A students wrote the test without such
a prior presentation.
In task 1, two linear systems of equations were presented: in 1a - the system from Ex-
ample 1 (“pathological”) and in 1b - the system from Example 2 (“non - pathological”)
with the comment below. Solving the above systems of equations symbolically (exactly)
we get a contradictory system in each case. But when solving them with CAS programs
such as Mathematica or Maxima, that is, by calculating the determinants: detM, detM1
and detM2 in double precision and then applying Cramer’s formulas, we obtain the
following results in cases 1a and 1b. For 1a: detM 6= 0, the system has exactly one so-
lution. For 1b: detM = 0, Cramer’s formulas cannot be used to solve the system in this
way. The question is: how, on the basis of properties of double precision floating point
arithmetic, can one explain the difference in the answers obtained for linear systems in
1a and 1b?
In task 2, two limits of real function were presented: in 2a - the limit from Example 3
(“pathological”) and in 2b - the limit from Example 4 (“non - pathological”) with the
following comment. When solving these limits symbolically we get an infinity in each
case. But when solving them in double precision for example using Maxima, we obtain
the following results: a finite number in case 2a and infinity in case 2b. The question is:
how, based on properties of double precision floating point arithmetic, can one explain
the difference in the answers obtained in 2a and 2b?
For tasks 1 and 2, we gave a hint: consider in double precision arithmetic the represen-
tations of the following numbers: 0.3,3∗0.1 and 0.2,2∗0.1. Since many students pro-
vided quite extensive descriptive explanations, we adopted a two-stage grading scale:
positive (if the explanation was sufficient) and negative (if the explanation was not suf-
ficient). We got the following test results. In group A - task 1: 30% positive, 70% nega-
tive; task 2: 39% positive, 61% negative. In group B, the results were identical in both
tasks: 61% positive, 39% negative. We received a higher percentage of positive answers
to both test questions in group B in which the test was preceded by a presentation.

12 Conclusions

In this paper we presented some simple "pathological” and "non-pathological” exam-
ples for comparison, using Mathematica and wxMaxima with double precision calcu-
lation. Simple systems of linear equations and limits were considered. We used stan-
dard CAS functions for solve the systems of linear equations and to calculate lim-
its and determinants. Comparison of results for analogous",pathological” and "non-
pathological”examples may seem surprising. In the second part of the paper, by ana-
lyzing double precision representations of used in examples numbers, the authors ex-
plain why the such final results were obtained. We showed that in double precision:
0.1+ 0.1− 0.2 = 0, 0.1+ 0.1+ 0.1− 0.3 = 2−54 and explained briefly the way how
to calculate that: −0.3+0.1+0.1+0.1 = 2−55 and 0.3−0.1−0.1−0.1 = 2−55. The
calculation could be done by hand but we think that it is good idea to implement own
function in e.g. Mathematica and wxMaxima to perform this calculation. From the ob-
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tained results it follows the main reason of "pathological" character of the presented
Examples 1 and 3. In our opinion these examples seems to be helpful to get the basic
understanding of the nature of calculation in double precision generally an particularly
in the case of used CAS programs. The examples are simple enough to do the calcu-
lations by hand but the symbolic calculations behind them are not easy for beginner
students in our opinion. We did not find any analogical examples in available literature,
taking into account the details we provide. Especially we could not find the calculation
of absolute error and relative error of approximations: 0.1 by fl(0.1), 0.2 by fl(0.2),
0.3 by fl(0.3), 0.2 by fl(0.1+ 0.1), 0.3 by fl(0.1+ 0.1+ 0,1), 0.2 by fl(0.3)−fl(0.1),
0.1 by fl(0.3)− fl(0.1)− fl(0.1) and comparison it to (1/2)εmach. We would recom-
mend discussing similar numeric examples in teaching the FP within some subjects in
the framework of academic courses. The Examples 1-4 were prepared for students of
Informatics Faculty of Warsaw University of Life Sciences. We presented in this arti-
cle the results of a didactic experiment: students in two independent groups answered
test questions related to Examples 1-4. In one of the two student groups, the test was
preceded by a presentation discussing numerical representations in double precision
arithmetic (chapters 6-10 of this article). We received a higher percentage of positive
answers to both test questions in group in which the test was preceded by a presentation.
It is worth emphasizing the multidisciplinary nature of the presented didactic approach
- combining a theoretical problem in the field of numerical analysis with the use of
practical CAS computing tools.
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