
Empirical studies of students behaviour using
Scottie-Go block tools to develop problem-solving

experience

Paweł Gepner1[0000−0003−0004−1729], Martyna
Wybraniak-Kujawa1[0000−0001−6335−9481], Jerzy Krawiec1[0000−0001−5535−1850],

Andrzej Kamiński1[0000−0002−8759−9786], and Kamil
Halbiniak2[0000−0001−9116−8981]

1 Warsaw University of Technology, Warsaw, Poland
{pawel.gepner,martyna.kujawa,jerzy krawiec,andrzej.kaminski}@pw.edu.pl

2 Czestochowa University of Technology, Czestochowa, Poland
khalbiniak@icis.pcz.pl

Abstract. This research is introducing and evaluating the new method
supporting grow of programming skills, computational thinking and de-
velopment of problem-solving approach that evolutionarily introduce pro-
gramming good practices and paradigms through a block-based program-
ming. The proposed approach utilizes problem-based Scottie-Go game
followed by Scratch programming environment implanted to Python pro-
gramming course to improve the learners’ programming skills and keeps
motivation for further discovery of computational problem-solving ac-
tivity. To date, practically little work has been devoted to examining
the relationship between beginner development environments and the
development practices they stimulate in their users. This article tries to
shed light on this aspect of learning programming by carefully examining
the behaviour of novice programmers using the innovative block-based
programming learning method.

Keywords: Computer programming · Problem solving · Computational
thinking · Empirical studies · User behaviour· Innovative interaction tech-
niques

1 Introduction

In the 21st century the problem solving, and computer programming are per-
ceived as the most critical competencies for students to be used in the solving
real-world problems and one of the most demanding area of teaching ranked
by educators [2]. It is already understood that programming and coding is not
only restricted to computer scientist or professional coders but is fundamental
expertise for resolving most sophisticated problems of the era and constructing
complicated systems [9]. There are studies describing the relationship of com-
puter science in education that demonstrate the importance of teaching computer
thinking from an early age as a fundamental skills. Nevertheless, the same class

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36030-5_55

https://dx.doi.org/10.1007/978-3-031-36030-5_55
https://dx.doi.org/10.1007/978-3-031-36030-5_55


2 F. Author et al.

of problems are important limitations also outside the educational sector and
might be interesting for software development industries.

Developing an effective programming learning concept and curriculum in the
right way is a serious and difficult challenge, but many analyses have been done
to successfully incorporate programming and coding into the curriculum. Ma-
jority of the researches discovered that at the final stages of initial programming
courses, most students had problems in decomposition and implementation of
algorithms using coding techniques to solve actual problems [9].

Numerous studies have been concentrating on new innovative, alternative ap-
proaches and discussing the results of implementing into the teaching program
visual programming environment, such as Scratch, Etoys, Alice, RoboMind [15],
LighBot, Play LOGO 3D, or Karel, Jeroo, B# [5]. Those studies found positive
results connected to visual programming environments and discussed the im-
provement for novice programmer’s engagement in programming with help them
grow programming skills [3]. No doubt, that use of visual programming ecosys-
tem has proved its precise benefits to support learning for novice’s programmer’s
[3], but how this is stimulating computational problems solving ability needs to
be deeper discovered and better understood. This paper tries to address the gap
of this problem and covers two fundamental issues. As the first is to propose a
new learning method dedicated to novice programmers, aimed to develop compu-
tational thinking and developing a problem-solving approach using a block-based
development environment. The second goal is to review the efficiency of solving
computational problems by validating three teaching scenarios differing in the
sequence of methods and tools used and the visual programming environments
in computational problem-solving activities by novice programmers. This paper
pursues to address by answering the following research questions:

– Does the new proposed method stimulates the behaviour of the problem-
solving and coding thinking skills of novice programmers to solve computa-
tional problems?

– Do the novice programmers’ computational solutions to the problems are
different and they are related, to the way they were learned programming?

– What impact does new method on the novice programmers’ perceived diffi-
culty in programming?

It seems obvious that the outcomes of this research can become useful to
organizations and individuals responsible for curriculum development for novice
programmers to promote programming strategy and computational problem-
solving skills.

2 Related Work

The aim of this section of the work is to present the fundamental ideas, high-
lighting the presented method and to present the need for the planned work on
improving the problem-solving skills and computer thinking of novice program-
mers.

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36030-5_55

https://dx.doi.org/10.1007/978-3-031-36030-5_55
https://dx.doi.org/10.1007/978-3-031-36030-5_55


Title Suppressed Due to Excessive Length 3

2.1 Problem solving for programming learning

Computational problem-solving contains the development of computer codes and
is considered as the fundamental expertise of computer science education but
path to the solution mainly implicating extensive problem-solving skills, instead
of basic technical coding activities [15]. According to literature study, problems
in the programming process were mainly in the problem-solving phase (such as
analysis and design) and the implementation phase and was mainly driven by the
lack of problem-solving skills complemented less by lack of semantic knowledge,
and weakness in testing the design.

This observation encouraged many researched to propose new schema of
teaching; problem-solving first and then programming, they also emphasized the
importance of teaching problem-solving independently from programming lan-
guage. In this approach, students can concentrate on problem solving and testing
strategies totally independently from syntax limitations. When the solution is
created then particular programming language can be used to translate the so-
lution into code and to test the final program. This idea can be implemented
and described by following 8 stages process:

1. Presentation and definition of the problem;
2. Transition from an initial understanding of the problem to a detailed formu-

lation;
3. Building a solution plan using the decomposition of goals into sub-goals, as

well as tasks to implement each sub-goal;
4. Developing a solution design from a high-level design to a detailed design by

transforming sub-goals into corresponding algorithms;
5. Identify the best type of language to implement the algorithm;
6. Learning the syntax of a programming language;
7. Execution of a detailed design in code;
8. Code testing.

Based on the method described above, there is evidence that problem-solving
based learning improves student achievement from 50% to 68% [14]. The study
also showed that students in the software development process are enthusiastic
about the new learning environment, this significantly affects their enthusiasm
and removes blockades related to learning and the use of syntax in programming.

In parallel to the research described above, many scientists also noted that
when learning computer-based problem-solving through games, students are
more experience pleasure in the learning process than with traditional lectures
[15]. Similarly, game development involves both design and programming, and
can support the learning of IT concepts by students [8]. It turned out that using
educational games, students enjoy e-learning and achieve better learning results
as in traditional courses [15]. The use of narrative tools, visual programming and
flow modelling tools allowed students to concentrate on algorithms rather than
coding [7], as well focus more on the abstract layer of design and problem-solving
skills [16]. Research shows that Introduction to Programming courses using ob-
ject visualization technics and attractive 3D animation environment radically
improve student performance [6].

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36030-5_55

https://dx.doi.org/10.1007/978-3-031-36030-5_55
https://dx.doi.org/10.1007/978-3-031-36030-5_55


4 F. Author et al.

2.2 Computational thinking in educational context

Jeanette Wing introduced the concept of computational thinking as the first
person, she published the definition first time in 2006: “Computational think-
ing involves solving problems, designing systems, and understanding human be-
haviour, by drawing on the concepts fundamental to computer science. Com-
putational thinking includes a range of mental tools that reflect the breadth of
the field of computer science” [13]. Another definition proposed by the “Interna-
tional Society for Technology in Education and the Computer Science Teachers
Association” describe computational thinking as: the way how the people use
computers to analyse the data, representing data through abstractions and au-
tomating solutions through algorithmic thinking. Of the many different proposed
definitions, one of the most cited is that of the Royal Society, proposed in 2012
“Computational thinking is the process of recognizing aspects of computation in
the world that surrounds us, and applying tools and techniques from Computer
Science to understand and reason about both natural and artificial systems and
processes”.

According to the observation made by [12], there are several basic computa-
tional concepts that programmers have to use:

– Sequence: To build a program, think about the sequence of steps.
– Iteration (looping):Repeat are used for repetition (iterating a series of in-

structions).
– Conditional statements: if-elif-else checks conditions.
– Threads (parallel execution): Running simultaneously threads-generate in-

dependent runs that are executed in parallel.
– Event handling: e.g., pressing a key performs some defined action.
– User interface design: For example, using clickable objects to create buttons.
– Keyboard input: to prompt users to type.

If the developer is unfamiliar with concepts such as conditional statements, data
structures, loops, or objects, it will be difficult to plan a suitable solution. There-
fore, to build a solution in a specific programming language, basic knowledge of
the syntax seems to be necessary [11].

In fact, many researchers, including Jeanette Wing, tried to describe and
systematize these processes and based on these explorations following skills have
been identified which are important for computer thinking:

– Abstraction is the process of making things more understandable by reducing
unnecessary detail [4].

– Algorithmic thinking is a method of getting to a solution via a clear definition
of the actions.

– Automation is a process that minimizes the work done, in which a machine-
computer performs a set of repetitive commands and tasks quickly and effi-
ciently [4].

– Decomposition is a way of thinking about things in terms of their component
parts. The parts can then be understood, solved, developed, and evaluated
separately [4].

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36030-5_55

https://dx.doi.org/10.1007/978-3-031-36030-5_55
https://dx.doi.org/10.1007/978-3-031-36030-5_55


Title Suppressed Due to Excessive Length 5

– Debugging is the systematic process of analysis and evaluation using com-
petences such as testing, tracing, and logical thinking to predict and verify
outcomes [4].

– Generalization is a way of quickly solving new problems based on previous
solutions to problems and building on prior experience. Algorithms that
solve some specific problems can be adapted to solve a whole class of similar
problems [4].

In this study, the conventional Introduction to Programming curriculum is en-
hanced to tackle some problems of learning programming. Consequently, problem
solving learning, game-based learning and computational thinking have being im-
plemented to improve the course curriculum. The main idea of this study aims
to show novice programmers the “complete view” of software development pro-
cess, provide a learning environment based on game-based experience, increase
student enthusiasm, and remove syntactic obstacles to coding. The method and
results of the study are presented below.

3 Materials and methods

This study explores, how the new method of teaching using Scottie-Go block
tools stimulate the behaviour of the problem-solving and coding-thinking skills
by novice programmers. To make the comparison three scenarios have been ex-
amined and the classic Introduction to Python programming course was used as
a reference and starting point.

3.1 Classic course

Typical novice coder, who starts to learn programming, should focus on program-
ming concepts and problem-solving algorithm rather than on language specifics,
because they are different from one to another. Python provides the highest
level of programming abstraction. So, the student does not have to think about
memory management, which is necessary in C++, or class hierarchy, that is un-
avoidable in Java, or variable types and declarations, that exist in almost each
programming language.

In our study we have followed typical curriculum of teaching Python for
beginners based on three fundamental development principles which novice pro-
grammers need to understand and follow. First, analysing a given problem and
determining the best programming strategy to implement, second creating an
algorithm to solve the problem, finally converting the algorithm into the Python
code. During the course all the programming concepts that novice programmers
are expected to know and practically use have been introduced and verified. In
addition, numerous of the computation thinking elements and problem-solving
exercises and projects have been implemented in final stage of the class to build
the foundation for comparison with other analysed teaching methods.

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36030-5_55

https://dx.doi.org/10.1007/978-3-031-36030-5_55
https://dx.doi.org/10.1007/978-3-031-36030-5_55


6 F. Author et al.

3.2 Scratch extension to the classic course

In Poland, teachers have quite a lot of freedom in the selection of tools for
learning programming in contemporary K-12 computer science education and
among the two most frequently chosen block programming solutions, they use
Balti and Scratch. Balti is a relatively unknown environment and, apart from
Poland, Czech Republic and Slovakia is practically not used. In Poland, Balti
has been deployed in over 4,500 schools and used by 79,755 students.

Scratch is much more often chosen by teachers and has a greater installed
base and share in the education sector. Utilising the block-based programming
environments like Scratch for introduction to novice programmers basic program-
ming principles and computational thinking is not new and has been analysed
and discussed by many researchers [1]. The overall result of this research has
already been reviewed and it shows that Scratch enhances learning and problem-
solving skills and significantly improves the interest of aspiring programmers to
learn codding and develop computer science interest. Other work has shown that
Scratch programming is an appropriate way to introduce younger students of all
ages to the programming world. The advantage of using Scratch is that it is
visually attractive and promotes active learning. Some studies have found a de-
crease in the number of students who dropped out and lost interest in computer
once Scratch was implemented for introduction the concept of programming [17].
Unfortunately, Scratch users may be reluctant and have a difficulty to do tran-
sition to the traditional programming environment where syntax becomes an
essential and important component. There is, of course, a concern that without
the appropriate tools and interfaces to facilitate the transition from block tools
introduced in Scratch and methods in the classic programming approach, it can
be difficult.

In our scenario, we do not use Scratch as an independent module and we do
not start the education process with an introduction to Scratch and then Python,
but we rather introduce a specific programming concept (loop, condition, etc.)
and outline it in Scratch with nice and easy to understand graphical form, and
once the idea is understood and digest the same concept is described in Python.
Essentially, Scratch is a nice programming block format to illustrate the idea of
a specific programming concept that is much easier for a novice programmer to
learn. There is a study comparing students answering multiple-choice program-
ming questions that showed that students cope better with questions and tasks
using block representation and graphical methods compared to tasks presented
in text form [18].

The same concepts and plans like in classic course were also implemented
to the students who participated in the extended course with Scratch enabled,
also the same exercises and tests from “BEBRAS” repository have been used
to validate the level of adoption for to computational thinking and finally the
same testing project has been implemented in the final stage to check computer
problem-solving and computational thinking ability and skills.

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36030-5_55

https://dx.doi.org/10.1007/978-3-031-36030-5_55
https://dx.doi.org/10.1007/978-3-031-36030-5_55


Title Suppressed Due to Excessive Length 7

3.3 Scottie Go and Scratch extensions to the classic course

Scottie Go products are a series of innovative and unique game-based approaches
to introduce novice programmers to the world of programming and creative tech-
nology. The game comprises a free to download application, with no ads nor
in-play purchases, which features 91 quests of increasing difficulty, a board and
179 cardboard tiles. The app can be installed on all major operating systems.
The game covers all basic concepts of programming, ranging from basic instruc-
tions, algorithms, and parameters to loops, conditional expressions, variables
and functions. To play the game, students start the app and read the challenge
of a specific quest. This typically requires the main character to move around
the board and to perform specific actions. With the use of the cardboard tiles,
players create simple coding instructions for the main character to follow. The
instructions are scanned with the app, which then illustrates how the charac-
ter performs the instructions on the board. This solution gives the players an
immediate feedback on whether the instructions were accurate, where the issue
may lie, and whether the result can be further optimized. The game requires
students to complete a level before moving to the next one. However, teach-
ers are provided with a digital key to let more able students skip specific, less
challenging sections. The game enables students to gain basic and advanced pro-
gramming skills and to boost their logical thinking skills in an interactive and
enjoyable approach. At the same time, it allows non-specialist teachers to inte-
grate learning activities in their lessons, which will deliver against the standards
of the Computer Science curriculum. Often used to promote teamwork, Scottie
Go allows learners to discover programming through a tactile and kinesthetic
approach. This means that the computational thinking behind programming is
illustrated in an enticing and appealing way. Furthermore, by manipulating the
sequences of code with their hands on the actual board, as opposed to typing
strings of code on a device, Scottie Go focuses the learner on the actual process
of problem solving. The typical try and error approach, so common in tradi-
tional programming, is replaced by a more considered, thought-based process
and computational thinking.

The purpose of the study was to propose and evaluate the new learning
method for a novice programmer, which will incubate the computational thinking
and develop a problem-solving ability, rather than only concentrate the efforts
on Python syntactic and coding skills. Scottie Go as the block based and gaming-
based toll of learning is great candidate to stimulate these abilities. Our method
expanded the approach described in the subsection 3.2 with Scottie Go module
added on the beginning of the course.

We introduce the selected quest and games from Scottie Go during first 8
weeks of the class to develop the ability of novice programmers to discover and
practice planning a suitable solution. The idea is to develop a solution from a
high-level design concept of building the path to the solution. This approach
requires propose detailed design by transforming sub-goals into corresponding
algorithms. Additionally, the system identifies the best type of implemented
algorithm and rank it with the proper number of stars. More stars are the higher

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36030-5_55

https://dx.doi.org/10.1007/978-3-031-36030-5_55
https://dx.doi.org/10.1007/978-3-031-36030-5_55


8 F. Author et al.

ranking meaning better optimized solution to the problem. Competition aspect
to plan and implement best solution, stimulates a new programmer to optimize
their algorithms and incorporates fun aspect to the learning process.

3.4 Participants

This study was conducted at four public schools in Poland, each school had
minimum three classes in the same level of education – eighth grade and almost
similar size in terms of students in each class. The research sample consists of
361 students from four different schools, from twelve classes. As for gender, 184
are girls (51%) and 177 are boys (49%). Among these 361 students, 121 have
taken the classic course, 118 took Scratch extension to the classic course and
122 Scottie Go and Scratch extensions to the classic course. Polish ministry of
education formalizes the curriculum and allowing introduction to programming
in Python in grade eight but not clarify or define the method how the subject is
going to be educate. Most students usually have no prior knowledge of Python
programming concepts and skills. Accordingly, their prior knowledge and pro-
gramming skills are assumed to be equivalent. Four teachers participated in the
experiment, each of them had 3 class, one from each type of tested methods,
each teacher specialized in teaching computer science and had over 10 years of
teaching experience.

3.5 Research method

The purpose of the study was to propose and determine the impact of a new
learning method for novice programmers to stimulate the behaviour of computer
thinking and problem-solving skills. To quantity the effect of the new learning
method and compare it with other tested methods, two tests were developed
and carried out at the end of the curriculum as a learning outcomes control
mechanism. The ideal idea seems to be to test the solution using a comparative
method, this approach allows to better understand the effects of learning the
concept of programming developing computer thinking and stimulating problem
solving behaviour.
In its classical form, the experimental method assesses the results achieved from
the control group in contrast to the results obtained by the treated group. In
our scenario, the treatment consisted of implementing the proposed new method
compared to the classical Python curriculum. In experimental evaluation, both
groups should be equivalent if participants are randomly assigned to control and
treatment groups. In our case, it was difficult to randomly assign scholars to
different schools, but each school had 3 different categories of tested methods,
and the experiment involved 4 different teachers and each used each method.
The research procedure for the classic course was embedded with typical cur-
riculum introduction to Python. In the first 34 weeks of the course the basics
and extended programming concepts have been introduced to the students ac-
cording to the curriculum and enabled all the novice programmers with all the
competencies from classic course. Through this period of the class, students were

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36030-5_55

https://dx.doi.org/10.1007/978-3-031-36030-5_55
https://dx.doi.org/10.1007/978-3-031-36030-5_55


Title Suppressed Due to Excessive Length 9

introduced to the basic programming idea and abstraction such as: if-then condi-
tions, variables, constants, for and while loops, nested loops, operation on strings,
arrays, two-dimensional array, functions and use of modules in Python. In week
35 second phase took a place, and the instructor clarified the importance of “BE-
BRAS” test and mechanics behind it and special test to validate the ability of the
computational problem-solving has been implemented. We used the one of the
tests from the repository of “BEBRAS”- International Challenge on Informatics
and Computational Thinking customized for eight grade. The implemented 45
minutes online test includes 10 problems to solve and students can achieve from
0-40 points. The test is very intuitional and does not require any knowledge of
any particular programming language or any environment to be installed. All
the questions in the test were dedicated to verifying the computational think-
ing and provide clear proof if proposed method enhance novice programmers to
solve computational problems. The second testing procedure started week after
in week 36 and was dedicated to verifying ability of the problem-solving and
computational thinking ability and skills. First, the instructor clarified the idea
of test, then students got a Python script (Figure 1) to modify it in the way
to solve the problem in most optimal way. We have been ready to see various

Fig. 1. Python code to be modified to solve the problem

programming strategies and implementation expose by the participants could
manifest, but idea was noticeably clear the most efficient algorithm is going to
win. Finally, we built the ranking of the solution based on the most effective
algorithms from computational problem-solving perspective not from most effi-
cient and condensed version of Python implementation. The assignment was to
“calculate the number of zero appearance in central row and column in given
matrix - table”. We have used the markers of programming actions for problem
solving and computational thinking to judge the solution. The indicators were
group in two categories:
– Computational thinking practice: simply iteration, nested or multi-conditional

iteration, agile style.
– Computational solving practice design: problem decomposition, sequential

approach, selective approach.

Based on the indicators and overall algorithm quality (if the problem was solved
or not) we have assessed the solution. We have observed different solution to

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36030-5_55

https://dx.doi.org/10.1007/978-3-031-36030-5_55
https://dx.doi.org/10.1007/978-3-031-36030-5_55


10 F. Author et al.

the problem which can be group in 3 categories. Categories were created based
on the way the problem was decomposed and numbers of iteration in the loops.
The first category was 9 steps looping and there we have observe two type of
implementations two sequential loops of 9 steps or one loop of 9 steps.Second
category was loping with 4 steps and there we have seen also 2 subcategories
4 independent loops or 2 loops with 4 steps each. The final most sophisticated
category was we called agile or spiral approach where students in 4 steps loop
completed the task. Last approach is presented in Figure 2. In addition to the
category of implementation we have also judge how the exception and replication
have been handled and how the central A[4,4] element of the matrix has been
managed (some solutions counted A[4,4] element many times).

Fig. 2. One of the six type of solution: spiral approach with 4 steps loop (centripetal)

Taking into account indicators, type and quality of the proposed algorithm as
well how the exceptions have been handled students were able to achieve from 0-
100 points from the final test. Of course, they were fully aware that their results
from the project would be considered as important component of their mark for
the course. The exactly the same components have been used for verification of
two other teaching methods, the only difference is that in Scratch extension to
the classic course and Scottie Go and Scratch extensions to the classic course,
the curriculum has been modified, but testing methodology implemented in week
35 and week 36 remains exactly the same. Figure 3 shows the timeline for all 3
type of courses.

4 Results

The data gathered in this study included information about the results of com-
putational problem-solving activities practices, strategies, and as well results of
computational thinking test. Collected indicators are representing the compu-
tational thinking activities in the action, which is a computational problem-
solving task. These indicators could be classified as two dimensions: compu-
tational thinking practice and computational solving design. To discover the
student’s patterns of computational thinking in the action of problem solving,
we deployed “BEBRAS” test. In order to verify our postulate that students with

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36030-5_55

https://dx.doi.org/10.1007/978-3-031-36030-5_55
https://dx.doi.org/10.1007/978-3-031-36030-5_55


Title Suppressed Due to Excessive Length 11

Fig. 3. Timeline of all 3 courses

the Scottie Go and Scratch extension to the classic course perform better than
students from the classic course (our control group), the "BEBRAS" test was
carried out. In addition, there was also an evaluation of the intermediate group,
which was based on the adding Scratch modification to classic course. In this
evaluation, the dependent variable was student performance determined after
taking the "BEBRAS" test. On average, the students in the Scottie Go and
Scratch extensions to the classic course performed better (M = 26.00, SD =
10.16, AVG = 24.01) than those in the classic course (M = 21.00, SD = 10.82,
AVG = 21.66) and the Scratch extensions to the classic course (M = 24.00, SD
= 10.60, AVG = 23.64). The percentage of scores between 20-40 points (best
scores) is also important. The highest score is 70% in favor of Scottie Go and
Scratch extensions to the classic course. The worst results of this parameter were
achieved after completing classic Python course (55%). Score for Scratch exten-
sions to the classic course was better than classic course (63%) (Table 1). The
assessment of all courses is performed in identical procedures.

It must be also distinguished that the failure rate for all type of courses is
similar. The "BEBRAS" test was not passed by those students who did not
attend classes regularly and we do not see any correlation with the version of
the course they were assigned.

The proposed test - “calculate the number of zero appearance in central row
and column in given matrix - table” examines computational thinking models
and problem-solving trials. This procedure resulted in a seven group of results
based on the indicators and overall algorithm quality. This solution provided
clear distinctions and meaningful explanations for the different models of com-
putational practice. In addition to 3 categories how students solved the problem

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36030-5_55

https://dx.doi.org/10.1007/978-3-031-36030-5_55
https://dx.doi.org/10.1007/978-3-031-36030-5_55


12 F. Author et al.

Table 1. Statistical comparison of the results from 3 courses (“BEBRAS” test).

Classic Python Scratch extensions Scottie extensions
Median 21.00 24.00 26.00
Standard deviation 10.82 10.60 10.16
Average 21.66 23.64 24.01
Percentage of results be-
tween 0 and 20 points

45.00 37.00 30.00

Percentage of results be-
tween 20 and 40 points

55.00 63.00 70.00

based on the way how the problem was decomposed and numbers of iteration in
the loops (described in the subsection 3.5), we also recognized four group, which
were not able solve the problem, but they were deploying some of the techniques
which can be judged according to our indicators. These group we named and
evaluated accordingly: Kamikaze approach, Try and Fail approach, Sequential
approach, Selective approach. Table 2 shows 7 groups of students and how they
are performing according to our indicators cross the three different teaching
methods we have examined.

Table 2. The results of the Python task divided into 7 groups of solutions.

Name of group Points Classic Python Scratch extensions Scottie extensions
Kamikaze 0-5 6 5 5
Try and Fail 6-15 15 12 13
Sequential 16-34 32 28 26
Selective 35-64 41 43 44
9 Loops 65-84 13 12 13
4 Loops 85-94 11 13 15
Agile/Spiral 95-100 3 5 6

The dependent variable in this comparison was the number of points obtained
after completing the test “calculate the number of zero appearance in central
row and column in given matrix - table”. On average, students accomplished
the Scottie Go and Scratch extensions to the classic course much better (M =
44.00, SD = 28.41, AVG = 47.77) than these in classic Python course (control
group) (M = 42.00, SD = 26.92, AVG = 42.83) and also better than these
in Scratch extensions to the classic course (M = 41.00, SD = 27.99, AVG =
46.86). The highest percentage of scores between 20-40 points is for Scottie Go
and Scratch extensions to the classic course – 44%. The worst result of this
parameter was achieved after completing classic Python course (39%). Score for
Scratch extensions to the classic course was better than classic course (42%)
(Table 3).

Finally, after two test we have collected feedback from the classes where Scot-
tie Go and Scratch extensions to the classic course has been implemented and

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36030-5_55

https://dx.doi.org/10.1007/978-3-031-36030-5_55
https://dx.doi.org/10.1007/978-3-031-36030-5_55


Title Suppressed Due to Excessive Length 13

Table 3. Statistical comparison of the results from 3 courses (Python exam).

Classic Python Scratch extensions Scottie extensions
Median 42.00 41.00 44.00
Standard deviation 26.92 27.99 28.41
Average 42.83 46.86 47.77
Percentage of results be-
tween 0 and 20 points

61.00 58.00 56.00

Percentage of results be-
tween 20 and 40 points

39.00 42.00 44.00

students have declared that Scottie missions cause them to spend more time
and to be more concentrated on the curriculum, also this extension motivated
them to solve and complete the mission at home, helped to learn algorithms and
programming concepts in the subsequent part of the course, improve creativity,
expand problem solving skills and made programming pleasurable more. In ad-
dition to these results, this paper looked at students’ progress on the Scottie Go
and Scratch extensions to the classic course to understand the impact of reducing
the length of the classic course by 8 weeks and adding instead a computational
problem-solving module at the start of the course. On the one hand, this module
enriches the development of these skills, but at the same time reduces the time
needed to learn the syntax elements related to Python programming.

5 Discussions and Conclusions

The goal of the research was to validate the effect of a new learning method ded-
icated to novice programmers, specifically designed to develop computational
thinking and problem-solving approach utilising a block-based development en-
vironment. The impact of the Scottie Go and Scratch extensions to the classic
course on novice programmers was evaluated by two research tests (Section 4).
Each of the research test was assessed by comparing to classic curriculum In-
troduction to Programming and also to extended version of this course with
incorporated Scratch.

The study shows that problem solving through using a block-based develop-
ment environment is effective way to support new inexperience programmers to
absorb coding and computational design concepts. The results obtained during
the study show a significant improvement in the skills of computer understand-
ing, thinking and solving computer problems at this stage of education. This
suggests the possibility of recommending to the education authorities to intro-
duce block tools in the core curriculum on Introduction to Programming.

This article also contributes to our understanding and perception of the re-
lationship between designing development environments and leveraging the de-
velopment practices they generate. It helps us analyse the relationship between
design and learning, especially with regard to programming. Nevertheless, the
authors recognise a further need to explore the relationship between the ability

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36030-5_55

https://dx.doi.org/10.1007/978-3-031-36030-5_55
https://dx.doi.org/10.1007/978-3-031-36030-5_55


14 F. Author et al.

of programmers to better model physical phenomena and the modelling of the
natural world and the usage of visual programming tools and good practices.

The analysis in this study also recognized different computational practice
patterns and design strategies for solving computational problems - we observed
three categories of proposed solutions. Taking into account the difference in
solving problems by the participants, further research into the use of block design
development environment should take into account such individual differences.
However, the areas of computational problems in this study are specific, which
may reduce other behaviour patterns and project strategies. In such case future
research should analyse different aspects of novice programmers’ processes of
using a block-based development environment.

It is worth analysing potential actions taken by novice programmers during
the development process, such as reviewing bugs, improving plans, and track-
ing code, that could provide better insight into behaviour patterns and design
strategies presented by novice developers. It is essential to have a comprehensive
and holistic view of how these design choices affect newcomers [19].

Taking into consideration the feedback given by students and teachers at the
end of the course it would also be valuable to integrate game elements into the
course, to see how this advancement motivates students to increase computation
problem solving capability.

In future research it is also valuable to investigate, if possible, the introduc-
tion of an admission test to better understand the level of knowledge and skills of
the groups at the beginning of the course and potentially improve the adaptation
of the method used.

The fundamental goal of this research is that it will help form the next
generation of initial computer science learning environments and thus shape the
next generation of learners, improving programming skills utilising block-based
tools to develop problem solving abilities. This approach has the potential to
help students achieve better results when introduced to a programming course,
which in turn can have an impact on their performance in future IT projects.

Acknowledgements Authors want to thank the anonymous reviewers whose
suggestions significantly improved the quality of this manuscript.

References

1. Aivaloglou, E. & Hermans, F. How kids code and how we know: An exploratory
study on the Scratch repository. Proceedings Of The 2016 ACM Conference On
International Computing Education Research. pp. 53-61 (2016)

2. Bower, M., Wood, L., Lai, J., Howe, C., Lister, R., Mason, R., Highfield, K. & Veal,
J. Improving the computational thinking pedagogical capabilities of school teachers.
Australian Journal Of Teacher Education. 42, 4 (2017)

3. Chao, P. Exploring students’ computational practice, design and performance of
problem-solving through a visual programming environment. Computers Educa-
tion. 95 pp. 202-215 (2016)

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36030-5_55

https://dx.doi.org/10.1007/978-3-031-36030-5_55
https://dx.doi.org/10.1007/978-3-031-36030-5_55


Title Suppressed Due to Excessive Length 15

4. Fagerlund, J., Häkkinen, P., Vesisenaho, M. & Viiri, J. Computational thinking
in programming with scratch in primary schools: A systematic review. Computer
Applications In Engineering Education. (2020)

5. Garcıa-Peñalvo, F. & Mendes, A. Exploring the computational thinking effects in
pre-university education. (Elsevier,2018)

6. Hosseini, R., Akhuseyinoglu, K., Brusilovsky, P., Malmi, L., Pollari-Malmi, K.,
Schunn, C. & Sirkiä, T. Improving engagement in program construction examples
for learning Python programming. International Journal Of Artificial Intelligence
In Education. 30, 299-336 (2020)

7. Hu, Y., Chen, C. & Su, C. Exploring the effectiveness and moderators of block-based
visual programming on student learning: A meta-analysis. Journal Of Educational
Computing Research. 58, 1467-1493 (2021)

8. Israel-Fishelson, R. & Hershkovitz, A. Persistence in a game-based learning envi-
ronment: The case of elementary school students learning computational thinking.
Journal Of Educational Computing Research. 58, 891-918 (2020)

9. LaToza, T., Arab, M., Loksa, D. & Ko, A. Explicit programming strategies. Em-
pirical Software Engineering. 25, 2416-2449 (2020)

10. Mathew, R., Malik, S. & Tawafak, R. Teaching Problem Solving Skills using an
Educational Game in a Computer Programming Course.. Informatics In Education.
18, 359-373 (2019)

11. Papadakis, S., Kalogiannakis, M., Orfanakis, V. & Zaranis, N. The appropriateness
of scratch and app inventor as educational environments for teaching introductory
programming in primary and secondary education. Early Childhood Development:
Concepts, Methodologies, Tools, And Applications. pp. 797-819 (2019)

12. Papadakis, S. Apps to Promote Computational Thinking Concepts and Coding
Skills in Children of Preschool and Pre-Primary School Age. Mobile Learning Ap-
plications In Early Childhood Education. pp. 101-121 (2020)

13. Pellet, J., Dame, A. & Parriaux, G. How beginner-friendly is a programming
language? A short analysis based on Java and Python examples. University of
Cyprus,(2019)

14. Theobald, E., Hill, M., Tran, E., Agrawal, S., Arroyo, E., Behling, S., Chambwe, N.,
Cintrón, D., Cooper, J., Dunster, G. & Others Active learning narrows achievement
gaps for underrepresented students in undergraduate science, technology, engineer-
ing, and math. Proceedings Of The National Academy Of Sciences. 117, 6476-6483
(2020)

15. Topalli, D. & Cagiltay, N. Improving programming skills in engineering education
through problem-based game projects with Scratch. Computers Education. 120
pp. 64-74 (2018)

16. Visnovitz, M. Classical Programming Topics with Functional Programming.
Central-European Journal Of New Technologies In Research, Education And Prac-
tice. pp. 41-55 (2020)

17. Weintrop, D. & Wilensky, U. Between a block and a typeface: Designing and
evaluating hybrid programming environments. Proceedings Of The 2017 Conference
On Interaction Design And Children. pp. 183-192 (2017)

18. Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L. & Wilen-
sky, U. Defining computational thinking for mathematics and science classrooms.
Journal Of Science Education And Technology. 25, 127-147 (2016)

19. Weintrop, D. & Holbert, N. From blocks to text and back: Programming patterns
in a dual-modality environment. Proceedings Of The 2017 ACM SIGCSE Technical
Symposium On Computer Science Education. pp. 633-638 (2017)

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36030-5_55

https://dx.doi.org/10.1007/978-3-031-36030-5_55
https://dx.doi.org/10.1007/978-3-031-36030-5_55

