
Semantic Hashing to Remedy Uncertainties in
Ontology-Driven Edge Computing?

Konstantin Ryabinin1,2[0000−0002−8353−7641] and
Svetlana Chuprina2[0000−0002−2103−3771]

1 Saint Petersburg State University, 7/9 Universitetskaya Emb.,
Saint Petersburg 199034, Russia

2 Perm State University, 15 Bukireva Str., Perm 614068, Russia
kostya.ryabinin@gmail.com, chuprinas@inbox.ru

Abstract. This paper discusses the specific kind of uncertainties, which
appear in ontology-driven software development. We focus on the devel-
opment of IoT applications whose source code is generated automatically
by an ontology-driven framework. So-called “compatibility uncertainties”
pop up when the ontology is being changed while the corresponding gen-
erated application is in operation. This specific kind of uncertainties can
be treated as a variant of implementation uncertainties. The algorithm
of its automated handling is presented. The proposed algorithm is imple-
mented within the SciVi platform and tested in the real-world project
devoted to the development of custom IoT-based hardware user inter-
faces for virtual reality. We use the SciVi platform as a toolset for the
automatic generation of IoT devices firmware for ontology-driven Edge
Computing but the problem discussed is common for any tools which are
used for the generation of ontology-driven software.

Keywords: Ontology-Driven Edge Computing · IoT · Firmware Gen-
eration · Semantic Hashing · Implementation Uncertainties.

1 Introduction

The spread of Ubiquitous Computing faces the challenges of configurability, in-
teroperability, and context awareness of programmable microelectronic devices,
which build up the Internet of Things (IoT). These devices are expected to in-
terconnect into sustainable computing networks, maintain the data flow, and
support user-friendly human-machine interaction to fulfill the Ubiquitous Com-
puting paradigm [3,1,11]. One of the strategies to improve networking stability
and performance within the Ubiquitous Computing environment is to push the
capabilities of artificial intelligence to the networks’ edge. This is all about pro-
viding the end-point lightweight devices (so-called Edge Nodes) with the ability
to track the context of their work and make decisions on their own without

? This study is supported by the research grant No. ID92566385 from Saint Petersburg
State University.

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36030-5_52

https://dx.doi.org/10.1007/978-3-031-36030-5_52
https://dx.doi.org/10.1007/978-3-031-36030-5_52

relying on more powerful hub devices (so-called Fog Nodes) or remote services
(so-called Cloud Nodes).

The promising approach to enhance the intelligent features of smart devices
is the bridging of the IoT with the Semantic Web technologies that is called the
Semantic Web of Things (SWoT) [9]. SWoT assumes leveraging ontologies to
build formal models of knowledge about the devices, interfaces, networks, and
processed data to overcome the interoperability, configurability, and accessibility
limitations of the traditional IoT.

The logical step of SWoT development is the ontology-driven Edge Comput-
ing (ODEC) vision [25,1,27,28] that enables ontologies to act not just as descrip-
tive models of IoT artifacts, but also as full-fledged drivers of computation and
communication processes on the network’s edge.

In our previous work [25], we contributed to the development of the ODEC
by the following. First, we created the semantic compression algorithm to fit the
task ontologies [31] to the memory of resource-constrained edge devices. Sec-
ond, we implemented a tiny reasoner that is capable of running on edge devices,
interpreting the compressed task ontologies, and performing the computation
and communication tasks according to ontological specifications. The reasoner
consists of an immutable core and a dynamic set of functions (so-called opera-
tors), which can be referenced from within task ontologies. Actual firmware for a
particular edge device is generated automatically by means of services provided
by our platform SciVi3 [24], and namely, its special toolset called EdgeSciVi
Workbench. The firmware generation is driven by an application ontology that
combines domain and task ontologies and offers a specified system of concepts
for a particular application [31]. In our case, the application ontology describes
a set of supported hardware components, data processing mechanisms, commu-
nication protocols, and interoperability techniques (examples of such kind of
application ontologies can be found in [26]). Once generated, the firmware can
be installed on the desired device. After that, the actual programs this device
should execute can be encoded as task ontologies and pushed to the device with-
out reflashing. To compose the task ontologies, we have a special high-level visual
programming tool based on the data flow paradigm. The building blocks for the
data flow diagrams are operators, which are derived from the application on-
tology and correspond to the functions incorporated in the embedded reasoner.
The entire workflow is based on the so-called low-code concept [16] allowing users
with no programming hard skills to declaratively describe the data processing
pipelines by means of high-level building blocks. All the low-level details of com-
putation, communication, and configuration are automatically covered by the
SciVi platform, which extracts all the relevant knowledge from the underlying
ontological knowledge base.

Although this approach provides a fast and easy way to organize the Edge
Computing process, it still has limitations. The one we address in the present
work is the uncertainty that can be called “compatibility uncertainty” of a ran-
dom edge device discovered in the network.

3 https://scivi.tools/

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36030-5_52

https://scivi.tools/
https://dx.doi.org/10.1007/978-3-031-36030-5_52
https://dx.doi.org/10.1007/978-3-031-36030-5_52

The problem is as follows. Let us have an edge device, whose firmware is an
embedded reasoner that has been generated by SciVi according to the application
ontology D. This reasoner incorporates a set of functions (operators) Φ that is a
subset of all the operators described by D (the actual subset of operators for a
particular firmware is being chosen by the user). After the firmware installation,
let us turn off this device for a while. Let us change D while the device is offline.
After this device reappears in the network, it will be discovered as capable of
ODEC. However, as D has been changed since the firmware generation, attempts
to use D as a source for task ontologies for this device will lead to undefined
behavior because the operators described by D can be incompatible anymore
with the functions in the device firmware.

The obvious solution for this problem would be version numbering control.
A version number can be assigned to ontology D and stored in the embedded
reasoner by its generation. With each change, the version number of D should be
increased. When used in ODEC context, the device should indicate the version
of D it contains and this version should be matched with the actual version of
D. If these versions differ, the firmware has to be regenerated and reinstalled.
However, this naive solution has two major drawbacks. First, ontologyD is in fact
a merge of small ontologies, which describe individual data processing operators,
data types, communication protocols, hardware elements, etc. The merging of
these ontologies is performed by SciVi automatically at runtime [4], while the
knowledge engineers work with the small initial ontologies, which are much more
readable and handy. So, version numbering of D cannot be implemented directly.
The second drawback is the uncertainty of whether the changed D is really
incompatible with the current version of the device firmware or not. If any single
change of any part of D requires a firmware update, all the ODEC profit in device
reconfiguration speed and easiness is nullified.

In fact, only those changes of D matter, which affect the description of opera-
tors incorporated in the particular reasoner. To track these changes, we propose
using special semantic hashing of the application ontology. This hashing allows
us to build unique fingerprints of individual operators, store them in the gen-
erated firmware, and use them to check the compatibility of firmware with the
current version of D.

The proposed hashing algorithm is implemented in SciVi along with the
new improved version of embedded task ontologies representation format (so-
called EON, stands for Embedded ONtology [25]) to drive the Edge Computing
process. The new version of EON (EON 2.0) allows efficient and straightforward
encoding of operators’ instances with their fingerprints. We tested the proposed
improvements of our ODEC implementation by creating a custom configurable
hardware control panel to automate the debugging of experimental scenes in
virtual reality (VR).

In this paper, we present an improvement of our ontology-driven Edge Com-
puting implementation. The following key results can be highlighted:

1. The semantic hashing algorithm for application ontologies to build unique
16-bit fingerprints of data processing operators described by these ontologies.

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36030-5_52

https://dx.doi.org/10.1007/978-3-031-36030-5_52
https://dx.doi.org/10.1007/978-3-031-36030-5_52

2. The improved representation format to store task ontologies in the memory
of resource-constrained edge devices.

3. The approach to tackling the problem of edge devices’ “compatibility uncer-
tainty” within the ontology-driven Edge Computing paradigm.

2 Related Work

Reducing the different types of uncertainties plays a pivotal role not only in
optimization and decision-making processes but also in solving a variety of real-
world problems of software development/validation, including the context of
programmable microelectronic devices within the IoT ecosystem [14]. In this
paper, we focus on some kind of uncertainties that occurs when the ontology
is being changed while the corresponding generated ontology-driven application
is in operation. We consider this specific kind of uncertainties as a variation of
implementation uncertainties [21].

F. Scioscia and M. Ruta are among the pioneers, who proposed blending
Semantic Web and IoT technologies to build so-called SWoT [29,22]. This vi-
sion was first introduced to tackle the issues of “data management in pervasive
environments” [29] and further extended to address the “challenges associated
with standardization, interoperability, discovery, security, and description of IoT
resources and their corresponding data” [18]. The most valuable contributions
to SWoT are systematically reviewed by A. Rhayem et al. [18]. Along with this
review, F. Qaswar et al. fulfilled an analysis of the most interesting cases when
ontologies were been applied in IoT [17]. This analysis shows up, that ontologies
are nowadays intensively used in IoT design and development to tackle interop-
erability, integration, and privacy issues.

One of the possible directions of SWoT evolution is ODEC [25], the vision
of using ontologies to describe the entire functioning process of IoT devices
and corresponding data flows, which allows declaratively specified management
of Edge Computing. The pioneering works in ODEC are related to describing
edge device capabilities by ontologies [27]; ontology-driven edge device virtual-
ization [28]; using ontologies to retrieve devices, infer their interoperability, and
select their operation mode [5]; development of embedded ontology-based expert
systems to detect anomalies within IoT and robotics [30]; model-driven middle-
ware generation for semantic integration of devices within Ubiquitous Computing
environment [1]. Our contribution to ODEC is the development of a full-fledged
ontology reasoner that is embedded into edge devices and capable of executing
functions described by task ontologies [25].

One of the vast problems of ODEC is adequate ontology representation suit-
able for edge devices [32]. The most popular standard formats for storing on-
tologies are OWL4 and RDF5, but both of them are too verbose and thereby
unacceptable for most resource-constrained edge devices. To tackle this problem,

4 https://www.w3.org/OWL/
5 https://www.w3.org/RDF/

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36030-5_52

https://www.w3.org/OWL/
https://www.w3.org/RDF/
https://dx.doi.org/10.1007/978-3-031-36030-5_52
https://dx.doi.org/10.1007/978-3-031-36030-5_52

several compression algorithms are proposed, which aim to reduce syntactic, se-
mantic, and structural redundancies in the representation of ontologies [12,8]. As
shown by M. A. Hernández-Illera et al., exploiting structural redundancies is the
most promising direction in terms of compression ratio [8]. The results of differ-
ent state-of-the-art approaches to reducing structural redundancies are reported
independently by M. Röder et al. and T. Sultana et al. M. Röder et al. state that
the best compression can be achieved by so-called k2-trees [20], while T. Sul-
tana et al. propose a grammar-based knowledge graph compression algorithm
that outperforms all the most popular ontology compression techniques [33].
However, all the above-mentioned approaches deal with regular desktop-based
ontology reasoners and cannot be efficiently ported to edge devices due to limi-
tations of RAM capacity and CPU frequency.

X. Su et al. [32] and K. Sahlmann et al. [27] propose promising approaches
to bridge the gap between knowledge graph representation requirements and
edge devices capabilities, but none of them ensures the fitting of complete task
ontologies into the edge device RAM for the full-fledged reasoning. Our previous
contribution was a mix of reducing structural and semantic redundancies to
achieve an extreme compression ratio of task ontologies specifically for ODEC
use cases [25]. We proposed a special format called EON to represent embedded
ontologies. But applying this format to practical ODEC use cases revealed some
limitations, which we overcome in its next version, EON 2.0, described in more
detail in Section 4.

To make ODEC accessible not only for programmers and knowledge engineers
but also for casual users without special IT hard skills, high-level management
tools should be provided. In this regard, an emerging trend is the spread of
so-called low-code development platforms, which allow composing software in
visual editors without writing source code [16]. This approach can be efficiently
combined with ontology-driven software development [13]. The toolset for the
visual editor can be automatically generated according to the application ontol-
ogy that describes available software building blocks. Then, the visual software
model composed by the user can be converted to task ontology. Finally, the re-
sult software product can be automatically generated with a help of a semantic
reasoner that processes this task ontology [4].

To remedy the “compatibility uncertainty” between the application ontology
and the task ontologies, so-called semantic hashing can be utilized to efficiently
track the relevant changes in the corresponding ontologies. Semantic hashing is
an approach of encoding specific documents (for example, ontologies) in compact
binary vectors (hash codes) to allow efficient and effective similarity search [7].
According to the specification of EON, codes to operate with should be only 16
bits long to fit in the RAM of target edge devices [25]. So, we decided to use
Pearson hashing [15] that can be easily adapted to the hash values of any length
starting with 8 bits. With a predefined lookup table [15], this hashing algorithm
gives good results in terms of collision avoidance. To fully prevent collisions,
additional MD5 hashing [19] is proposed (see Section 3).

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36030-5_52

https://dx.doi.org/10.1007/978-3-031-36030-5_52
https://dx.doi.org/10.1007/978-3-031-36030-5_52

3 Semantic Hashing to Reduce Uncertainties

As mentioned above, in this paper we discuss the so-called “compatibility un-
certainty”.

3.1 Formal Model of Operator

The SciVi platform is based on a microservice architecture, where each microser-
vice corresponds to a data processing operator. We formalize the operator as

∆ : {I, S} → O, (1)

where I = {Ik|k = 1, |I|} is a set of typed inputs, S = {Sl|l = 1, |S|} is a set
of typed parameters (also denoted as settings), O = {Ot|t = 1, |O|} is a set of
typed outputs of the ∆ operator [4]. Let the set of available types be denoted as
Q.

Theorem 1. Any operator that adheres to (1) can be described by the D∆
lightweight application ontology.

Proof. According to [6], D∆ ontology can be expressed as D∆ = {T,R,A}, where
T is a thesaurus of concepts, R is a set of relationships between concepts from
T , and A is a set of axioms related to the elements of T and R.

By the assumption, D∆ is a lightweight ontology, which means A = ∅. Let
us identify the basic categories of elements of T :

1. Input (element of I) – independent variable within an operator.
2. Setting (element of S) – constant within an operator.
3. Output (element of O) – dependent variable within an operator.
4. Operator (element ∆ of formula (1)) – transformation that maps the values

of independent variables (inputs) and constants (settings) to the values of
dependent variables (outputs).

5. Type (element of Q) – a concept that defines the set of values that an oper-
ator’s input, setting, and output can take, as well as the allowed operations
on these values.

For any particular ∆ operator, the T set can be composed as

T = {Operator, Input, Setting,Output, Type,∆,
I1, I2, . . . , I|I|, S1, S2, . . . , S|S|,

O1, O2, . . . , O|O|, Q1, Q2, . . . , Q|I|+|S|+|O|}.

Let us use two types of relationships to build R:

1. is a – paradigmatic relationship “subclass-class”.
2. has – paradigmatic relationship “class-property”.

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36030-5_52

https://dx.doi.org/10.1007/978-3-031-36030-5_52
https://dx.doi.org/10.1007/978-3-031-36030-5_52

Let us use description logic attributive language with complement, so-called
ALC [2], to formulate a terminology component (so-called TBox):

Ik v Input, k = 1, |I|,

Sl v Setting, l = 1, |S|,

Ot v Output, t = 1, |O|,

Qp v Type, p = 1, |I|+ |S|+ |O|,
Ik v Qp(k),
Sl v Qp(|I|+l),
Ot v Qp(|I|+|S|+t),
∆ ≡Operator u ∃has.I1 u . . . u ∃has.I|I|

u ∃has.S1 u . . . u ∃has.S|S|
u ∃has.O1 u . . . u ∃has.O|O|.

Here p(x) is a function that maps indices of elements of the I, S, and O sets
to the indices of corresponding types from the Q set. This TBox corresponds to
the knowledge graph shown in Fig. 1.

Fig. 1: Generalized description of ∆ operator in the form of knowledge graph

From the above, D∆ = {T,R} is the lightweight ontology that precisely
describes the ∆ operator. This is an application ontology because it was been
engineered for specific use within an ontology-driven data processing platform.

ut
To describe complex types, for example, arrays, the base type relationship is

added to R to represent type specifications.
Let us assume that we have n operators which relate to some specific class of

data processing problems. Then, according to Theorem 1, this set of operators
can be described by the following application ontology:

D =

n⋃
i=1

D∆i . (2)

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36030-5_52

https://dx.doi.org/10.1007/978-3-031-36030-5_52
https://dx.doi.org/10.1007/978-3-031-36030-5_52

3.2 Unique Identifier of Operator

According to the EON format specification, operators should have unique 16-
bit identifiers to be encoded into the concise semantically compressed ontology
representation [25]. Previously, we used just a regular numbering of operators
according to the order of their appearance in the D ontology (i.e. the i index
in Equation 2). However, this approach leads to “compatibility uncertainty”
as mentioned above because having a particular identifier of the operator we
cannot check whether it corresponds to the current version of D. To remedy
this uncertainty, we propose calculating the operator’s identifier as a hash of the
operator’s structure to be able to detect possible ontology changes. This hash
should preserve the operator’s semantics within the context of the operator’s
execution.

Only those changes of D break the operator’s compatibility, which affect the
operator’s execution process, so the hash function should be invariant to any
irrelevant changes. In the compilers theory, the function is primarily identified
by its name and type signature [10]. Similarly, an operator adhering to (1) can be
identified by its name (denoted as name(∆)) and the names of types of its inputs,
settings, and outputs (denoted as name(Qp), p = 1, |I|+ |S|+ |O|). It must be
noted, that in case of complex types (for example, enumerations or structures)
or hierarchical types, name(Qp) should produce a concatenation of all the names
of types in hierarchical order, with the “>” sign as a delimiter. Assuming that
operator and all the types have string names, the following equation can be used
to build the operator’s string identifier:

σ(∆) = name(∆) + “@I” +

|I|∑
i=1

name(Qi) + “@S” +

|I|+|S|∑
i=|I|+1

name(Qi)

+ “@O” +

|I|+|S|+|O|∑
i=|I|+|S|+1

name(Qi),

(3)

where sums denote string concatenation of operands sorted in lexicographical
order with the “:” sign as a delimiter.

To get the operator’s unique identifier, we propose calculating a 16-bit Pear-
son hash [15] of σ(∆):

π(∆) = Pearson(σ(∆)). (4)

Usually, the operators are described as a taxonomy. In this case, Qp is as-
sembled by the reasoner taking into account the operators’ inheritance. Fig. 2
demonstrates an example of application ontology that describes two operators
handling general input-output pins of a microcontroller within an edge device.

Operators Input P in and Output P in inherit from their parent operator
GPIO (General-Purpose Input-Output) the Pin Number that is the setting of
complex type (enumeration of numbers). In addition, the Input P in operator
introduces a Boolean output Pin In and the Output P in operator introduces a

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36030-5_52

https://dx.doi.org/10.1007/978-3-031-36030-5_52
https://dx.doi.org/10.1007/978-3-031-36030-5_52

Fig. 2: Fragment of application ontology describing ODEC operators

Boolean input Pin Out. The instances of these operators provide the ability to
read and write logical values to the microcontroller’s pins and thereby control
different peripheral electronic components of custom edge devices. For these
operators, the following signatures are calculated according to the described
algorithm:

σ(Input P in) = “Input Pin@SEnum>Number@OBool”;

σ(Output P in) = “Output Pin@IBool@SEnum>Number”.

The actual hash values depend on the particular Pearson’s lookup table. In
our case:

π(Input P in) = 19218;

π(Output P in) = 57372.

The described hashing algorithm is invariant to changes of the names and
the order of inputs, settings, and outputs, as well as possible taxonomy changes
of the operator as long as the taxonomy changes do not lead to changing the
set of operators’ inputs, outputs, or settings due to inheritance. Of course, the
changes of other operators’ descriptions do not affect the hash of the current
one. Only the change of the current operator’s signature that directly affects
this operator’s execution process, will alternate the hash result.

The obvious problem of short Pearson hashing is the relatively high proba-
bility of collisions, but the total number of operators used in a single class of
data processing problems is pretty low. On average, the SciVi knowledge base
currently contains 40 operators per problem class (although this number may
grow with further SciVi development), which is ca. 1600 times less than the ca-
pacity of a 16-bit Pearson hash. In this case, the collision probability is about
1.2%. To get the collision probability higher than 50%, more than 300 operators
are needed. However, to detect possible collisions, we use an additional check
that is described in Section 3.3.

3.3 Embedded Reasoner Compatibility Check

As described in [25], the ODEC implies the following working principle. Let us
assume, D is an ontology that describes a set of n operators as in Equation

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36030-5_52

https://dx.doi.org/10.1007/978-3-031-36030-5_52
https://dx.doi.org/10.1007/978-3-031-36030-5_52

(2). First, the user chooses a subset Φ = {∆1, ∆2, . . . ,∆m} of operators from D
to be included in the embedded reasoner, m ≤ n. Usually, m � n due to the
program memory restrictions of edge devices. Next, the firmware for the edge
device is generated. This firmware contains the embedded reasoner with a special
module of functions (FM) that incorporates implementations of operators from
Φ. After this firmware is installed on the target edge device, the user can compose
task ontologies, describing the particular data collection, data processing, and
communication tasks the edge device should execute. For this, SciVi provides
high-level visual programming tools based on data flow diagrams. These data
flow diagrams are automatically converted to task ontologies referring to the
operators from Φ [25,4,24]. These task ontologies are uploaded to the edge device
and processed by the reasoner that triggers the necessary functions of FM, which
correspond to the operators. The triggering order, input parameters, and related
settings of functions are inferred from the task ontology.

To call the appropriate function for the corresponding operator, a special
lookup table is generated that maps the operators’ identifiers to the addresses of
corresponding functions in program memory. To check if the particular reasoner
installed on the particular edge device is compatible with the current ontology
D, the set of lookup table identifiers Π = {π(∆1), π(∆2), . . . , π(∆m)} (see Equa-
tions (3) and (4)) is sent from the reasoner to the SciVi server and matched with
the identifiers of all the operators described by D. This requires m · n compar-
isons of 16-bit integer values. The total number of comparisons is fairly small
(as mentioned above, the average value for n is 40, and m ≤ n), moreover, the
comparisons are performed on the server side, not on the edge device, so this
operation is very fast despite its quadratic complexity.

To defeat potential collisions, an additional check is performed. Along with
16-bit Pearson hashes of operators’ signatures σ(∆1), σ(∆2), . . . , σ(∆m) (see
Equation (3)), a 128-bit MD5 hash [19] of the following value is calculated:

ξ =

m∑
i=1

σ(∆i), µ = MD5(ξ), (5)

where sum denotes string concatenation of operands sorted in lexicographical
order with the “;” sign as a delimiter.

This MD5 value is stored in the reasoner’s source code along with the lookup
table and sent to the SciVi server together with the lookup table identifiers.

SciVi server first searches the elements of Π among the operators’ identifiers
from D. If at least one π(∆i), i = 1,m has no corresponding operator described
by D, the reasoner is treated as incompatible. Otherwise, the Φ set is recon-
structed containing operators with the identifiers from Π. Then, to make sure
there were no collisions, the received MD5 value µ is compared with the MD5
calculated for the signatures of operators from Φ. If these hashes are not equal,
the reasoner is treated as incompatible (collision of Pearson hashes took place).
Otherwise, the reasoner is compatible with D.

The incompatible reasoner should be updated, while the compatible one can
be used as is for subsequent ODEC process.

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36030-5_52

https://dx.doi.org/10.1007/978-3-031-36030-5_52
https://dx.doi.org/10.1007/978-3-031-36030-5_52

4 EON 2.0 Ontology Representation Format

In the EON 1.0 format [25], it was not efficient enough to represent different
instances of the same operator. However, the edge devices like custom control
panels, which are supposed to handle many similar buttons, often require exe-
cuting the same operator many times during a single data processing iteration.
Herewith, each call of the operator has its own settings and each operator’s
execution result is transmitted to its own branch of a data processing pipeline.

To improve the handling of operators’ instances, we have upgraded EON to
version 2.0 by slightly altering the memory layout of compressed task ontology.
The EON 2.0 blob structure is as follows:

| DFChunkLen | DFChunk | SChunkLen | SChunk | IChunk |

DFChunkLen (stands for Data Flow Chunk Length, 1 byte) is a number of
3-byte elements in DFChunk. DFChunk (stands for Data Flow Chunk, 3 times
DFChunkLen bytes) is a chunk containing the sequence of data transmission links
of the task ontology formed like this:

| OpInstA | Output | Input | OpInstB |

OpInstA (stands for Operator Instance A, 1 byte) and OpInstB (stands for
Operator Instance B, 1 byte) are task ontology identifiers of the operators’ in-
stances, whereby the output of OpInstA is linked to the input of OpInstB. Output
(4 bits) is an index of output of OpInstA. Input (4 bits) is an index of input of
OpInstB.

SChunkLen (stands for Settings Chunk Length, 2 bytes) is a length in bytes
of SChunk. SChunk (stands for Settings Chunk, SChunkLen bytes) is a chunk
containing the sequence of settings formed like this:

| OpInst | Setting | Type | Value |

OpInst (stands for Operator Instance, 1 byte) is a task ontology identifier
of the operator’s instance that has the corresponding setting. Setting (4 bits)
is an index of setting of OpInst. Type (4 bits) is an internal type identifier of
setting (currently, the following types are supported: signed and unsigned 8-bit,
16-bit, 32-bit integers, 32-bit float, and string). Value is an encoded setting’s
value (length depends on the type, strings are null-terminated).

IChunk (stands for Instances Chunk, length is not stored) is a chunk con-
taining the sequence of operators’ instances formed like this:

| UIDOp | OpInst1 | OpInst2 | ... | 0x0 |

UIDOp (stands for Unique Identifier of Operator, 2 bytes) is a unique iden-
tifier of the operator (calculated as described in Section 3.2), whose prototype
is described in the application ontology and instances are described in the task
ontology. OpInst1, OpInst2, ... (stand for Operator Instance, each is 1 byte)
are task ontology identifiers of corresponding operator’s instances. The 0x0 (1
byte) is a zero-byte terminating the list of instances.

The described format allows a very concise representation of task ontologies,
including the instancing of operators. As evaluated in [25], EON-formatted on-
tologies require about 800 times less storage space than OWL-formatted ones.
The new EON memory layout introduced in this paper does not decrease the

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36030-5_52

https://dx.doi.org/10.1007/978-3-031-36030-5_52
https://dx.doi.org/10.1007/978-3-031-36030-5_52

EON efficiency and allows for explicit encoding of operators’ instances. Thereby,
it increases the area of EON applications within ODEC.

5 Discussion and Conclusion

WWe introduce the above-mentioned approach to remedy ODEC uncertainty
and improvements of EON format within the research project “Text processing
in L1 and L2: Experimental study with eye-tracking, visual analytics and virtual
reality technologies”6 (supported by the research grant No. ID92566385 from
Saint Petersburg State University). One of the goals of this project is to study
the peculiarities of the reading process of humans within a VR environment using
eye tracking to estimate the differences in information perception in virtual and
physical reality. For this, VR scenes with different texts are sequentially shown
to informants. Their eye gaze tracks are sampled with a tracker embedded into
the VR head-mounted display (HMD) and transmitted to SciVi for subsequent
analysis and storage [23].

Under normal circumstances, the experiment requires a director who uses the
SciVi Web interface to switch the scenes, start/stop eye gaze recording, and tune
the analytics pipeline settings if needed. However, during the debugging of the
analytics pipeline, it is more efficient when the pipeline developer plays both the
role of an informant and a director simultaneously, without engaging additional
people and wasting their time. However, the problem is that the informant has
their eyes covered with the HMD, so it is nearly impossible to use a SciVi Web
interface at that time. Taking the HMD on and off is not an option, because
for the correct eye tracking, calibration is needed after taking the HMD on, and
continuous re-calibrations would be very tedious. To solve this problem, custom
reconfigurable edge-device-based controllers can be used, whose hardware control
elements (buttons, potentiometers, etc.) are mapped to the particular pipeline
settings, which are debugged. In this use case, ODEC is very efficient, because
it allows both hardware and software reconfiguration and remapping without
reprogramming and reflashing. Utilizing the built-in VR controllers instead of
custom edge devices will not be as efficient, because it would require rebuilding
the VR scene each time when the controllers’ role should change. Moreover,
the limited set of buttons on the built-in controller does not provide as much
reconfiguration freedom as a custom device.

We successfully adopted ODEC in our VR-based research project. The pro-
posed method to remedy the ODEC “compatibility uncertainty” through the
semantic hashing of application ontologies allowed the efficient reuse of edge de-
vices powered by ODEC in a situation of continuous enrichment of the SciVi
repository with new operators and ontologies. The implementation of the pro-
posed compatibility checking reduces the amount of firmware generation and
device reflashing cycles. It works fast even though formally it has quadratic
complexity. Calculating the semantic hash of a particular operator described by

6 L1 and L2 stand for the native and foreign languages respectively.

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36030-5_52

https://dx.doi.org/10.1007/978-3-031-36030-5_52
https://dx.doi.org/10.1007/978-3-031-36030-5_52

an application ontology with 328 nodes and 845 relationships takes 2.15 ms on
average (on a MacBook Pro 2.3 GHz 8-Core Intel Core i9 CPU, 16 Gb RAM).
This enables the real-time processing of compatibility requests. The memory
footprint of the semantic hash is fairly small: it requires appending just 16 bytes
of MD5 hash sum to the device firmware, while the hashes of individual opera-
tors are stored in the identifiers of a functions module lookup table and do not
require extra storage space.

The average time of updating our ODEC-powered edge device (based on the
ESP8266 microcontroller) in different development cases is shown in Table 1.
The operators used in the ODEC device are denoted as “related operators”, the
unused ones are denoted as “unrelated operators”. In each development case,
the behavior of the ODEC device is changed by uploading a new task ontology.
If the task ontology is treated as compatible with the reasoner installed on this
device, the only action needed to update the device behavior is transmitting
this ontology from the computer, which takes 16 ms on average (just a single
tick of ODEC device processing loop, which is set up to the rate of 60 Hz in
our implementation). Otherwise, if the task ontology is treated as incompatible,
its uploading should be preceded by a firmware regeneration, device reflashing,
reboot, and WiFi reconnection, which takes about 30 s on average in total.

Table 1: Performance comparison of ODEC device updating

Development
case: type of
changes in D

No changes

Changes of
related

operators’
structure

Changes of
related

operators’
parameters

naming

Changes of
unrelated
operators

Average

Conventional
versioning

16 ms 30000 ms 30000 ms 30000 ms 22504 ms

Semantic hashing 16 ms 30000 ms 16 ms 16 ms 7512 ms

As seen in the table, the introduced semantic hashing increases the per-
formance of updating the ODEC device 3 times on average. The software im-
plementation of operators’ descriptions semantic hasher and EON 2.0 format
encoder are available in SciVi open source repository: https://github.com/

scivi-tools/scivi.web/blob/master/onto/hasher.py.
For the next step of ODEC development, we plan to design an ontology-

driven bus for joining hardware components of edge devices on plug-and-play
principles. This will further increase the efficiency of the device reconfiguration
process, which is crucial in the cases of creating custom hardware user interfaces
within the IoT ecosystem.

References

1. Abdulrab, H., Babkin, E., Kozyrev, O.: Semantically Enriched Integration Frame-
work for Ubiquitous Computing Environment. In: Babkin, E. (ed.) Ubiquitous
Computing, chap. 9, pp. 177–196. IntechOpen (2011). https://doi.org/10.5772/
15262

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36030-5_52

https://github.com/scivi-tools/scivi.web/blob/master/onto/hasher.py
https://github.com/scivi-tools/scivi.web/blob/master/onto/hasher.py
https://doi.org/10.5772/15262
https://doi.org/10.5772/15262
https://doi.org/10.5772/15262
https://doi.org/10.5772/15262
https://dx.doi.org/10.1007/978-3-031-36030-5_52
https://dx.doi.org/10.1007/978-3-031-36030-5_52

2. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook: Theory, Implementation and Applica-
tions. Cambridge University Press (2003)

3. Calderon, M., Delgadillo, S., Garcia-Macias, A.: A More Human-Centric Internet
of Things with Temporal and Spatial Context. Procedia Computer Science 83,
553–559 (2016). https://doi.org/10.1016/j.procs.2016.04.263

4. Chuprina, S., Ryabinin, K., Koznov, D., Matkin, K.: Ontology-Driven Visual An-
alytics Software Development. Programming and Computer Software 48(3), 208–
214 (2022). https://doi.org/10.1134/S0361768822030033

5. Dibowski, H., Kabitzsch, K.: Ontology-Based Device Descriptions and Device
Repository for Building Automation Devices. EURASIP Journal on Embedded
Systems (2011). https://doi.org/10.1155/2011/623461

6. Golitsyna, O.L., Maksimov, N.V., Okropishina, O.V., Strogonov, V.I.: The On-
tological Approach to the Identification of Information in Tasks of Document
Retrieval. Automatic Documentation and Mathematical Linguistics 46, 125–132
(2012). https://doi.org/10.3103/S0005105512030028

7. Hansen, C., Hansen, C., Simonsen, J.G., Alstrup, S., Lioma, C.: Unsupervised
Multi-Index Semantic Hashing. In: Proceedings of the Web Conference 2021. pp.
2879–2889 (2021). https://doi.org/10.1145/3442381.3450014

8. Hernández-Illera, A., Mart́ınez-Prieto, M.A., Fernández, J.D.: RDF-TR: Exploiting
Structural Redundancies to Boost RDF Compression. Information Sciences 508,
234–259 (2020). https://doi.org/10.1016/j.ins.2019.08.081

9. Jara, A.J., Olivieri, A.C., Bocchi, Y., Jung, M., Kastner, W., Skarmeta, A.F.:
Semantic Web of Things: An Analysis of the Application Semantics for the IoT
Moving towards the IoT Convergence. International Journal of Web and Grid
Services 10(2/3), 244–272 (2014). https://doi.org/10.1504/IJWGS.2014.060260

10. Kernighan, B.W., Ritchie, D.M.: C Programming Language. Prentice-Hall (1988)

11. Mao, S., Khalifa, Y., Zhang, Z., Shu, K., Suri, A., Bouzid, Z., Sejdic, E.: Chapter 14
- Ubiquitous Computing. In: Godfrey, A., Stuart, S. (eds.) Digital Health, pp. 211–
230. Academic Press (2021). https://doi.org/10.1016/B978-0-12-818914-6.

00002-8

12. Mart́ınez-Prieto, M.A., Fernández, J.D., Hernández-Illera, A., Gutiérrez, C.: RDF
Compression, pp. 1–11. Springer International Publishing (2018). https://doi.

org/10.1007/978-3-319-63962-8_62-1

13. Pan, J.Z., Staab, S., Aßmann, U., Ebert, J., Zhao, Y. (eds.): Ontology-
Driven Software Development. Springer (2013). https://doi.org/10.1007/

978-3-642-31226-7

14. Patel, A., Debnath, N.C., Bhushan, B. (eds.): Semantic Web Technologies: Re-
search and Applications (1st ed.). CRC Press (2022). https://doi.org/10.1201/
9781003309420

15. Pearson, P.K.: Fast Hashing of Variable-Length Text Strings. Communications of
the ACM 33(6), 677–680 (1990). https://doi.org/10.1145/78973.78978

16. Pinho, D., Aguiar, A., Amaral, V.: What about the usability in low-code platforms?
A systematic literature review. Journal of Computer Languages 74 (2023). https:
//doi.org/10.1016/j.cola.2022.101185

17. Qaswar, F., Rahmah, M., Raza, M.A., Noraziah, A., Alkazemi, B., Fauziah,
Z., Hassan, M.K.A., Sharaf, A.: Applications of Ontology in the Internet of
Things: A Systematic Analysis. Electronics 12(1) (2023). https://doi.org/10.
3390/electronics12010111

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36030-5_52

https://doi.org/10.1016/j.procs.2016.04.263
https://doi.org/10.1016/j.procs.2016.04.263
https://doi.org/10.1134/S0361768822030033
https://doi.org/10.1134/S0361768822030033
https://doi.org/10.1155/2011/623461
https://doi.org/10.1155/2011/623461
https://doi.org/10.3103/S0005105512030028
https://doi.org/10.3103/S0005105512030028
https://doi.org/10.1145/3442381.3450014
https://doi.org/10.1145/3442381.3450014
https://doi.org/10.1016/j.ins.2019.08.081
https://doi.org/10.1016/j.ins.2019.08.081
https://doi.org/10.1504/IJWGS.2014.060260
https://doi.org/10.1504/IJWGS.2014.060260
https://doi.org/10.1016/B978-0-12-818914-6.00002-8
https://doi.org/10.1016/B978-0-12-818914-6.00002-8
https://doi.org/10.1016/B978-0-12-818914-6.00002-8
https://doi.org/10.1016/B978-0-12-818914-6.00002-8
https://doi.org/10.1007/978-3-319-63962-8_62-1
https://doi.org/10.1007/978-3-319-63962-8_62-1
https://doi.org/10.1007/978-3-319-63962-8_62-1
https://doi.org/10.1007/978-3-319-63962-8_62-1
https://doi.org/10.1007/978-3-642-31226-7
https://doi.org/10.1007/978-3-642-31226-7
https://doi.org/10.1007/978-3-642-31226-7
https://doi.org/10.1007/978-3-642-31226-7
https://doi.org/10.1201/9781003309420
https://doi.org/10.1201/9781003309420
https://doi.org/10.1201/9781003309420
https://doi.org/10.1201/9781003309420
https://doi.org/10.1145/78973.78978
https://doi.org/10.1145/78973.78978
https://doi.org/10.1016/j.cola.2022.101185
https://doi.org/10.1016/j.cola.2022.101185
https://doi.org/10.1016/j.cola.2022.101185
https://doi.org/10.1016/j.cola.2022.101185
https://doi.org/10.3390/electronics12010111
https://doi.org/10.3390/electronics12010111
https://doi.org/10.3390/electronics12010111
https://doi.org/10.3390/electronics12010111
https://dx.doi.org/10.1007/978-3-031-36030-5_52
https://dx.doi.org/10.1007/978-3-031-36030-5_52

18. Rhayem, A., Mhiri, M.B.A., Gargouri, F.: Semantic Web Technologies for the
Internet of Things: Systematic Literature Review. Internet of Things 11 (2020).
https://doi.org/10.1016/j.iot.2020.100206

19. Rivest, R.: The MD5 Message-Digest Algorithm. RFC 1321, RFC Editor (1992).
https://doi.org/10.17487/RFC1321

20. Röder, M., Frerk, P., Conrads, F., Ngomo, A.C.N.: Applying Grammar-Based
Compression to RDF. Lecture Notes in Computer Science 12731, 93–108 (2021).
https://doi.org/10.1007/978-3-030-77385-4_6

21. Roza, M.: Verification, Validation and Uncertainty Quantification Methods and
Techniques (An Overview and their Application within the GM-VV Technical
Framework). Science and Technology Organization, NATO (2014)

22. Ruta, M., Scioscia, F., Di Sciascio, E.: Enabling the Semantic Web of Things:
Framework and Architecture. In: 2012 IEEE Sixth International Conference on
Semantic Computing. pp. 345–347 (2012). https://doi.org/10.1109/ICSC.2012.
42

23. Ryabinin, K., Belousov, K.: Visual Analytics of Gaze Tracks in Virtual Reality
Environment. Scientific Visualization 13(2), 50–66 (2021). https://doi.org/10.
26583/sv.13.2.04

24. Ryabinin, K., Chumakov, R., Belousov, K., Kolesnik, M.: Ontology-Driven Visual
Analytics Platform for Semantic Data Mining and Fuzzy Classification. Frontiers
in Artificial Intelligence and Applications 358, 1–7 (2022). https://doi.org/10.
3233/FAIA220363

25. Ryabinin, K., Chuprina, S.: Ontology-Driven Edge Computing. Lecture Notes
in Computer Science 12143, 312–325 (2020). https://doi.org/10.1007/

978-3-030-50436-6_23

26. Ryabinin, K., Chuprina, S., Labutin, I.: Tackling IoT Interoperability Problems
with Ontology-Driven Smart Approach. Lecture Notes in Networks and Systems
342, 77–91 (2021). https://doi.org/10.1007/978-3-030-89477-1_9

27. Sahlmann, K., Scheffler, T., Schnor, B.: Ontology-driven Device Descriptions for
IoT Network Management. In: 2018 Global Internet of Things Summit (GIoTS)
(2018). https://doi.org/10.1109/GIOTS.2018.8534569

28. Sahlmann, K., Schwotzer, T.: Ontology-Based Virtual IoT Devices for Edge Com-
puting. In: Proceedings of the 8th International Conference on the Internet of
Things (2018). https://doi.org/10.1145/3277593.3277597

29. Scioscia, F., Ruta, M.: Building a Semantic Web of Things: Issues and Perspectives
in Information Compression. In: 2009 IEEE International Conference on Semantic
Computing. pp. 589–594 (2009). https://doi.org/10.1109/ICSC.2009.75

30. Seitz, C., Schönfelder, R.: Rule-based OWL Reasoning for specific Embedded De-
vices. Lecture Notes in Computer Science 7032, 237–252 (2011). https://doi.

org/{10.1007/978-3-642-25093-4_16}

31. Slimani, T.: Ontology Development: A Comparing Study on Tools, Languages
and Formalisms. Indian Journal of Science and Technology 8(24), 1–12 (2015).
https://doi.org/10.17485/ijst/2015/v8i34/54249

32. Su, X., Riekki, J., Haverinen, J.: Entity Notation: Enabling Knowledge Represen-
tations for Resource-Constrained Sensors. Personal and Ubiquitous Computing 16,
819–834 (2012). https://doi.org/10.1007/s00779-011-0453-6

33. Sultana, T., Lee, Y.K.: gRDF: An Efficient Compressor with Reduced Structural
Regularities That Utilizes gRePair. Sensors 22(7) (2022). https://doi.org/10.
3390/s22072545

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36030-5_52

https://doi.org/10.1016/j.iot.2020.100206
https://doi.org/10.1016/j.iot.2020.100206
https://doi.org/10.17487/RFC1321
https://doi.org/10.17487/RFC1321
https://doi.org/10.1007/978-3-030-77385-4_6
https://doi.org/10.1007/978-3-030-77385-4_6
https://doi.org/10.1109/ICSC.2012.42
https://doi.org/10.1109/ICSC.2012.42
https://doi.org/10.1109/ICSC.2012.42
https://doi.org/10.1109/ICSC.2012.42
https://doi.org/10.26583/sv.13.2.04
https://doi.org/10.26583/sv.13.2.04
https://doi.org/10.26583/sv.13.2.04
https://doi.org/10.26583/sv.13.2.04
https://doi.org/10.3233/FAIA220363
https://doi.org/10.3233/FAIA220363
https://doi.org/10.3233/FAIA220363
https://doi.org/10.3233/FAIA220363
https://doi.org/10.1007/978-3-030-50436-6_23
https://doi.org/10.1007/978-3-030-50436-6_23
https://doi.org/10.1007/978-3-030-50436-6_23
https://doi.org/10.1007/978-3-030-50436-6_23
https://doi.org/10.1007/978-3-030-89477-1_9
https://doi.org/10.1007/978-3-030-89477-1_9
https://doi.org/10.1109/GIOTS.2018.8534569
https://doi.org/10.1109/GIOTS.2018.8534569
https://doi.org/10.1145/3277593.3277597
https://doi.org/10.1145/3277593.3277597
https://doi.org/10.1109/ICSC.2009.75
https://doi.org/10.1109/ICSC.2009.75
https://doi.org/{10.1007/978-3-642-25093-4_16}
https://doi.org/{10.1007/978-3-642-25093-4_16}
https://doi.org/{10.1007/978-3-642-25093-4_16}
https://doi.org/{10.1007/978-3-642-25093-4_16}
https://doi.org/10.17485/ijst/2015/v8i34/54249
https://doi.org/10.17485/ijst/2015/v8i34/54249
https://doi.org/10.1007/s00779-011-0453-6
https://doi.org/10.1007/s00779-011-0453-6
https://doi.org/10.3390/s22072545
https://doi.org/10.3390/s22072545
https://doi.org/10.3390/s22072545
https://doi.org/10.3390/s22072545
https://dx.doi.org/10.1007/978-3-031-36030-5_52
https://dx.doi.org/10.1007/978-3-031-36030-5_52

