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Abstract. Estimation of approximation errors on an ensemble of numerical so-

lutions obtained by independent algorithms is addressed in the linear and non-

linear cases. In linear case the influence of the irremovable uncertainty on er-

ror estimates is considered. In nonlinear case, the nonuniform improvement of 

estimates’ accuracy is demonstrated that enables to overperform the quality of 

linear estimates. An ensemble of numerical results, obtained by four Open-

FOAM solvers for the inviscid compressible flow with an oblique shock wave, 

is used as the input data. A comparison of approximation errors, obtained by 

these methods, and the exact error, computed as the difference of numerical so-

lutions and the analytical solution, is presented. The numerical tests demon-

strated feasibility to obtain the reliable error estimates (in the linear case) and to 

improve the accuracy of certain approximation error in the nonlinear case. 

Keywords: approximation error, ensemble of numerical solutions, irremovable 

uncertainty, Euler equations, OpenFOAM. 

1 Introduction 

The development of the verification methods (a posteriori error estimation) is 

complicated by the formation of discontinuities for CFD problems, governed by equa-

tions of hyperbolic or mixed types. By this reason the corresponding progress is less 

considerable if compare with the finite element domain (elliptic equations) [1-3]. 

Nevertheless, modern CFD standards [9,10] require a verification of numerical solu-

tion. At present, the set of methods, such as defect correction [4] and Richardson ex-

trapolation [5-8], are used for the approximation error estimation in CFD. Their rec-

ommendations are mainly based on the grid convergence in the form of the Richard-

son extrapolation or the Runge approach (which considers the solution on a fine grid 

as true one). However, the common methods of a posteriori error estimation in CFD 

have significant troubles. The defect correction is an intrusive method (it requires the 

modification of the code) and is based on some linearization and assumption of the 

smallness of error, which may violate at the strong shock waves. The Richardson 

extrapolation is not intrusive (based on postprocessing), but, unfortunately, requires 

several consequent refinements of the grid that cause high computational expenses. 
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By these reasons, papers [8,11-13] consider nonintrusive methods of the pointwise 

error estimation, which do not require the mesh refinement. The need for at least three 

independent solvers and a relatively small accuracy of error estimates are their draw-

backs. 

The present paper considers the conditions that improve the accuracy of error esti-

mates for the linear method [8,11,12]. Some properties of the nonlinear method [13] 

are discussed, which increase the accuracy for certain solution at the expense of the 

accuracy of others. The considered nonlinear version of the algorithm enables to esti-

mate the approximation error with higher accuracy, if compare with the linear case. 

2 The linear problem for the approximation error estimation 

using the differences of numerical solutions 

An ensemble of n  numerical solutions 
)(i

mu  )...1( ni  , computed on the same 

grid by different numerical algorithms contains some information regarding their 

approximation errors. Herein u  is the gas-dynamics variables, i  is the number of 

algorithm, m  is the index  ( Lm ,...,1 ),  marking the grid node in a vectorized 

form. Papers [8, 11, 12] address the estimation of the approximation errors on the 

ensemble of numerical solutions. The Inverse Problem, posed in the variational state-

ment with the zero order Tikhonov regularization, is used to treat the differences be-

tween the solutions in these papers. The paper [13] applies the Inverse Problem for 

the nonlinear statement of approximation error estimation in the context of regulariza-

tion.  

Herein, we address estimation of the approximation errors on the ensemble of 

numerical solutions using several approaches. Some important features of the both 

linear and nonlinear formulations are considered, including non-uniform resolution of 

errors.  

We start from the linear statement, based on differences of solutions. We denote 

the projection of the exact solution u~  onto the grid as mu~  and the approximation 

error for thi   solution as m

i

m

i

m uuu ~)()(  . The point-wise differences of the 

numerical solutions 
)()()(

,
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mmh

i

mmh

j

m

i

mmij uuuuuuuud   are computable 

and depend on approximation errors. The following relation can be stated:   

 

                                     mk

j

mkj fuD ,

)(  .                                              (1) 

 

Herein, mkf ,  is a vectorized form of the differences of solutions, kjD  is a rectangular 

nN   matrix,  the summation over a repeating index is implied (no summation over 

m ). Since the relation 2/)1(  nnN  ( N  is the number of equations and RHS 
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terms) is valid, the simplest case when the number of equations is equal the number of 

unknowns corresponds to the ensemble of three numerical solutions: 
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At 3n , the number of unknowns is equal to the number of data elements, at 

3n  it is greater. Unfortunately, the matrix inversion is infeasible at any n . It is 

caused by the invariance of the difference of solutions to a shift transformation: 
)()()( ~ j

m

j

m

j

m ubuu   and buu j

m

j

m  )()( ~
 for any ),( b , where 

)(~ j

mu  is the true error. By this reason, the problem (1) is underdetermined (non-

unique). 

An addition of linear terms containing solutions (without differences) to RHS can 

not remove the degeneracy, since the relation bubuu j

mm

j

m  )()( ~~
 holds. 

Fortunately, the shift invariance is a purely linear effect. So, a transition to the nonlin-

ear statement may cure this degeneration. 

3 The nonlinear statements for the estimation of the 

approximation error  

The paper [13] consider the opportunities, presented by the quasilinear (regarding 

the parameters of interest) equation fxxA 


)( , )~,,,{ )3()2()1(

mmmmm uuuux 


 

having the form: 
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The Equation (3) contains the nonlinear term 
2)1( )( mu   at right hand side, which pro-

hibit the shift invariance buuu j

mm

j

m  )()( ~
.  

The determinant of matrix A  of Eq.  (3) is  equal 
)1(

mu .  So, this equation may be 

solved by the simple matrix inversion (for non-zero solutions). In order to account for 

the nonlinearity, the linearization of the following form fxxA qq 1)(


 can be used 

at the iterative solution of Eq. (3) ( q  is the number of iteration). 
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Another nonlinear option (without differences of solutions) has the appearance: 
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It may be directly checked that )1()(det muxA    and this matrix also can be invert-

ed, and the result of the inversion has the form:  
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The matrix )(xA  may be decomposed into a sum the known matrix and a disturb-

ance, which depends on the unknown approximation error AAxA )( .  
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The matrix A  may be applied to solve approximately the problem.   

4 The numerical algorithms 

In order to solve Eqs. (2), (3), (4) we apply three different numerical methods. 

The coincidence of results ensures the reliability of analysis. In order to solve Equa-

tions (3), (4) we apply the matrix inversion (Gauss-Jordan elimination) [14]. The 

matrix inversion may be implemented for non degenerated square matrices only. In 

order to solve degenerate equation (2) we apply the variational statement and the 

Moore-Penrose pseudoinverse [15,16] . The Moore-Penrose pseudoinverse for the 

degenerated matrices applies the regularization and has an appearance  
*1* )( AEAAA    . Herein 

ijA  may be rectangular, ji   ( j - number of un-

knowns, i - number of equations and RHS terms). The following index form was used 

for the Moore-Penrose pseudoinverse   
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                        ikimiijnknjk fAfAAAu   ,

1)( ,    ijnknjki AAAA 1)(   .             (7) 

 

In order to obtain the steady and bounded solution of Equation (2) we also use the 

variational statement of the Inverse Problem that includes the zero order Tikhonov 

regularization [17,18]. In this statement the minimization of the functional is applied:  
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where   is the regularization parameter. The steepest gradient descent is applied for 

the search of minimum of the functional. 

The minimum of the regularizing term enables to obtain solutions with the mini-

mum shift error, since: 
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The variation of the regularizing term over shift change may be stated as  
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So, its extremum occurs at:  
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Thus, the shift mb  is equal to the mean true error (with the opposite sign). By this 

reason, in linear approach (2), the error estimate 
)( j

mu   cannot be less than mb  

and contains some irremovable uncertainty. 

Formally, the presence of an irremovable uncertainty mb  is the main drawback of 

linear approach. Nevertheless, if errors magnitudes differ significantly (one is much 

greater others), then  

 

                                       nuu
n

b m

j

m

n

j

m /~~~1 (max))(                              (12) 

 

and the irremovable uncertainty of greatest error is moderate, while the irremovable 

fault of small errors may be great. So, some errors (great) may be estimated enough 
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accurately. Really, the numerical tests demonstrate the good resolution of great errors 

and the poor resolution of small errors.  

 The variational statement of problems (3) and (4) corresponds to the minimum of 

the following functional: 

 

          )(2/)()(2/1)( )()(
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where )~,,,{ )3()2()1(

mmmmm uuuux 


. The dependence of the matrix 
m

ijA  on flow 

parameters is specific for this statement. The component of the solution mu~  does not 

suffer from the shift invariance, so the irremovable uncertainty is the same as in the 

linear case. 

5 The test problem 

The flowfield engendered by the oblique shock waves governed by two dimension-

al compressible Euler equations is used in the tests due to the availability of analytic 

solutions and the high level of the approximation errors. The flowfield is engendered 

by a plate at the angle of attack α = 20° in the uniform supersonic flow (M=4). The 

analytic solution is engendered by the Rankine-Hugoniot relations. The projection of 

the analytic solution on the computational grid is considered as a true solution and 

used for estimation of the true error.  

The conditions at the left boundary (“inlet”) and at the upper boundary (“top”) are 

specified by the inflow parameters. The conditions at the right boundary (“outlet”) are 

specified by the zero gradient condition. The conditions at the down boundary, which 

ensure the non-penetration on the plate surface, are posed by the zero normal gradient 

for the pressure and the temperature and the “slip” condition for the speed. 

The following solvers are used that belong to the OpenFOAM software package 

[19]: 

 rhoCentralFoam (rCF), based on the central-upwind scheme [20,21].  

 sonicFoam (sF), based on the PISO algorithm [22].  

 pisoCentralFoam (pCF) [23], which combines the Kurganov-Tadmor scheme 

[20] and the PISO algorithm [22]. 

 QGDFoam (QGDF), which implements the quasi-gas dynamic algorithm 

[24]. 

6 Numerical results 

The numerical results for error analysis are provided in Figures 1-8 for 

4,20  Mo . The index along the abscissa axis yxy mkNi  )1(  is de-

fined by indexes along X  )( xk  and Y  )( ym . The jump of variables corresponds to 

the shock wave. The magnitudes of the numerical and analytical density are provided. 
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The Figures present also the true density error m

i

m

i

m  ~)()(  , the error esti-

mates using linear (2) and nonlinear (3), (4) approaches (practically coinciding in 

tests), and the irremovable uncertainty 
)(~1 j

m

n

j

m
n

b   .   

First, the ensemble of rCF,pCF,sF solvers is used. The Fig. 1 presents the vector-

ized density and estimates of error for the solution computed by rCF method.  The 

numerical solution, the analytical solution, true error m

i

m

i

m uuu ~)()(  , the irre-

movable uncertainty, the linear (Eq. (2)), and nonlinear  estimates of error (Eq. (4)) 

are presented. 

The Fig. 2 presents the analogical information for rCF based solution, Fig. 3 

demonstrates the information regarding sF based solution. 

The Fig. 1 and Fig. 2 present the cases when the irremovable uncertainty is close to 

the true error. One may see the relative poor quality of the linear error estimation for 

these cases. The Fig. 3 presents the case when the irremovable uncertainty is lesser  

the true error and it is unable to spoilt the estimates. 

The nonlinear estimates for the case of Fig. 1 are zero, so they are not presented. In 

Fig. 2 they are close to zero and nonrealistic. The nonlinear estimate (Eq. (4)) pre-

sented in Fig. 3 is close to the true error and overperforms the linear estimate (Eq. 

(2)). One can see that the nonlinear estimates (Eq. (4)) have significant anisotropy of 

sensitivity.  
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Fig. 1. The vectorized density and density errors for solution computed by rCF solver.  
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Fig. 2. The vectorized density and density errors  for solution computed by pCF solver.  
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Fig. 3. The vectorized density and density errors  for solution computed by sF solver.   

 

The largest approximation error (specific for sF algorithm) is resolved with the best 

quality. It is interesting that the quality depends on the choice of the algorithm. Figs. 

1-3 demonstrate the dependence of the quality on the algorithm in use (linear or non-

linear). The linear approach (Eq. (2)) provides moderate quality,   the nonlinear ap-

proach (Eq. (3) and (4)) provides high resolution for the estimate of the largest error. 

The error structure is presented by Figs. 4,5, which provide the true error, irremov-

able uncertainty, linear error estimate, and improved estimate (estimate +  irremova-
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ble uncertainty). One may see that the irremovable uncertainty 
)(~1 j

m

n

j

m
n

b    

is the main source of the uncertainty at both the linear and nonlinear estimation of 

approximation error. Fortunately, it spoils significantly the small errors and leaves 

safe the great errors. The improved estimate is close to the true error for both linear 

and nonlinear approaches. 
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Fig. 4. The errors’  structure for solution computed by rCF solver.  
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Fig. 5. The errors’  structure for solution computed by sF solver  
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Second, the ensemble of rCF,pCF,QGDF solvers is used. The Fig. 6 presents 

the vectorized density and estimates of errors for rCF based solution.  The Fig. 7 pre-

sents the analogical information for pCF based solution, Fig. 8 demonstrates QGDF 

based solution.  The results are qualitatively close to previous (Figs. 1-5).  The magni-

tude of the approximation error for solution computed by QGDF is less if compare 

with solution by sF. By this reason, the error of QGDF based solution is estimated 

with less accuracy if compare with sF based solution. 
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Fig. 6. The vectorized density and density errors  for solution computed by rCF solver  
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Fig. 7. The vectorized density and density errors  for solution computed by pCF solver.  
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Fig. 8. The vectorized density and density errors  for solution computed by QGDF solver.  

7 Discussion 

The present results demonstrate the feasibility of the precise estimation of the ap-

proximation error for the most inaccurate solution from the ensemble of numerical 

solutions, obtained by different algorithms.  

The numerical tests demonstrated drastic difference of the error resolution provid-

ed by the linear and nonlinear approaches. The linear approach resolves all errors with 

the same quality (if abstract from the unremovable uncertainty).  The sensitivity of the 

solution component in the nonlinear case may be estimated from expression 

jijjijjiji fxBfxAfxAx  )()()( 11  
 as jii fCx    , where )(xBC iji   is 

the norm of matrix row. So, the sensitivity of different components of the solution 

may be different and some components of the solution may belong to the nullspace of 

matrix [26]. The numerical tests demonstrated that the nonlinear approach practically 

does not resolve small errors, while the great error is resolved with the high accuracy. 

At first glance, the numerical solution having a great approximation error can not 

be valuable. However, in the frame of the ensemble based error estimation [25] such 

solution enables to generate some hypersphere (with the centre at some precise solu-

tion) that contain the true solution. So, the precise estimation of the approximation 

error is very important, since it justifies the application of the ensemble based method 

[25] for capture of true solution.  

In general, it enables to construct the numerical solution in the sense of Synge 

[1,2].  At present, the numerical solution is commonly considered to be an element of 

the sequence converging to the exact solution as the step of discretization decrease. 

By this reason, the mesh refinement is the key element of the modern CFD practice. 

Contrary to this approach, Synge stated ([1], p. 97): "In general, a limiting process is 
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not used, and we do not actually find the solution.... But although we do not find it, 

we learn something about its position, namely, that it is located on a certain hyper-

circle in function space".  

This approach easily enables to estimate the errors of the valuable functionals (us-

ing Cauchy–Bunyakovsky–Schwarz inequality) without an adjoint approach. The 

acceptance of the error magnitude of the functionals used in practices (drag, lift etc.) 

may serve as a natural criterion for the necessity of the grid refinement. 

At present, the domain of applicability of the Singe’s approach is limited by equa-

tions of special form (Poisson equation, biharmonic equation). In this work, the 

Synge idea is realized on the basis of ensemble of numerical solutions that relaxes 

restrictions of Synge method applicability. 

8 Conclusion 

Due to the presence of irremovable uncertainty, the linear version of the consid-

ered ensemble based algorithm enables to estimate the greatest approximation error 

with the acceptable accuracy, while the errors of more precise solutions are resolved 

with the lesser quality. 

The nonlinear version of the ensemble based algorithm enables the estimation of 

the greatest approximation error with the higher accuracy (if compare with the linear 

case), while the errors of more precise solutions are practically not resolved. The pre-

cisely resolved component of the error may be detected from the analysis of the dis-

tances between numerical solutions and corresponds to the most distant solution. 
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