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Abstract. Determining what causes field equipment malfunction and predicting 

when those malfunctions will occur can save large amounts of money for corpo-

rations that are capital-intensive. To avert equipment downtime, field equipment 

maintenance departments must be adequately resourced. Herein, we demonstrate 

the efficacy of machine learning to determine time between failure, repair time 

(equipment downtime) and repair cost. Additionally, a mean value analysis is 

carried out to determine the maintenance department capacity. Uncertainty is 

modelled using statistical analysis and simulation. 

Keywords: predictive maintenance, machine learning, heavy-tail simulation. 

1 Introduction 

Predictive equipment maintenance is one of the most important areas in industries that 

are heavily reliant on capital, as all other processes depend on the correct performance 

of its "clients" (equipment). It is well-known that over time, the performance of field 

equipment decreases, and their failure rate increases, so it is logical and a good strategy 

to diagnose areas of opportunity for minimizing repair costs, equipment down-time, 

production delays, and equipment failure frequency. In this paper, we will analyse 

maintenance work orders data for field equipment maintenance provided by an oil ex-

traction corporation corresponding to upstream gas extraction operations to create pre-

dictive models that can allow companies to reduce costs and improve efficiency. How-

ever, data and the models developed with it bring inherent uncertainty both epistemi-

cally and ontologically. Uncertainty modelling techniques include stochastic simula-

tion, chance-constrained models, Markov processes, stochastic optimization, Bayesian 

models, evidence theory, fuzzy theory, information-gap theory, and statistics and prob-

ability. In this paper, we present and study how uncertainty is modelled using statistics 

and probability, and stochastic simulation. We carry out a thorough analysis of the com-

pany's maintenance area by applying unsupervised and supervised data science analysis 

to its work orders database, which consists of more than 55 variables and over 500K 

records.  
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Specifically, the research goals are: 

1. Determine how Time between Failures (TBF), repair costs, and repair duration can 

be characterized and identify which factors influence these variables. Create statis-

tical and mathematical models to make predictions. 

2. Develop models to predict how repair wait time and the number of repair reports 

waiting to be serviced can change with changes in the organization, characteristics, 

and structure of the company's maintenance areas. 

3. Provide a framework for uncertainty modelling through simulation. 

2 Related Work 

The research presented in this paper falls under the predictive maintenance field, which 

is an area that has gained increased attention in the context of equipment maintenance 

systems. Predictive maintenance is defined by [1] as “regular monitoring of the actual 

mechanical condition, operating efficiency, and other indicators of the operating con-

dition of machine-trains to ensure the maximum interval between repairs as well as to 

minimize the number and cost of unscheduled outages caused by machine-train fail-

ures”. Due to its importance for the efficiency of field operations, many studies have 

performed predictive maintenance. In [2], a comprehensive review of the state of the 

art of equipment maintenance systems is presented, and it is concluded that predictive 

maintenance technology is a growing research field with fast-increasing contributions 

from different application areas, such as mechanical, chemical, energy, automation, etc. 

Predictive maintenance proceeds by creating machine behaviour models. One example 

is shown in [3], where a bi-level optimization model is presented, which addresses the 

need to balance an optimization procedure locally (level one) and globally (level two) 

while minimizing system average interruption frequency. In [4], an application of pre-

dictive maintenance using a model-based analysis is presented, to enhance the accuracy 

of performance diagnostics. Different models under different operating conditions are 

created and then performance is recalculated and compared for efficiency. Another 

model-based approach is shown in [5].  

 

Recently, the body of knowledge related to machine learning, big data, artificial in-

telligence, and cloud computing has been combined with predictive maintenance, re-

sulting in the emergence of Cyber-Physical Systems (CPS). An extensive literature re-

view of CPS as of 2020 is presented in [6], which concludes that the main keywords 

are internet of things, industry 4.0, predictive maintenance, machine learning, artificial 

intelligence, cloud computing, and big data. In [7], a comprehensive review of machine 

learning algorithms applied to tool wear selection is provided, with adversarial neural 

networks and random forests being identified as the best models for tool wear predic-

tion. A comparison of machine learning algorithms used to reliably estimate perfor-

mance and detect anomalies in a representative combined cycle power plant is found in 

[8]. Here, unlike in [7], the prediction is carried out using multivariable models with 

features such as temperature, humidity, and pressure. Early-stage malfunctions are de-

tected using anomaly estimation via unsupervised machine learning algorithms and 
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principal component analysis for dimension reduction. A definition of Cyber-Physical 

Systems and its relation to Industry 4.0 is presented in [9], and the concepts of big data, 

cloud computing, and machine learning and their applications to industry 4.0 are re-

viewed. Big data and cloud computing are mentioned in [10] in which a systematic 

architecture is proposed. An application using neural networks and deep learning to 

improve maintenance support and wear prediction of field equipment is shown in [11]. 

 

An important part of the research presented in this paper is modelling uncertainty. 

There is extensive bibliography regarding uncertainty management. Uncertainty is usu-

ally modelled using statistical analysis, probability theory, and Bayesian methods, sto-

chastic optimization, constrained models, fuzzy theory, information-gap theory, Monte 

Carlo simulation, and discrete event simulation based on statistical characterization of 

critical variables. An important reference for modelling uncertainty using probability 

theory is found in [12] which gives the mathematical background for uncertainty diffu-

sion and draws heavily on inferential statistics to model systematic errors. Another im-

portant reference is [13], which contains a wide range of applications of uncertainty 

modelling, from probability and statistics principles to applications in economics, art, 

psychology, and sciences. Another important reference is [14], which is a compendium 

of mathematical tools for engineering, ranging from decision making to optimization, 

to probability applications and curve fitting, and certainly, modelling uncertainty. In 

chapters 7, uses of probability theory, Monte Carlo simulation, chance constrained 

models, Markov processes, and stochastic optimization are reviewed. [15] is a specific 

survey of modern techniques for uncertainty modelling. In this paper, uses of probabil-

ity theory and probability theory-derived techniques such as Monte Carlo methods, 

Bayesian methods, and evidence theory are reviewed. Also, fuzzy theory and Infor-

mation-Gap theory are reviewed. The mathematical background for uncertainty propa-

gation found in [12] is applied in [16] for modelling uncertainty in linear regression, 

which shows how difficult modelling uncertainty can be even for the simplest of ma-

chine learning algorithms. An important discussion of the differences between uncer-

tainty and risk can be found in [17]. In this paper, it is argued that a change in risk is a 

change in the spread of the probability spectrum conserving the mean, whereas uncer-

tainty is a change in the probability curves that can change the mean. It is also argued 

that some agents might be fond of risk but averse to uncertainty, whereas some agents 

might accept high uncertainty if the risk is low. High-risk almost always indicates high 

gains but high uncertainty might indicate the contrary. An example of the use of stand-

ard statistics such as standard deviation to model uncertainty can be found in [18], 

whereas in [19] bootstrapping is used to run several simulations taking traditional stand-

ard deviation statistics to create confidence intervals for biomanufacturing processes. 

An interesting approach is carried out in [20], where uncertainty is managed by using 

a genetic algorithm to improve a simulation carried out with a mixed integer linear 

programming model. Simulation is again utilized, and uncertainty is modelled using 

Bayesian averaging for modelling watersheds and stream flows in [21], whereas in [22], 

Monte Carlo simulation is thoroughly studied and compared against conventional un-

certainty estimation methods such as uncertainty diffusion mathematical models. The 

paper indicates when it is appropriate to use Monte Carlo simulation. 
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3 Methodology 

The following methodology for analytics and model creation, called Predictive Vari-

ance Association, was followed for three types of analysis: Time between failures 

(TBF), repair cost, and repair duration. We are given a matrix 𝑋 with data in which the 

rows are samples (𝑚 samples) with numerical values, and the columns are variables (n 

variables). The explanatory variables are separated into matrix 𝐸 (𝑜 variables), and the 

dependent variables (𝑝 variables) or variables of interest, are separated into matrix 𝐺. 

Naturally, 𝑛 = 𝑜 + 𝑝. Additionally, from PCA [23], samples scores and variables load-

ings, dimension reduction and clustering can also be carried out. See Figure 1, which 

shows the process. 

 

Fig. 1. Predictive Factor Association Steps. 

3.1 Predictive Analytics for Continuous Variables by Regression 

This process is accomplished when the objective is to predict the future value of a con-

tinuous variable of interest: 

1. First PCA. Carry out PCA for matrix X and find matrices 𝑋 = 𝑃𝐷𝑄𝑡  [23] [24]. 

2. Let 𝐹 = 𝑋𝑄1…𝑘 be the principal component scores, where 𝑘 < 𝑜. Let 𝐿 = 𝑄√𝐷 

be the loadings matrix. The square cosine table is generated by squaring 𝐿. 

3. Use square cosines and a clustering algorithm over the columns of F to determine: 

a. Collinearity and dimension reduction. Explanatory variables that are grouped 

together, that is, have a high cosine in the same component column or are clus-

tered in the circle correlation plot are collinear and thus can eliminate those col-

umns from matrix 𝑋. Repeat PCA, and then go to step 1. 

b. Explain components. Explanatory variables with the highest squared cosine in a 

particular column of 𝐿 can be used to associate a component to a particular 
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variable of interest, thus elucidating the meaning of the component through the 

variable of interest. Explanatory variables with high squared cosine in the same 

column can also be associated with that variable of interest. 

c. Causality relationships. If explanatory variables are grouped with variables of 

interest, then that is evidence of a causality relationship. 

d. The square cosine is the square of the cosine of the angle 𝛼 between the vectors 

of variable loadings, i.e., the correlation. If variables are close, the cosine will 

tend to one. If variables are separated, the cosine will approach zero. If 𝜌2(𝑥, 𝑦) =
𝑐𝑜𝑠2(𝛼) > 0.5 then cos⁡(𝛼) > ∓0.7071, thus associate variables with squared 

cosine greater than 0.5. 

4. Generate PCA based synthetic attributes. Eliminate variables of interest leaving 

only matrix E. Carry out PCA over E. 

5. Curve Fitting. Carry our curve fitting between PCA derived explanatory variables 

and variables of interest clustered together in step 3.b using the new sample scores 

from step 4.  

6. Evaluate Curve Fitting. Carry out curve fitting. Discard all R2<0.5. This indicates 

which explanatory variables influence the most the variable of interest. Then  𝐺�̂� =

𝑓𝑖𝑗(𝐹𝑗) = 𝑓𝑖𝑗(𝑞1𝑋1, 𝑞2𝑋2, … , 𝑞𝑜𝑋𝑜) where the coefficients 𝑞𝑖 are determined by ma-

trix 𝑄. 

7. New samples called 𝑋’ can give predictions on variables, for 𝐹′ = 𝑋′𝑄 and 𝐺𝑖
′̂ =

𝑓𝑖𝑗(𝐹𝑗
′). 

3.2 Categorical Variable Prediction by Multi-label classification 

This process is carried out when the objective is to predict categorical variables. The 

procedure is similar to the one for continuous variables, except that the prediction is 

accomplished with a classification algorithm instead of a curve fitting algorithm: 

1. Same as 3.1 

2. Same as 3.1 

3. Same as 3.1 

4. Same as 3.1 

5. Apply classification algorithm. Since the relationship between variables of interest 

and components is not always evident in classification problems, a search algorithm 

is carried out to determine the best components to use to predict a particular categor-

ical variable of interest. 

a. Match 𝐹𝑖 row by row with variable of interest 𝑗 (assumed to be categorical with 

0 or 1 as value), where 𝑖 = 1⁡… ⁡𝑜 and 𝑗 = 1…𝑝.  

b. Estimate class probabilities. This can be carried out using different procedures, 

such as window-based probability estimation shown in [25]. Other machine learn-

ing classification algorithms are also used. Once this is completed, calculate per-

formance measures. Each 𝐹𝑖 is a linear combination of explanatory variables that 

potentially has enough information to give good predictions for the variables of 

interest. Then  𝐺�̂� = 𝑓𝑖𝑗(𝐹𝑗) = 𝑓𝑖𝑗(𝑞1𝑋1, 𝑞2𝑋2, … , 𝑞𝑜𝑋𝑜) where the coefficients 𝑞𝑖 

are determined by matrix Q. If 𝐺�̂� > 0.5 then assume a result of 1, and 0 otherwise. 
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6. New samples called 𝑋’ can give predictions on variables, for 𝐹′ = 𝑋′𝑄 and 𝐺𝑖
′̂ =

𝑓𝑖𝑗(𝐹𝑗
′). If 𝐺�̂� > 0.5 then assume a result of 1, and 0 otherwise. 

4 Results and Discussion 

Throughout this document, an analysis of the company's maintenance area is done by 

applying data analysis to its Work Orders database, which uses the standard ISO 

14224:2016 and consists of 55 variables and 1,429,919 observations. After cleaning up 

of invalid values and some critical missing entries, and keeping records from 2015 to 

2018, the database was reduced to 590,604 entries. Additionally, when talking about 

corrective jobs, we refer to jobs of JobType labeled "corrective", consisting, after value 

clean-up, of 89,480 elements (rows). 

 

4.1 Dataset Description 

New variables were created by establishing thresholds for the variables of interest 

which created classes. For Duration, the threshold was 7 days for all jobs, which was 

95% percentile and 6 days for corrective jobs, which was also 95% percentile. A Du-

ration of less than the threshold was labelled as 0. A Duration above the threshold was 

labelled as 1. For Total cost, the threshold was established at $6,520.00 which is 99% 

percentile (above is 1, below is 0) and $6,700.00 for corrective jobs (99% percentile). 

For time between reports for the same equipment, the threshold was set to 40 days for 

both general and corrective reports (63% percentile general, 42% corrective, above is 

1, below is 0). 

 

Many of the variables had to be recoded as they were originally coded as labels or 

text. Statistical Analysis was conducted. Table 1 summarizes statistics of all reports and 

Table 2 summarizes statistics of only corrective reports. The “Time between Reports 

same Equipment” and “Time between Failures same Equipment” were calculated by 

searching the unique equipment ID and subtracting the report dates, giving a time span 

in days. The statistics given are for data corresponding to years 2015 through 2018. 

Table 1. Statistical summary for all reports 

Variable Mean Std Dev 80% per 90% per 95% per 99%per 

Duration 2.7929 13.1885 0 1 7.3 26.4300 

Total Cost 397.67 8,675.53 0 0 0 6,520.00 

Time bet Reports 0.00214 0.046213 0 0 0 0.0010 

TBR Same Equip 91.7292 165.6745 133.94 322.59 443.33 799.88 

Table 2. Statistical summary for corrective reports 

Variable Mean Std Dev 80% per 90% per 95% per 99%per 

Duration 1.9790 12.6575 0 1 6 16.65 

Total Cost 724.52 17,677.36 0 0 0 16,700.00 

Time bet Reports 0.0141 0.1213 0 0 0 1.0000 

TBR Same Equip 124.0433 168.1949 213.72 343.63 473.54 800.41 
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Time Between Failures 

 

We analysed time between reports of any kind for any equipment. That is, the time 

between global consecutive reports. Data shows that there is always more than one re-

port per day of any kind. The information given for time between reports does not have 

enough granularity to determine probability distribution as data was given in days, but 

actual arrival rate is minutes. 

 

Analysis for time between reports of any kind (corrective, verification, update, 

scheduled maintenance, etc.) for a particular equipment indicates that reports for any 

given individual equipment follow an exponential distribution which will allows to es-

tablish probability bands on the time between reports for the same equipment. 

 

As for corrective reports, analysis of time between any failures of any equipment 

indicates that corrective reports arrive at a frequency of several reports per day. The 

event of less than one report a day is very rare. 

  

Analysis pf time between corrective reports, that is, time between failures for a par-

ticular equipment indicates that reports for any given individual equipment follow an 

exponential distribution which will allows to establish probability bands on the time 

between failures for the same equipment. 

Duration 

 

A variable called "Duration" was also analyzed. Analysis of report duration for all 

reports showed a very long tail, indicating that most reports take a day or less to be 

completed, but a significant number take more than 6 days. Of those, around 14,000 

take 7 days, more than 16,000 take 26 days, and a very small fraction take more than 

1,000 days.  

 

For corrective reports, repair duration has the same characteristics. 91% of reports 

are resolved within a day, while a small percentage can take up to 1,000 days. 

Total Cost 

 

Analysis of Total Cost for all reports shows a very long tail. 57% of all report have 

zero cost, whereas 99.59% of all reports have a cost of $6,524.00 or less. As for cor-

rective reports, 41.51% report a total cost of zero and 99.76% report a total cost of 

$16,758.00 or less. 
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5 Principal Component Analysis 

The next step is to analyse the relationship between our main variables of interest, Du-

ration, Time between Reports/Failures and Cost and the other variables by carrying out 

principal component analysis. 

5.1 Duration 

Principal component analysis was also carried out. Correlation plots and square cosine 

lead us to conclude that Equipment Type, Equipment Criticality, Area, Material 

Cost, Labor Cost, IsAffectingProduction and WordOrder are the variables that cor-

relate the most to duration, and these can be used to predict repair duration. Duration is 

associated mostly to the second principal component. 

5.2 Repair Cost 

Principal component analysis was also carried out to determine the factors affecting 

repair cost. According to the square cosines table, most of the variation of the total cost 

is captured by the first two principal components. We determined that the most im-

portant relations for the cost are the material cost and labour cost, which we know are 

directly related (total cost being the sum of labour and material). Thus, it was inferred 

that other factors which affect the cost are the level of equipment criticality, WO-

Type, TradeGroup, IsAffectingProduction and Job Type. 

5.3 Time Between Reports/Failures 

The results of PCA for time between reports indicate that there are no variables that 

influence the time between reports, and that there are very few variables that influence 

the time between reports for the same equipment, mainly: IsAffectingProduction, 

Equipmentcode, EquipmentRollupCode, ActualDuration and LabortCost. But the 

influence is limited. 

 

Also, PCA results show that there are no variables that influence the time between 

failures, that is, corrective reports, when considering all reports, and that there are very 

few variables that influence the time between failures for the same equipment. These 

variables are: IsAffectingProduction, Equipmentcode, ActualDuration, CauseC 

and SafetyC. But the influence is limited. 

5.4 Machine Learning Prediction 

Prediction models for our variables of interest were developed. These are classification 

type models, meaning that given a set of features represented as columns in a data ma-

trix, the output is 1 or 0 for each sample; 1 indicates that the sample corresponds to a 

class and 0 indicates that it does not. In our case, the classes were determined as follows 

(Tab. 3): 
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Table 3.   Thresholds use to create the classification classes. 

Variable Threshold (equals to 1) 

Repair Duration ≥ 1⁡𝑑𝑎𝑦 

Total Repair Cost ≥ $250.00 

Time Between Failures ≥ 40⁡𝑑𝑎𝑦𝑠 

Repair Duration.  

 

For repair duration machine learning prediction, we used the class "Repair Time > 1 

Day". The machine learning algorithm used for repair duration was a multi-layer per-

ceptron classifier (MLP, an artificial neural network). The performance parameters for 

repair duration prediction using MLP are shown in Table 4. The global accuracy is 

0.984, and the F1 obtained for class 1 is 0.99, which are considered excellent results. 

The likelihood ratio obtained for class 1 is 200, which is considered very good. 

Table 4. Repair duration prediction performance parameters using deep learning. 

Class Precision Recall F1/score 

0 0.86 0.74 0.80 

1 0.99 1.00 0.99 

Repair Cost 

 

A MLP model was also used to create a model to predict whether the repair cost 

would be $250.00 dollars or higher. As predictors, the variables determined by PCA to 

be more closely related to repair cost were used. The results are shown in Table 5. The 

global accuracy achieved was 0.90, but the likelihood ratio for class 1 was only 1.25, 

which is not considered good. Additionally, the recall for class 1 was too low at 0.56. 

Table 5. Total cost prediction performance parameters using deep learning. Accuracy of 0.90 is 

considered good, but F1 of 0.643 is considered low. Likelihood ratio of 1.25 in not good. 

Class Precision Recall F1-score 

0 0.92 0.97 0.94 

1 0.76 0.56 0.64 

Time between Failures 

 

To approximate a prediction model for time between failures, we used the somewhat 

loose category of time between failures greater than or equal to 40 days. We used MLP 

and Logistic Regression classifiers and obtained similar results. The results for the MLP 

classifier are shown in Table 6. This variable proved to be the hardest to predict. The 

likelihood ratio of 3.823 for class 1 is considered adequate, but the recall for class 0 is 

too low at 0.38. The global accuracy achieved is 0.615. 
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Table 6. Repair duration prediction performance parameters using deep learning. Accuracy ob-

tained is 0.615, considered regular, but F1 of 0.701 not so much. Likelihood ratio obtained is 

3.823 which is adequate. 

Class Precision Recall F1-score 

0 0.58 0.38 0.46 

1 0.63 0.79 0.70 

5.5 Performance Analysis: Mean Value Analysis 

What resources are necessary to service all reports with the correct quality level? 

Firstly, we will address this question using mean-value analysis; the notation for this 

follows in Table 7. Secondly, we will use simulation to model variability and uncer-

tainty. 

 
Table 7. Notation for mean value analysis 

Variable Meaning Units 

X Throughput. Reports carried out per unit time 𝐽𝑜𝑏

𝑑𝑎𝑦
 

S Service time. Time required to complete a report 𝑑𝑎𝑦

𝑗𝑜𝑏
 

U Utilization. Fraction of the time a worker is busy None 

P Parallel workers. Workers working concurrently at any given 

moment 

Workers 

R Residence Time. Total time required to finish a single job from 

report to conclusion 

Days 

N Jobs in System. Jobs waiting to be finished per worker including 

the active one. 

𝐽𝑜𝑏

𝑟𝑒𝑝𝑜𝑟𝑡
 

D Delay. The time a report will wait before been worked upon Days 

 

As mentioned in section 4.2, on average there are 𝑋 = 467.239 reports per day, which 

represents both the report arrival rate 𝜆 and the service throughput 𝑋, as 𝜆 = 𝑋. Thus, 

the average inter-arrival time per report is 1/467.239=0.00214 days per report, or 

0.0514 hours per report (a report every 3.0816 minutes). In that same section, we 

learned that the average duration time per report is 𝑆 = 2.7929 days. This can only be 

possible if many personnel are working in parallel in different problems.  

 

Thus, by the utilization law: 

 

𝑈 =
𝑆𝑋

𝑃
 

 

Where 𝑃 is the number of parallel maintenance workers. If we assume  
𝑈 = 0.7, 0.8⁡𝑜𝑟⁡0.9 the following numbers of simultaneous maintenance workers 𝑃 

must be employed at project operation time (Tab. 8): 
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Table 8. Number of parallel maintenance workers by utilization factor 

𝑼  𝑷  

0.7 1,864 

0.8 1,631 

0.9 1,450 

 

Let us assume a utilization of 𝑈 = 0.8. By queueing theory: 

 

𝑁 =
𝑈

1 − 𝑈
=

0.8

1 − 0.8
= 4⁡𝑟𝑒𝑝𝑜𝑟𝑡𝑠 

 

Indicating that each worker has 𝑁 = 4 jobs pending, including the one being ser-

viced now. And by Little’s law: 

 

𝑅 =
𝑁

(
𝑋
𝑃
)
=

4

467.239
1,631

= 13.963⁡𝑑𝑎𝑦𝑠 

 

Indicating that each report will wait 𝑅 = 13.963 days from creation to conclusion 

or 5 times the service time 2.7929 days. The wait time, the time a report will remain 

unattended, would be 𝐷 = 13.963 − 2.7929 = 11.1701 days. 

 

Additionally, we can repeat the procedure to determine the number of workers car-

rying out corrective repairs. For corrective repairs, we have a duration of 1.9790 days, 

an actual duration of 1.4961 days, and a time between failures of 0.0141 days per job, 

giving a demand of 70.922 jobs per day. Again assuming 𝑈 = 0.8, we find: 

 

Using Duration, 𝑋 = 70.922 jobs/day and 𝑆 = 1.9790 days/job (Duration). Assum-

ing again 𝑈 = 0.8 we find that 𝑃 =
1.9790(70.922)

0.8
= 175.4433 workers doing repairs in 

parallel, total time 𝑅 =
4

70.922

175.4433

= 9.90 days (5 times the service time), and wait time 

𝐷 = 9.90 − 1.9790 = 7.92 days. 

 

Results are summarized in Table 9. 

Table 9. Summary of mean value analysis results. Always U=0.8 and thus N=4 jobs in system 

per worker including the current one.  

S is S (Service 

Time) 

 X (Through-

put) 

R (Total 

time) 

P (Parallel 

Workers) 

D (Wait 

to service) 

Duration 2.7929 467.239 13.963 1,631 11.170 

Dur Corrective 1.9790 70.922 9.900 175 7.920 
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5.6 Modelling Uncertainty Using Simulation 

The mean value analysis carried out in Section 4.5 gives us an idea of the capacity 

required to provide quality service in field equipment maintenance. To be able to es-

tablish different scenarios in which both workloads for repair personnel and available 

resources can vary substantially, more information is needed. Now, we turn to simula-

tion to establish probability distributions on 𝑅, or total system time, and 𝑁, the number 

of jobs pending. 

 

To carry out this simulation, we take the data from Section 4.2 and determine prob-

ability distributions for service times (called Duration) and time between failures 

(TBF). TBF will determine the job arrival rate. We find that service time has a long-

tailed probability distribution, which we model using the Pareto probability, since it is 

the best fit (see Figures 2 and 3), with a shape parameter,⁡𝛼, of 1.4525 and a scale 

parameter, 𝐴, of 1.2344. The information given for time between arrivals does not have 

enough granularity to determine a probability distribution, so it will be assumed to be 

exponential, as is the normal in discrete-time simulations (data was given in days, but 

actual arrival rate is in minutes). 

 

  
Fig. 2. Fitting different probability distribu-

tions to Duration data 

Fig. 3. QQ plot Pareto distribution vs Dura-

tion Data 

 

In this simulation, a simplified model was used. The workload was divided between 

workers. Each worker receives a new job every 5 days, and on average, a worker fin-

ishes the job in 3.9623 days. The ratio between arrival rate and service rate is  
𝜌⁡ = ⁡0.7925. Average simulation results are given in Table 10. 

Table 10. Average simulation results 

Parameter Average 

U (Utilization) 0.8111 

W (R, total wait time) 2,243.58 

L (N, pending Jobs on queue) 171.01 

Max L (Max N, maximum queue) 1,001 
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Max 𝐿 in Tab. 10 shows that even with a ratio between arrival rate and service rate of 

𝜌 = 0.7925, which is usually not considered a heavy load, the extreme variability of 

the service time can create severe bottlenecks. As a result, the probability distribution 

of the number of jobs in the system has a rather heavy tail, for which the best fit is a 

Pareto distribution with shape parameter 𝛼 = 0.2859 and scale parameter 𝐴 = 1.5 (see 

Figs. 4 and 5). 

 

  
Fig. 4. Fitting different probability distribu-

tions to jobs on queue simulation result 

Fig. 5. QQ plot Pareto distribution vs jobs on 

queue simulation result 

 

Surprisingly, the wait time is not long tailed. The best fit for the total time in the sys-

tem (wait time R or W) is a Gamma probability distribution (see Figs. 6 and 7).  

 

  
Fig. 6. Fitting different probability distribu-

tions to total wait time 

Fig. 7. QQ plot Pareto distribution vs total 

wait time simulation result 

6 Conclusions 

Statistical analysis showed that, even though the time between reports or failures for 

the same equipment follows the well-known exponential decay, the totality of reports 

duration (all types of reports) and repair cost exhibits a long-tail probability distribu-

tion. This is true for both general reports and specific corrective reports, interpreted as 

equipment failures. This is caused by the fact that the most common value in the three 

variables is zero.  
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Principal component analysis showed that the correlations between the independent 

variables (50 of them) and the variables of interest, mainly Duration, Total Cost and 

Time Between Reports/Failures, are not very strong, although not so small that the in-

formation is totally random. Principal component analysis provides a roadmap for con-

structing predictive models. 

 

Following PCA's pointers, predictive models were constructed. The predictions of 

Total Cost and Time Between Reports/Failures had lower confidence results, but 

pointed in the right direction. The model for predicting Duration had good predictive 

performance. 

 

Mean value analysis and simulation confirmed that the job of keeping field equip-

ment is not an easy one, facing severe bottlenecks due to the extreme variability of 

service times. Nevertheless, the uncertainty models developed can be used to plan for 

different workload scenarios and resource availability. 
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