
Allocation of Distributed Resources with Group

Dependencies and Availability Uncertainties

Victor Toporkov [0000−0002−1484−2255], Dmitry Yemelyanov [0000−0002−9359−8245]

and Alexey Tselishchev

National Research University “MPEI”, Russia

ToporkovVV@mpei.ru, YemelyanovDM@mpei.ru,

Alexey.Tselishchev@gmail.com

Abstract. In this work, we introduce and study a set of tree-based algorithms for

resources allocation considering group dependencies between their parameters.

Real world distributed and high-performance computing systems often operate

under conditions of the resources availability uncertainty caused by uncertainties

of jobs execution, inaccuracies in runtime predictions and other global and local

utilization events. In this way we can observe an availability over time function

for each resource and use it as a scheduling parameter. As a single parallel job

usually occupies a set of resources, they shape groups with common probabilities

of usage and release events. The novelty of the proposed approach is an efficient

algorithm considering groupings of resources by the common availability proba-

bility for the resources’ co-allocation. The proposed algorithm combines dy-

namic programming and greedy methods for the probability-based multiplicative

knapsack problem with a tree-based branch and bounds approach. Simulation re-

sults and analysis are provided to compare different approaches, including greedy

and brute force solution.

Keywords: Distributed Computing, Resource, Uncertainty, Availability, Proba-

bility, Job, Group, Knapsack, Branch and Bounds.

1 Introduction and Related Works

High-performance distributed computing systems, such as Grids, cloud, and hybrid in-

frastructures, provide access to substantial amounts of resources. These resources are

typically required to execute parallel jobs submitted by users and include computing

nodes, data storages, network channels, software, etc. The actual requirements for re-

sources amount and types needed to execute a job are defined in resource requests and

specifications provided by users [1-5]. Distributed computing systems organization and

support bring certain economical expenses: purchase and installation of machinery

equipment, power supplies, user support, etc. As a rule, users and service providers

interact in economic terms and the resources are provided for a certain payment. Eco-

nomic models [3-5] are used to efficiently solve resource management and job-flow

scheduling problems in distributed environments such as cloud computing and utility

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36030-5_48

mailto:YemelyanovDM@mpei.ru
https://dx.doi.org/10.1007/978-3-031-36030-5_48
https://dx.doi.org/10.1007/978-3-031-36030-5_48

2

Grids. Majority of scheduling solutions for distributed environments implement sched-

uling strategies on a basis of efficiency criteria [1–5].

Traditional models consider scheduling problem in a deterministic way. Such an ap-

proach is sometimes justified by the strict market rules for resources acquisition and

utilization during the purchased period of time. Commercial Grids and cloud service

providers usually own full control over the resources and may reliably consider their

local schedules for some scheduling horizon time [1, 3]. Besides, market-based inter-

actions and QoS constraints compliance require deterministic model for the resources

utilization profile. Thus, it is convenient to represent available resources as a set of

slots: time intervals when particular nodes are idle and may be used for user jobs exe-

cution [4-8]. However general distributed computing systems with non-dedicated re-

sources usually cannot rely on deterministic utilization schedules and instead make pre-

dictions based on the utilization predictions and probabilities [9-12]. The probabilities

of the resources’ availability and utilization at any given time may originate from jobs

execution and completion time uncertainties, local activities of the resource provider,

maintenance, or numerous failure events. Particular utilization characteristics and pat-

terns usually strongly depend on the resource types. However, according to [9] about

20% of Grid computational nodes exhibit truly random availability intervals.

The scheduling problem in Grid is NP-hard due to its combinatorial nature and many

heuristic solutions have been proposed. When scheduling under uncertainties, proactive

and reactive approaches are usually distinguished [12]. Proactive algorithms concen-

trate on the resources’ utilization predictions and heuristic-based advanced resources

allocations and reservations. Reactive algorithms analyze current state of the computing

environment and make decisions for jobs migration and rescheduling. Both types of

algorithms may be used in a single system to achieve even greater resource usage effi-

ciency. The resources availability predictions for the considered scheduling interval

may be obtained based on the historical data processing, linear regression models or

with help of expert and machine learning systems [9-11]. In [10], a set of availability

states is defined to model resource behavior and probabilities state transitions. On the

other hand, sometimes it is possible to identify distributions of resources utilization and

availability intervals [9]. Economic scheduling models are implemented in modern dis-

tributed and cloud computing simulators GridSim and CloudSim [13]. They provide

reliable tools for resources co-allocation but consider price constraints on individual

nodes and not on a total window allocation cost. However, as we showed in [6], algo-

rithms with a total cost constraint can perform the search among a wider set of resources

and increase the overall scheduling efficiency. Algorithms [14-16] implement knap-

sack- based slot selection optimization according to a probability-based criterion with

a total job execution cost constraint.

This paper extends scheduling algorithms and model presented in [14-16]. We pro-

pose proactive algorithms for resources selection and co-allocation computing environ-

ments with non-dedicated resources and corresponding availability uncertainties. The

uncertainties are modeled as resources availability events and probabilities: a natural

way of machine learning and statistical predictions representation [16]. Common re-

sources’ allocation and release times are modeled with interdependent resource groups.

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36030-5_48

https://dx.doi.org/10.1007/978-3-031-36030-5_48
https://dx.doi.org/10.1007/978-3-031-36030-5_48

3

 The novelty of the proposed approach consists in a dynamic programming scheme

performing resources selection with a total availability criterion maximization. The pa-

per is organized as follows. Section 2 presents availability-based scheduling problem

and several greedy, knapsack and branch and bounds-based approaches for its solution.

Section 3 contains an experiment setup and simulation results obtained for the consid-

ered algorithms. Section 4 summarizes the paper and highlights further research topics.

2 Resource Selection Algorithm

2.1 Probabilistic Model for Resource Utilization

In our model we consider a set 𝑅 of heterogeneous computing nodes with price 𝑐𝑖 char-

acteristics under utilization uncertainties. The probabilities (predictions) 𝑝𝑖(𝑡) of the

resources' availability and utilization for the whole scheduling interval 𝐿 are provided

as input data. We model a resource utilization schedule as an ordered list of utilization

events, such as resource’s allocation, occupation (execution) and release events. An

individual job execution on a single resource is modeled as a sequence of allocation,

occupation (actual execution) and release events (see Fig. 1). Additionally, global re-

sources utilization uncertainties, such as maintenance works or network failures, are

modeled as a continuous occupation event with 𝑃𝑜 << 1 during the whole considered

scheduling interval.

Fig. 1. Example of a single resource occupation probability schedule.

Fig. 1 shows an example of a single resource occupation probability 𝑃𝑜 schedule.

With two jobs already assigned to the resource, there are two resources allocation

events (with expected times of allocation at 85- and 844-time units), two resources oc-

cupation events (starting at 133- and 921-time units) and two resources release events

(expected release times are 545- and 1250-time units respectively). Gray translucent

bar at the bottom of the Fig. 1 represents a sum of global utilization events with a total

resource occupation probability 𝑃𝑜 = 0.06. During the whole execution interval, the

resource’s occupation (utilization) probability is assumed as 𝑃𝑜 = 1. Utilization proba-

bility for allocation events is modeled by random variable with a normal distribution,

and for release events - with a lognormal distribution to consider the long tails [15].

Expected allocation and release times are derived from the job’s replication and execu-

tion time estimations. Corresponding standard deviations depend on the job’s features

and may be predicted based on user estimations or historical data [9-11,15]. Hence, in

Fig. 1 the resource occupation probability at expected times of allocation and release

events are: 𝑃𝑜(85) = 𝑃𝑜(545) = 𝑃𝑜(844) = 𝑃𝑜(1250) = 0.5.

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36030-5_48

https://dx.doi.org/10.1007/978-3-031-36030-5_48
https://dx.doi.org/10.1007/978-3-031-36030-5_48

4

However, to execute a job, a resource should be allocated for a specified time period

𝑇. Based on the model above, we propose the following procedure to calculate a total

availability probability 𝑃𝑎 of a resource 𝑟 during time interval 𝑇. 𝑃𝑎 describes probabil-

ity, that the resource 𝑟 will be fully available and will not be interrupted during 𝑇.

1. Retrieve a set of independent utilization events 𝑒𝑖 active for the resource 𝑟 during

the time interval 𝑇. When a subset of dependent events is active during the interval,

then only a single event providing the maximum occupation probability 𝑃𝑜 is re-

trieved. For example, from the allocation-occupation (execution)-release events

chain only the execution event is retrieved with 𝑃𝑜 = 1.

2. For each independent event 𝑒𝑖 a maximum occupation probability during the interval

𝑙 is calculated: 𝑃𝑜
𝑚𝑎𝑥(𝑒𝑖) = max

𝑡 𝜖 𝑇
𝑃𝑜 (𝑒𝑖 , 𝑡). Corresponding partial availability proba-

bility 𝑃𝑎(𝑒𝑖) is calculated for each event 𝑒𝑖 as a probability that the resource will not

be occupied by the event during the interval 𝑇: 𝑃𝑎(𝑒𝑖) = 1 − 𝑃𝑜
𝑚𝑎𝑥(𝑒𝑖).

3. The resource will be available during the whole-time interval 𝑇 only in case it will

not be occupied by any of the active utilization events. Thus, the total availability

probability for the resource 𝑟 is a product of all partial availability probabilities cal-

culated for independent events 𝑒𝑖:

𝑃𝑎
𝑟 = ∏ 𝑃𝑎(𝑒𝑖)

𝑖

 . (1)

Fig. 2. Example of a resource occupation probability schedule.

For example, consider a resource availability probability for an interval 𝑇: [545; 844]

presented as a dotted rectangle in Fig 2. Three independent events are active during the

interval: 1) resource release event 𝑒1 with the expected release time at 545 time units,

2) resource allocation event 𝑒2 with the expected allocation time at 844 time units, and

3) a global utilization event 𝑒3 with a constant occupation probability 𝑃𝑜 = 0.06 (re-

lated details were provided with a Fig.1 example). Corresponding partial occupation

and availability probabilities are: 𝑃𝑜
𝑚𝑎𝑥(𝑒1) = 0.5, 𝑃𝑜

𝑚𝑎𝑥(𝑒2) = 0.5, 𝑃𝑜
𝑚𝑎𝑥(𝑒3) =

 0.06, while 𝑃𝑎(𝑒1) = 0.5, 𝑃𝑎(𝑒2) = 0.5, 𝑃𝑎(𝑒3) = 0.94. So, the total probability of

the resource availability during the whole interval 𝑇 is 𝑃𝑎
𝑟 = 0.235.

2.2 Parallel Job Scheduling and Group Dependencies

To execute a parallel job, a set of simultaneously available nodes (a window) should be

allocated ensuring user requirements from the resource request. The resource request

usually specifies number 𝑛 of nodes required simultaneously for a time period 𝑇 and a

maximum available resources allocation budget 𝐶. The total cost of a window alloca-

tion is calculated as 𝐶𝑊 = ∑ 𝑇 ∗ 𝑐𝑖
𝑛
𝑖=1 , where 𝑐𝑖 is resource 𝑖 price for a single time unit.

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36030-5_48

https://dx.doi.org/10.1007/978-3-031-36030-5_48
https://dx.doi.org/10.1007/978-3-031-36030-5_48

5

These parameters constitute a formal generalization for resource requests common

among distributed computing systems and simulators [13, 14-16]. Period 𝑇 of the re-

sources acquisition is usually the same for all resources selected for a parallel job. Com-

mon allocation and release times ensure the possibility of inter-node communications

during the whole job execution. In this way, the total window availability is a function

of availability probabilities of all the selected resources during the considered time in-

terval 𝑇. More formally, when a set of 𝑛 resources is selected for a job, the total window

availability 𝑃𝑎
w during the expected job execution interval can be estimated as a product

of availability probabilities 𝑃𝑎
ri of each independent window nodes:

𝑃𝑎
𝑤 = ∏ 𝑃𝑎

𝑟𝑖

𝑛

𝑖

. (2)

Here 𝑃𝑎
ri can be calculated for each resource by the algorithm described in Section

2.1. If any of the window nodes will be occupied during the expected job execution

interval (i.e., 𝑃𝑎
𝑟𝑖 = 0), the whole parallel job will be postponed or even aborted. There-

fore, in general, the window allocation procedure should consider maximization of the

total probability of availability 𝑃𝑎
w → max. Based on the model above the general state-

ment of the window allocation problem is as follows: during a scheduling interval 𝐿

allocate a subset of 𝑛 nodes with performance 𝑝𝑖 ≥ 𝑝 for a time 𝑇, with common al-

location and release times and a restriction 𝐶 on the total allocation cost. As a target

optimization criterion, we assume maximization of the whole window availability prob-

ability (2).

As we additionally showed in [14, 15], this general problem can be reduced to the

following task: at a given time 𝑡, which defines the set and state of 𝑚 available re-

sources, allocate a subset of 𝑛 nodes with a restriction 𝐶 on their total allocation cost

while performing maximization of their total availability probability (2). In [14, 15] we

proposed several approaches to solve the problems above. However, their statement

and solution assume independence of individual resources as well as their utilization

events. That is why in (2) we calculate the total window availability as a product of the

availability probabilities of its elements.

In a more general and realistic model, the resources and their utilization events are

not independent. On the contrary, there are group dependencies between the resources’

parameters. The most typical example of such a dependency is a result of a parallel job

execution. When a parallel job is scheduled, a set of selected resources is allocated for

a common period 𝑇. That is, all the selected resources will share allocation, occupation,

and release times. So, they should be modeled with a common chain of allocation-

occupation-release events. In another words, these resources have a group dependency.

Fig. 3 shows example of utilization events modeled for a parallel job, which re-

quested three nodes. Red areas present resources’ utilization probability for allocation

and release events. As the exact allocation and release times are unknown, the corre-

sponding occupation probabilities 𝑃𝑜(𝑡) < 1. Green areas show execution event with

the occupation probability 𝑃𝑜 = 1. The main issue is that criterion (2) becomes inaccu-

rate when applied to a resources’ set with many internal group dependencies. For ex-

ample, in Fig. 3 if we consider total availability probability of resources 1, 4 and 5 at

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36030-5_48

https://dx.doi.org/10.1007/978-3-031-36030-5_48
https://dx.doi.org/10.1007/978-3-031-36030-5_48

6

time 𝑡 = 400, criterion (2) will calculate it as a product 𝑃𝑎
w = 𝑃𝑎

1 ∗ 𝑃𝑎
3 ∗ 𝑃𝑎

4. However,

as these resources are used by the same parallel job (and have a common group depend-

ency), their actual total availability probability 𝑃𝑎
w = 𝑃𝑎

1 = 𝑃𝑎
3 = 𝑃𝑎

4 ≥ 𝑃𝑎
1 ∗ 𝑃𝑎

3 ∗ 𝑃𝑎
4.

Fig. 3. Example of a parallel job execution schedule.

To describe it more formally we consider a set of groups 𝐺 over the set 𝑅 of the

available resources. Each component group 𝐺𝑖 ∈ 𝐺 represents a subset of resources 𝑟𝑗 ∈

𝑅 with a common group dependency. For example, one scheduled job, like in the ex-

ample above, forms a single group 𝐺𝑖 which includes all the resources selected for the

job. So, for example, if one resource 𝑟𝑗 ∈ 𝐺𝑖 is selected for a window 𝑊, the common

group availability 𝑃𝑎
Gi should be used for calculation of a total 𝑊 availability probabil-

ity 𝑃𝑎
𝑤. However, additionally selecting any other resources from 𝐺𝑖 will not affect 𝑃𝑎

𝑤,

as their group probability component 𝑃𝑎
Gi is already considered.

So, the total window 𝑊 availability probability can be calculated as follows:

𝑃𝑎
𝑤 = ∏ 𝑃𝑎

𝐺𝑖

𝑛∗

𝑖

, (3)

where 𝑛∗ is a number of diverse groups used for the window 𝑊, and 𝑃𝑎
𝐺𝑖 is availability

probability for each different group 𝐺𝑖 used for the window. Group 𝐺𝑖 is added to (3) if

at least one of its resources is selected for the window. It is worth noting, that in the

extreme case each group 𝐺𝑖 can contain only one resource, and thus (3) will converge

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36030-5_48

https://dx.doi.org/10.1007/978-3-031-36030-5_48
https://dx.doi.org/10.1007/978-3-031-36030-5_48

7

to (2). In this paper we propose and study resources allocation algorithm which per-

forms (3) 𝑃𝑎
𝑤 → max optimization considering economic constraint on the total win-

dow cost and group dependencies 𝐺. However firstly we should introduce helper algo-

rithms performing (2) 𝑃𝑎
𝑤 → max optimization without the group dependencies config-

uration.

2.3 Direct Solutions of the Resources Allocation Problem

Let us discuss in more details an algorithm which allocates an optimal (according to the

probability criterion 𝑃𝑎
𝑤) subset of 𝑛 resources from the set 𝑅 of 𝑚 available resources

with a limit 𝐶 on their total cost.

Firstly, we consider maximizing the following total resources availability criterion

𝑃𝑎
𝑤 = ∏ 𝑝𝑎

𝑟𝑗𝑛
𝑗 , where 𝑝𝑎

𝑟𝑗
= 𝑝𝑗 is an availability probability of a single resource 𝑟𝑗 ∈ 𝑅

during a considered interval 𝑇. In this way we can state the following problem of an 𝑛

- size window subset allocation out of 𝑚 nodes:

𝑃𝑎
𝑤 = ∏ 𝑥𝑗𝑝𝑎

𝑟𝑗𝑚
𝑗 → max, ∑ 𝑥𝑗

𝑚
𝑗 𝑐𝑗 ≤ 𝐶, 𝑥𝑗 ∈ {0,1}, 𝑗 = 1. . 𝑚, ∑ 𝑥𝑗

𝑚
𝑗 = 𝑛, (4)

where 𝑐𝑗 is total cost required to allocate resource 𝑟𝑗, 𝑥𝑗 - is a decision variable deter-

mining whether to allocate resource 𝑟𝑗 (𝑥𝑗 = 1) or not (𝑥𝑗 = 0) for the current window.

This problem relates to the class of integer linear programming problems, and we

used 0-1 knapsack problem as a base for our implementation. The classical 0-1 knap-

sack problem with a total weight 𝐶 and items-resources with weights 𝑐𝑗 and values 𝑝𝑗

have a similar formal model except for extra restriction on the number of items re-

quired: 𝑥1 + 𝑥2 + ⋯ + 𝑥𝑚 = 𝑛. Therefore, we implemented the following dynamic

programming recurrent scheme:

 𝑓𝑗(𝑐, 𝑣) = max{𝑓𝑗−1(𝑐, 𝑣), 𝑓𝑗−1(𝑐 − 𝑐𝑗 , 𝑣 − 1) ∗ 𝑝𝑗}, (5)

𝑗 = 1, . . , 𝑚, 𝑐 = 1, . . , 𝐶, 𝑣 = 1, . . , 𝑛,

where 𝑓𝑗(𝑐, 𝑣) defines the maximum availability probability value for a 𝑣-size window

allocated from the first 𝑗 resources of 𝑚 for a budget 𝑐. After the forward induction

procedure (4) is finished the maximum availability value 𝑃𝑎
𝑤

𝑚𝑎𝑥
= 𝑓𝑚(𝐶, 𝑛). 𝑥𝑗 values

are then obtained by a backward induction procedure.

An estimated computational complexity of the presented knapsack-based algorithm

KnapsackP is 𝑂(𝑚 ∗ 𝑛 ∗ 𝐶).

Another approach for 𝑛-size window allocation is to use a more computationally

efficient greedy approach. We outline four main greedy algorithms to solve the problem

(3). The task is to select 𝑛 out of 𝑚 resources providing maximum total availability

probability 𝑃𝑎
𝑤 with a constraint on their total allocation cost 𝑛.

1. MaxP selects first 𝑛 nodes providing maximum availability probability 𝑝𝑗

values. This algorithm does not consider total usage cost limit and may pro-

vide infeasible solutions. Nevertheless, MaxP can be used to determine the

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36030-5_48

https://dx.doi.org/10.1007/978-3-031-36030-5_48
https://dx.doi.org/10.1007/978-3-031-36030-5_48

8

best possible availability options and estimate a budget required to obtain

them.

2. An opposite approach MinC selects first 𝑛 nodes providing minimum usage

cost 𝑐𝑗 or an empty list in case of exceeding a total cost limit 𝐶. In this way,

MinC does not perform any availability optimization, but always provides

feasible solutions when it is possible. Besides, MinC outlines a lower bound

on a budget required to obtain a feasible solution.

3. Third option is to use a weight function to regularize nodes in an appropri-

ate manner. MaxP/C uses 𝑤𝑗 = 𝑝𝑗 𝑐𝑗⁄ as a weight function and selects first

𝑛 nodes providing maximum 𝑤𝑗 values. Such an approach does not guar-

antee feasible solution, but nonetheless performs some availability optimi-

zation by implementing a compromise solution between MaxP and MaxC.

4. Finally, we consider a composite approach GreedyUnited for an efficient

greedy-based resources allocation. The algorithm consists of three stages.

a. Obtain MaxP solution and return it if the constraint on a total us-

age cost is met.

b. Else, obtain MaxP/C solution and return it if the constraint on a

total usage cost is met.

c. Else, obtain MinC solution and return it if the constraint on a total

usage cost is met.

This combined algorithm GreedyUnited is designed to perform the best

possible greedy optimization considering a restriction on a total resources’

allocation cost 𝐶.

Estimated computational complexity for the greedy resources’ allocation step is

𝑂(𝑚 ∗ log 𝑚). More details regarding the algorithms above are provided in [14-16].

2.4 Resources Allocation Algorithms with Group Dependencies

Based on KnapsackP and GreedyUnited implementations above we propose the fol-

lowing algorithm for a general resource allocation problem considering group depend-

encies between the available resources. It takes as input set 𝑅 of the available resources

(each resource is characterized with cost 𝑐𝑖) and set 𝐺 of groups over 𝑅 (each group 𝐺𝑖

has a common availability probability 𝑝𝑖). The algorithm then allocates a subset of 𝑛

resources with a restriction 𝐶 on their total cost while performing maximization of their

total availability probability (3). The problem is solved by branch and bounds method

by maintaining max-heap data structure 𝐻 containing interim candidate solutions 𝑆𝑗 .

The higher the achieved availability probability 𝑃𝑎
𝑤 (3) or its upper bound, the closer

the solution 𝑆 to the top of the heap 𝐻. For each solution 𝑆 we maintain two subsets of

groups that should (𝐺+) and should not (𝐺−) be used in the current solution. Both 𝐺+

and 𝐺− are initialized as empty sets. Additionally, we consider subset 𝐺0 as all groups

from 𝐺 not included in 𝐺+ or 𝐺−, so 𝐺0 is initialized as 𝐺.

 Initial candidate solution 𝑆0 with empty 𝐺0 = 𝐺 and empty sets 𝐺+ and 𝐺−, is placed

into 𝐻 with 𝑃𝑎
𝑤 = −𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦. Next, we perform the following steps.

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36030-5_48

https://dx.doi.org/10.1007/978-3-031-36030-5_48
https://dx.doi.org/10.1007/978-3-031-36030-5_48

9

1. Retrieve next solution candidate 𝑆 from 𝐻. If 𝑆 is marked as valid solution,

then return 𝑆 as a result, end of the algorithm.

2. Prepare list of resources 𝑅𝑠 to calculate 𝑃𝑎
𝑤 for 𝑆.

a. Init 𝑅𝑠 as empty set.

b. For each group 𝐺𝑗 from 𝐺+ add the cheapest resource to the solution

window 𝑊𝑠 with the 𝑝𝑖 = 𝑃𝑎

𝐺𝑗
; add other resources from this group

𝑟𝑖 ∈ 𝐺𝑗 to 𝑅𝑠 with 𝑝𝑖 = 1.

c. For each group 𝐺𝑗 from 𝐺0 add all resources 𝑟𝑖 ∈ 𝐺𝑗 to 𝑅𝑠 with 𝑝𝑖 =

√𝑃𝑎

𝐺𝑗
𝑘

, where 𝑘 is number of resources in 𝐺𝑗.

3. Use algorithm KnapsackP or GreedyUnited to perform direct solution of 𝑆 to

allocate resources into 𝑊𝑠 (it can be partially filled during step 2.b) from set

𝑅𝑠 of prepared resources with (2) 𝑃𝑎
𝑤 → max optimization without group de-

pendencies.

4. Check if the resulting solution is valid.

a. If all resources from 𝑊𝑠 are included in groups from 𝐺+, then put this

solution 𝑆 into 𝐻 with key 𝑃𝑎
𝑤 and mark it as a valid solution.

b. If at least one resource 𝑟𝑠 from 𝑊𝑠 is included in some group 𝐺𝑠 from

𝐺0, then we need to split this solution 𝑆 into two candidates: 𝑆+ and

𝑆−. For 𝑆+ remove group 𝐺𝑠 from 𝐺0 and add into 𝐺+. For 𝑆− re-

move group 𝐺𝑠 from 𝐺0 and add into 𝐺−. Put both solution candidates

𝑆+ and 𝑆− into 𝐻 with key 𝑃𝑎
𝑤 as an upper estimate.

5. Go to step 1.

The algorithm above performs branch and bounds approach by splitting candidate

solutions by sets of resources groups 𝐺+ and 𝐺− required to use or skip correspond-

ingly. A special resource set 𝑅𝑠 preparation in step 2 allows us to use (2) optimization

algorithms and obtain either a final valid solution or a candidate solution with pretty

accurate upper estimate. The algorithm finishes when the next solution obtained from

the max-heap data structure is a valid solution composed of resources from 𝐺+ groups

and, thus, its 𝑃𝑎
𝑤 calculated with (2) satisfies rules for group dependencies availability

calculations (3).

3 Simulation Study

3.1 Considered Algorithm Implementation

For the simulation study we consider and compare the following algorithm implemen-

tations.

1. Firstly, we implemented brute-force algorithm to solve the resources allocation

problem with (3) 𝑃𝑎
𝑤 → max optimization. We used this algorithm for a prelim-

inary analysis in small experiments with up to 21 resources to compare its opti-

mization efficiency with other approaches.

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36030-5_48

https://dx.doi.org/10.1007/978-3-031-36030-5_48
https://dx.doi.org/10.1007/978-3-031-36030-5_48

10

2. Next, we prepared three implementations of a general branch and bounds algo-

rithm described in Section 2.4. First implementation KnapsackGroup uses

KnapsackP for all interim allocations during the algorithm step 3. Greedy per-

forms interim optimizations at step 3 with GreedyUnited algorithm. Finally,

Greedy+ runs GreedyUnited for all interim optimizations, but once the solution

is found, the final solution optimization is performed again using more accurate

KnapsackP approach.

3. Finally, we consider KnapsackP (KnapsackSingle) as standalone algorithms for

the comparison. This algorithm does not support group dependencies and per-

forms (2) 𝑃𝑎
𝑤 → max optimization. The obtained solution is then recalculated

accordingly to (3) to compare it to the algorithms above.

For the simulation study we execute and collect resulting data for all the considered

algorithms (BruteForce, KnapsackGroup, Greedy, Greedy+ and KnapsackSingle) in

different resource environments with randomized characteristics 𝑐𝑖 , 𝑝𝑖 and group de-

pendencies. An experiment was prepared using a custom distributed environment sim-

ulator [6, 14, 15]. For our purpose, it implements a heterogeneous resource domain

model: nodes have different usage costs and availability probabilities. Each node sup-

ports a list of active global and local job utilization events. Fig. 3 shows an example of

such an environment with many resources and a Gantt chart of the utilization events.

Additionally, we generate random uniformly distributed group dependencies be-

tween the resources. So, the resources allocation problem can be defined with the fol-

lowing parameters: 𝑁 – number of available resources (each characterized with cost 𝑐𝑖

and availability probability 𝑝𝑖), 𝐺 – number of different groups (containing random

non-intersecting subsets of resources), 𝑛 – number of resources required for allocation

and 𝐶 – available budget, i.e. constraint on the total cost of the selected resources.

3.2 Proof of Optimization Efficiency

The first experiment series studies algorithms optimization and computational effi-

ciency in comparison with BruteForce approach. Brute force is usually inapplicable in

real-world tasks due to its exponential computational complexity. However, it guaran-

tees exact optimization solution, and can be used to evaluate optimization characteris-

tics of other considered algorithms. During each simulation experiment, the resources

allocation was independently performed by algorithms BruteForce, KnapsackGroup,

Greedy, Greedy+ and KnapsackSingle. The comparison is obtained with different val-

ues of 𝐺, 𝑛, 𝐶 of the allocation problem. As BruteForce applicability is limited, firstly

we performed resources allocation simulation with only 𝑁 = 21 available resources.

Fig.4 shows resulting availability probability 𝑃𝑎
𝑤 depending on number 𝑛 ∈ [1; 21]

of requested resources in environment with 𝑁 = 21 available resources, 𝐺 = 8 differ-

ent groups and without the total cost restriction (𝐶 = ∑ 𝑐𝑖
𝑁
𝑖). The main result is that

proposed algorithms KnapsackGroup, Greedy and Greedy+ provided the same 𝑃𝑎
𝑤

value as BruteForce (that is why they are not presented in Fig. 4). KnapsackGroup

theoretically guarantees exact problem solution in integers and is expected to provide

results identical to BruteForce. Greedy algorithms provided optimal solution due to the

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36030-5_48

https://dx.doi.org/10.1007/978-3-031-36030-5_48
https://dx.doi.org/10.1007/978-3-031-36030-5_48

11

lack of the total cost limit (see GreedyUnited and MaxP descriptions in Section 2.3).

However, KnapsackSingle in most cases failed to provide optimal solution with up to

5% lower availability probability compared to BruteForce. The equality is achieved

only in two simplified scenarios with 𝑛 = 1 and 𝑛 = 21, when group dependencies are

not relevant for the problem.

Fig. 4. Simulation results: resulting availability probability 𝑃𝑎
𝑤 depending on number 𝑛 of re-

quested resources.

Fig. 5. Simulation results: average calculation time depending on number 𝑛 of requested re-

sources.

Fig. 5 shows actual algorithms’ execution time required to achieve allocation results

from Fig. 4. As can be seen, BruteForce calculation time dramatically increases for 𝑛 ∈
[7; 15] and exceeds half a second for 𝑛 = 11. This is explained by the combinatorial

nature of selecting subset of 𝑛 from 𝑁 available resources. Even the most computation-

ally complex KnapsackGroup algorithm, which combines pseudo polynomial 0-1

knapsack implementation with branch and bounds approach is presented in Fig.5 as a

straight line 100 times lower compared to the BruteForce maximum. Greedy

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36030-5_48

https://dx.doi.org/10.1007/978-3-031-36030-5_48
https://dx.doi.org/10.1007/978-3-031-36030-5_48

12

approaches were up to 1000 times faster than BruteForce. So, according to the trend in

Fig. 5, in environments with 𝑁 > 25 BruteForce becomes practically inapplicable and

other exact algorithms and approximations should be considered. The accuracy of such

approximations in general should be estimated with the economical restriction 𝐶 on the

total window allocation cost.

Fig. 6. Simulation results: resulting availability probability 𝑃𝑎
𝑤 depending on the budget 𝐶.

Fig.6 shows how window availability probability depends on the allocation budget

𝐶 ∈ [30; 120] in problem setup with 𝑛 = 8, 𝐺 = 8 and 𝑁 = 21. In this environment

only KnapsackGroup was able to obtain exact solutions (identical to BruteForce) for

all 𝐶 values. Additionally, KnapsackGroup provides almost constant 5% advantage

over KnapsackSingle. The results of Greedy algorithms are also within 5% of the exact

solution and reaches BruteForce for 𝐶 > 90. In general, the obtained simulation result

confirms accuracy of KnapsackGroup algorithm and gives an approximate estimate of

the accuracy of the more computationally simple algorithms.

3.3 Practical Optimization Efficiency Study

Next experiment series studies proposed algorithms in more complex problem settings

with 𝑁 = 200, 𝐺 = 40 and 𝑛 = 20. As brute force becomes impractical for such fig-

ures, we use KnapsackGroup as a reference and accurate solution of (3).

 Firstly, Fig. 7 shows availability probability as a function of 𝐶 ∈ [40; 220]. Lower

bound was selected so that it was almost impossible just to allocate any 20 resources

with budget 𝐶 < 40, without any optimization. So, the resulting 𝑃𝑎
𝑤 generally increase

with increasing 𝐶. Upper bound 𝐶 > 200 allows to select almost any resources without

checking for the total cost limit. In this experiment setup with more resources and

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36030-5_48

https://dx.doi.org/10.1007/978-3-031-36030-5_48
https://dx.doi.org/10.1007/978-3-031-36030-5_48

13

optimization variability, Greedy algorithms are already seriously losing the accuracy of

the solution. The advantage of KnapsackGroup exceeds 20% for some values of 𝐶. This

result generally correlates with works [14, 15]. At the same time, KnapsackSingle pro-

vides availability probability only 10% lower than the exact solution. In this way, the

absence of group dependencies information turns out advantageous compared to the

accuracy of greedy approximations of the multiplicative knapsack problem. Only in

scenarios with 𝐶 > 200, i.e., without the cost restriction, Greedy can outperform

Knasack Single in environment with group dependencies between the resources.

Fig. 7. Simulation results: resulting availability probability 𝑃𝑎
𝑤 depending on the budget 𝐶.

Fig. 8. Simulation results: average calculation time depending on the budget 𝐶.

Another crucial factor for the practical applicability is the algorithms’ calculation

time presented in Fig. 8 for the same environment settings. Greedy and Greedy+ have

almost identical calculation times and so their graphs fully overlap. The obvious trend

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36030-5_48

https://dx.doi.org/10.1007/978-3-031-36030-5_48
https://dx.doi.org/10.1007/978-3-031-36030-5_48

14

is that tighter restrictions on the budget 𝐶 cause a strong increase in working time for

branch and bounds - based algorithms (KnapsackGroup, Greedy, Greedy+). This is ex-

plained by the necessity to select resources with respect to the 𝐶 constraint, rather than

by the target criterion. And this strategy requires consideration of more diverse groups

and splitting in branch and bounds approach. For example, with 𝐶 = 40, an average

size of the solution tree for KnapsackGroup was almost 5000 elements causing nearly

8 seconds of the execution time. And with 𝐶 = 120 the tree size decreased to nearly

100 elements leading to a sub second execution time. Similar calculation time trend

applies to Greedy tree algorithms as well.

 Thus, based on Figs. 7, 8 we conclude, that with tight economical budget restrictions

the most practically adequate option is a simple multiplicative 0-1 knapsack algorithm

[14], as such problem setup requires greater emphasis on the cost optimization and less

on the groups’ combinations. With a looser cost restriction (𝐶 ∈ [100; 200] in our ex-

periment) tree-based KnapsackGroup becomes a preferred option as it provides exact

optimization solution for an adequate calculation time. Finally, when there is no cost

restriction, a tree-based Greedy algorithm can provide exact optimization result in the

least amount of calculation time.

4 Conclusion and Future Work

In this work, we address the problem of dependable resources co-allocation for parallel

jobs in distributed computing with group dependencies over the resources. Such group

dependencies usually define utilization events common for subsets of resources, such

as simultaneous allocation or release events. To handle this problem, we designed sev-

eral branches and bounds algorithms based on a multiplicative 0-1 knapsack problem.

 In a simulation study we proved accuracy of the proposed algorithms in comparison

with a brute force approach, estimated their calculation time and practical applicability

in a more complex scheduling problems with up to 200 available computing nodes.

Future work will concern additional optimization in the algorithms’ complexity and

calculation time. In addition, we plan to consider similar allocation task based on an

additive 0-1 knapsack problem.

Acknowledgments. This work was supported by the Russian Science Foundation (pro-

ject No. 22-21-00372, https://rscf.ru/en/project/22-21-00372/).

References

1. Lee, Y.C., Wang C., Zomaya, A.Y., Zhou, B.B.: Profit-driven Scheduling for Cloud Sevices

with Data Access Awareness. J. of Parallel and Distributed Computing 72 (4), 591-602

(2012).

2. Garg, S.K., Konugurthi, P., Buyya, R.: A Linear Programming-driven Genetic Algorithm

for Meta-scheduling on Utility Grids. Int. J. of Parallel, Emergent and Distributed Systems

26, 493-517 (2011).

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36030-5_48

https://rscf.ru/en/project/22-21-00372/
https://dx.doi.org/10.1007/978-3-031-36030-5_48
https://dx.doi.org/10.1007/978-3-031-36030-5_48

15

3. Buyya, R., Abramson, D., Giddy, J.: Economic Models for Resource Management and

Scheduling in Grid Computing. J. of Concurrency and Computation: Practice and Experi-

ence 5 (14), 1507-1542 (2002).

4. Ernemann, C., Hamscher, V., Yahyapour, R.: Economic Scheduling in Grid Computing. In:

Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds) JSSPP 2002. LNCS, vol. 2537, pp.

128-152. Springer, Heidelberg (2002).

5. Kurowski, K., Nabrzyski, J., Oleksiak, A., Weglarz, J.: Multicriteria Aspects of Grid Re-

source Management. In: Nabrzyski, J., Schopf, J.M., Weglarz J. (eds) Grid resource man-

agement. State of the art and future trends. Kluwer Academic Publishers, pp. 271-293

(2003).

6. Toporkov, V., Toporkova, A., Bobchenkov, A., Yemelyanov, D.: Resource Selection Algo-

rithms for Economic Scheduling in Distributed Systems. ICCS 2011, June 1-3, 2011, Sin-

gapore, Procedia Computer Science. Elsevier, vol. 4. pp. 2267-2276 (2011).

7. Netto, M. A. S., Buyya, R.: A Flexible Resource Co-Allocation Model based on Advance

Reservations with Rescheduling Support. In: Technical Report, GRIDSTR-2007-17, Grid

Computing and Distributed Systems Laboratory, The University of Melbourne, Australia,

October 9, 2007.

8. Jackson, D., Snell, Q., Clement, M.: Core Algorithms of the Maui Scheduler. 7th Interna-

tional Workshop on Job Scheduling Strategies for Parallel Processing, pp. 87-102 (2001).

9. Javadi, B., Kondo, D., Vincent, J., Anderson, D.: Discovering Statistical Models of Availa-

bility in Large Distributed Systems: An Empirical Study of SETI@home. IEEE Transactions

on Parallel and Distributed Systems 22 (11), 1896 - 1903 (2011).

10. Rood, B., Lewis, M.J. Grid Resource Availability Prediction-Based Scheduling and Task

Replication. J. Grid Computing 7, 479 (2009).

11. Tchernykh, A., Schwiegelsohn, U., El-ghazali, T., Babenko, M.: Towards Understanding

Uncertainty in Cloud Computing with Risks of Confidentiality, Integrity, and Availability,

J. Comput. Sci. vol.36. (2016).

12. Chaari, T., Chaabane, S., Aissani, N., and Trentesaux, D.: Scheduling Under Uncertainty:

Survey and Research Directions. 2014 Int. Conf. on Advanced Logistics and Transport

(ICALT), pp. 229-234 (2014).

13. Calheiros, R. N., Ranjan, R., Beloglazov, A., De Rose, C. A. F., and Buyya,R.: CloudSim:

A Toolkit for Modeling and Simulation of Cloud Computing Environments and Evaluation

of Resource Provisioning Algorithms. J. Software: Practice and Experience, 41 (1), 23-50

(2011).

14. Toporkov, V., Yemelyanov, D.: Availability-based Resources Allocation Algorithms in Dis-

tributed Computing. In: Voevodin, V., Sobolev, S. (eds) Supercomputing. CCIS, vol. 1331,

pp. 551–562. Springer, Cham (2020).

15. Toporkov, V., Yemelyanov, D., Grigorenko, M.: Optimization of Resources Allocation in

High Performance Computing Under Utilization Uncertainty. In: Paszynski, M., Kranzlmül-

ler, D., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science

– ICCS 2021. Lecture Notes in Computer Science, vol. 12747, pp. 540–553 Springer, Cham

(2021).

16. Toporkov, V., Yemelyanov, D., Bulkhak, A. Machine Learning-Based Scheduling and Re-

sources Allocation in Distributed Computing. In: Groen, D., de Mulatier, C., Paszynski, M.,

Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS

2022. ICCS 2022. Lecture Notes in Computer Science, vol. 13353, pp. 3–16. Springer, Cham

(2022).

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36030-5_48

https://dx.doi.org/10.1007/978-3-031-36030-5_48
https://dx.doi.org/10.1007/978-3-031-36030-5_48

