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Abstract. This paper investigated the possibility of obtaining fuzzy so-
lutions to boundary problems using the interval parametric integral equa-
tions system (IPIES) method. It focused on the IPIES method because,
thanks to the analytical modi�cation of the boundary integral equations
(BIE), it does not require classical discretization. In this method, an orig-
inal modi�cation of directed interval arithmetic was also proposed. So-
lutions obtained using classical and directed interval arithmetic (known
from the literature) were also presented for comparison. The extension
of the IPIES method (to obtain fuzzy solutions) was to divide the fuzzy
number into α-cuts (depending on the assumed con�dence level). Then,
such α-cuts were represented as interval numbers. Preliminary tests were
carried out in which the in�uence of boundary condition uncertainty on
fuzzy solutions (obtained using IPIES) was investigated. The analysis
of solutions was presented on examples described by Laplace's equation.
The accuracy veri�cation of the fuzzy PIES solutions required a modi�-
cation of known, exactly de�ned analytical solutions. They were de�ned
using intervals and calculated using appropriate interval arithmetic in
α-cuts to obtain fuzzy analytical solutions �nally. The research showed
the high accuracy of fuzzy solutions obtained using IPIES and con�rmed
the high potential of the method in obtaining such solutions.

Keywords: boundary problems · uncertainty · fuzzy solutions · interval
arithmetic

1 Introduction

The wide application of computer simulation in practice shows that de�ning
input data exactly (by real numbers) signi�cantly limits and idealizes reality.
Practically, these data are always given with some uncertainty resulting from
experimental data or measurement errors. One of the more intuitive ways to
model uncertainty is to use interval numbers. In the boundary problems, they
have been used in the interval �nite element method (IFEM) [1] and interval
boundary element method (IBEM) [2]. However, most of the IFEM or IMEB
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research focuses on boundary conditions or various parameters de�ned uncer-
tainly. Researchers often omit the problem of modelling the uncertainty of the
boundary shape by interval coordinates of points. Such modelling in IFEM and
IBEM is troublesome due to the necessity of interval discretization. As a re-
sult of a signi�cant increase in the number of interval input data, solutions are
overestimated and useless in practice.

To solve the problem (by signi�cantly reducing the amount of interval input
data), the method of interval parametric integral equations system (IPIES) was
proposed [3, 4]. The method's main advantage is the unnecessity of classical
discretization [5, 6]. The functions that model the boundary's shape are included
directly in the mathematical formalism of PIES. As a result, a small amount
of input data is required to model the shape of the boundary and boundary
conditions. This signi�cantly reduces the number of equations in the system to be
solved, which reduces the number of calculations, shortens the time and reduces
the required computer resources. The previous studies [3, 4] proved insigni�cant
overestimations and high accuracy of the interval solutions obtained by IPIES.

The paper presents the IPIES application to obtain fuzzy solutions to the
boundary problem. The fuzzy set theory [7, 8] is another way that can be used
to de�ne the uncertainty of boundary problems. The advantage (in comparison
with intervals) is obtaining additional information about the behaviour of the
solutions inside the interval bounds. As in the previous methods of uncertainty
modelling, the fuzzy �nite element method (FFEM) [9] and the fuzzy boundary
element method (FBEM) [10] can also be found in the literature.

2 Interval Parametric Integral Equations System

Including uncertainly de�ned boundary conditions in the PIES requires de�n-
ing interval boundary functions. Therefore, the solution on the boundary (of
the problem modelled by the Laplace equation) can be obtained by solving the
interval PIES de�ned as follows:

0.5ul(s1) =

n∑
j=1

ŝj∫
ŝj−1

{
U∗
lj(s1, s)pj(s)− P ∗

lj(s1, s)uj(s)
}
Jj(s)ds, (1)

where l = 1, 2, ..., n, and ŝl−1 ≤ s1 ≤ ŝl, ŝj−1 ≤ s ≤ ŝj . The ŝl−1, ŝj−1 are the
beginnings, and the ŝl, ŝj are endings of the boundary segments exactly de�ned
in a parametric coordinate system. The function Jj(s) is the Jacobian to the
segment of the curve Sm (where m = j, l).

The functions pj(s), uj(s) are interval parametric boundary functions on
individual segments Sj of the boundary. One will be given as uncertainly de-
�ned (interval) boundary conditions, while the other will be searched for in the
numerical solution of the interval PIES. The paper assumes an exactly de�ned
boundary shape, so the kernels are de�ned classically:

U∗
lj(s1, s) =

1

2π
ln

1

[η21 + η22 ]
0.5

, P ∗
lj(s1, s) =

1

2π

η1n
(1)
j (s) + η2n

(2)
j (s)

η21 + η22
, (2)
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where n
(1)
j (s), n

(2)
j (s) are components of the normal vector n to the bound-

ary segment Sj . Kernels allow for the analytical inclusion in its mathematical
formalism of the boundary shape by appropriate relations between segments

η1 = S
(1)
l (s1)− S

(1)
j (s), η2 = S

(2)
l (s1)− S

(2)
j (s).

Since the direct application of interval arithmetic known from the literature
caused signi�cant overestimations, it was decided to propose a modi�cation of
directed interval arithmetic for calculations in the above method [3, 4]. It consists
of shifting the operations to the positive semi-axis in multiplication.

3 Fuzzy solutions to boundary problems

The interval numbers give only the values of a certain set's lower and upper
bounds. So, researchers became interested in ways that also de�ne the interior
of such a set. In the fuzzy set theory [7, 8], it was found that the human ability
to make the right decisions decreases due to the appearance of uncertainty in
more complex systems. Such uncertainty can be easily expressed in words, i.e.
using a linguistic variable, which can be fuzzi�ed and de�ned by a fuzzy set. It
is a set without clearly de�ned boundaries. The values inside have an additional
function determining their degree of belonging to the set. Therefore, the fuzzy
set A is represented by the function µA(x) called the membership function:

A = [(x, µA(x))|x ∈ R,µA(x) ∈ [0, 1]]. (3)

Corespondingly, µA(x) = 1 it means that x is in the set A, while µA(x) = 0
means that x does not belong to this set. The shape of this function depends on
the fuzzi�cation method used. The best-known types of membership functions
are the triangular and Gaussian functions. One special kind of fuzzy set is a fuzzy
number. This term denotes a special case of a convex, normalized fuzzy set with
a continuous membership function. An example is a triangular fuzzy number
(TFN), a fuzzy set with a triangular membership function. In a simpli�ed form,
it is reduced to the L-R representation [8], where the fuzzy number is represented
as x = (m, a, b) (Fig. 1).
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Fig. 1. A triangular fuzzy number

Obtaining fuzzy solutions with the interval PIES was to use a simpli�ed no-
tation of a fuzzy number using α-cuts. This method divides the membership
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function into certain levels called α-cuts. Each de�nes an interval in which the
degree of values membership is greater than the given value α. So, the member-
ship function can be de�ned using interval values: xα = [x, x]α easily. Respec-
tively x is the smallest, and x is the largest value whose degree of membership
is greater than or equal to α. A general schema of the application of fuzzy logic
in modelling and simulating boundary problems is shown in Fig. 2.

linguistic

("around 5")
variable

Gaussian distribution

fuzzification

μ ( )xi1

xi

1

0.5

μ ( )xj2

xj

1

0.5

a1 b1
m1

α1 α1

α2

α3

α4

α2

α3

α4

xi xj

μ ( )xi1

μ ( )xj2

interval    solutions

α1

α2

α3

α4

[u, ]u

xi

μ ( )xi

α1

α2

α3

α4

defuzzification

solutions

input data

a2 b2m2

[u, ]u

[u, ]u

[u, ]u

α-cuts   selection

linguistic
variable

("around 1")
Gaussian distribution

Fig. 2. A general schema of the application of fuzzy logic in modelling and simulating
boundary problems.

The �rst stage is to de�ne the input data with uncertainty. It can be a
linguistic value, a real number, or a probability distribution. However, the most
important thing is determining the appropriate way of fuzzi�cation for a given
variable. Fuzzi�cation methods include intuition, reasoning, genetic algorithms,
neural networks, induction or statistical distribution. After the fuzzi�cation, the
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obtained data is de�ned as fuzzy numbers with the corresponding membership
functions.

The next step is to divide the de�ned membership functions into the appro-
priate number of α-cuts for all uncertainly de�ned input data. The amount of
information transferred to the simulation will depend on their number, which
a�ects the amount of information obtained as a solution. Each α-cut is de�ned as
an interval number. Interval solutions are calculated for α-cuts using appropriate
interval arithmetic.

Finally, interval solutions are obtained for each α-cut. Therefore, obtaining
the solution membership function is enough to set the interval solutions in the
appropriate α-cuts (as shown in Fig. 2 at the "interval solutions" step). Finally,
the defuzzi�cation process on the membership function allows obtaining solutions
as a probability distribution or an exact value.

4 Tests

The strategy of modelling and solving problems de�ned with uncertainty will be
tested and analyzed on the example of problems described by Laplace's equation.
The mentioned strategy (Fig. 2) using the method of IPIES [3, 4] from formula
(3) was implemented as a computer program. De�ning the uncertainty of all
input data at once signi�cantly reduces the possibility of identifying the causes
of possible overestimations. Therefore, the preliminary research in this paper
was limited to the veri�cation of boundary conditions de�ned by fuzzy numbers.

Example 1. Square domain - constant fuzzy boundary conditions

The �rst elementary example was analyzed to enable the comparison of the
proposed uncertainty modelling strategy [3, 4] with the classical [11] and directed
[12] interval arithmetic known from the literature. The problem is shown in Fig.
3. One of the four segments was de�ned with the boundary condition by triangu-
lar fuzzy number u1 = (100, 95, 105). α-cuts were considered for the membership
function µ(x) = 0, 0.1, 0.2, . . . , 0.9, 1.

The analytical solution of a similar problem with a precisely de�ned boundary
condition u = 100 can be de�ned as u = 100y. Therefore, the modi�ed interval
analytical solution for the uncertainly de�ned problem can be presented as u =
[95, 105]y. Interval solutions de�ned in this way (multiplication only by real
number) reach the same values regardless of the interval arithmetic used. The
interval solutions obtained on the α-cuts were saved as membership functions to
obtain the �nal fuzzy analytical solution. Apart from the u1 value, the boundary
condition has been precisely de�ned (Fig. 3) to enable direct comparison between
the IPIES and the interval analytical solutions.

Fuzzy PIES solutions (obtained using IPIES) and fuzzy analytical solutions
(obtained using interval analytical solutions) are shown in Fig. 4. The solutions
obtained using the proposed strategy (Fig. 4a) are almost equal to the proposed
fuzzy analytical solutions (Fig. 4b). Additionally, solutions obtained directly ap-
plying for calculations in IPIES classical or directed interval arithmetic (known

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36030-5_47

https://dx.doi.org/10.1007/978-3-031-36030-5_47
https://dx.doi.org/10.1007/978-3-031-36030-5_47


6 Eugeniusz Zieniuk, Marta Czupryna , and Andrzej Ku»elewski

u1 = (100, 95, 105)

p
=

 0

p
=

 0
u = 02 1

1

0
0

y

x

105

1

0
95

μ( )x

x100

Fig. 3. Modelling example with fuzzy boundary conditions

from the literature) are presented. Even such an elementary example causes sig-
ni�cant overestimations using classical interval arithmetic (Fig. 4d). In compar-
ison, the directed interval arithmetic narrows the interval solutions' radii (Fig.
4c).
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Fig. 4. Comparison of obtained fuzzy solutions in the domain.

Example 2. Complex area - a fuzzy function of boundary conditions

Another example is shown in Fig. 5. The analytical solution de�ned in the
general form is u = x2 − 5y+ x− y2 + k. Fuzzy solutions of the problem de�ned
in this way (in the cross-section marked with black dots in Fig. 5), in analogous
α-cuts as in the previous example, are shown in Fig. 6a. In addition, an exact
analytical solutions were presented (for the middle value of the fuzzy number, i.e.
k = 50). Additionally, an example with a constant fuzzy value of k = (40, 50, 60)
was assumed to enable direct comparison between fuzzy analytical solutions
(Fig. 6c) and fuzzy PIES (Fig. 6b). The solutions obtained using fuzzy PIES are
almost equal to those obtained using fuzzy analytical solutions.
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5 Conclusions

The paper proposes the application of interval PIES to obtain fuzzy solutions to
boundary problems. It was decided to focus only on the fuzzy boundary condi-
tions to draw unambiguous conclusions. Such data were considered in subsequent
α-cuts to allow IPIES application. After implementing the proposed algorithm,
tests were carried out on the example of problems described by the Laplace equa-
tion. The disadvantages of the classical and directed interval numbers known
from the literature and the advantages of the modi�cation of directed interval
arithmetic proposed in IPIES are highlighted in the �rst elementary example.
Another more complex example also con�rms the correctness of the solutions.
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Ultimately, as a result of the tests, the high potential of the IPIES method in
obtaining fuzzy solutions was presented. In the subsequent research, more com-
prehensive tests are also planned for the uncertainty of the boundary shape and
modi�cations of the algorithm to the other di�erential equations.
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