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Abstract. Traditional global sensitivity analysis (GSA) techniques, such
as variance- and density-based approaches, are limited in cases where a
comprehensive understanding of temporal dynamics is critical, especially
for models with diverse timescales and structural complexity, such as
system dynamics and agent-based models (ABMs). To address this, we
propose a novel manifold learning-based method for GSA in systems ex-
hibiting complex spatiotemporal processes. Our method employs Grass-
mannian diffusion maps to reduce the dimensionality of the data and
polynomial chaos expansion (PCE) to map stochastic input parameters
to diffusion coordinates of the reduced space. We calculate sensitivity in-
dices from PCE coefficients, aggregating multiple outputs and their entire
trajectories for a more general estimation of parameter sensitivities. We
demonstrate the capabilities of the proposed approach by applying it to
the Lotka-Volterra model and an epidemic dynamics ABM and captur-
ing diverse temporal dynamics. We establish that the new methodology
meets all “good” properties of a global sensitivity measure, making it a
valuable alternative to traditional GSA techniques. We anticipate that
it will potentially expand the application of manifold-based approaches
and deepen the understanding of complex spatiotemporal processes.

Keywords: Global sensitivity analysis · Sobol’ indices · Agent-based
modelling · Grassmannian diffusion maps · Polynomial chaos expansion.

1 Introduction

Parametric global sensitivity analysis (GSA) is an essential tool for enhanc-
ing model efficiency. The determination of which parameters and combinations
thereof contribute the most to model uncertainty can allow for the development
of simplified models. This directs the focus of experiments toward the parame-
ters of greatest influence. Eliminating or fixing parameters at a certain value can
also provide a substantial computational advantage. When developing a compu-
tationally intensive agent-based model (ABM), reducing model complexity is of
great interest. Frequently in ABMs, heterogeneous, simulated populations inter-
act, make decisions, and take action at every time step, so increasing the speed
of these calculations has a cumulative advantage.
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The current standard for GSA relies on the use of either Sobol’ or density-
based methods. A critical disadvantage of using these methods is the inability
to aggregate the results of calculations for each individual time step into a single
index or, alternatively, the loss of information when only considering the final
outcome of the model in the analysis, ignoring the progression at individual time
steps. ABMs are characteristically stochastic and often subject to non-linear
interaction effects. Due to the frequent appearance of multimodal and fat-tailed
distributions in ABM results, conducting a GSA presents a unique challenge [21];
sensitivity is not well captured with traditional Sobol’ analyses as the technique
is variance-based. While it is possible to employ density-based methods in cases
with poorly defined variance, the described issues in aggregation still apply.

To address these limitations, the proposed analysis method inclusively consid-
ers the outputs of interest at each time step. Then, the resulting high-dimensional
data is organised into a tensor and projected onto a Grasmann manifold, with the
goal of detecting that the data can be mapped to a subspace of lower dimension.
The reduced-dimension data is used in conducting a sensitivity analysis with
polynomial chaos expansion (PCE) methods. PCE, used in mapping numerical
model input to output, becomes difficult to apply to cases with high dimension-
ality. However, assuming sparse effects makes it possible to create representative
surrogate models from fewer samples, lowering the computational expense of
PCE. The next sections begin with the context under which the methods in
this study were developed, including a guided review of related work. Then,
an overview of the proposed GSA method is provided, followed by demonstra-
tive applications to a classic Lotka-Volterra dynamical system and a large-scale
ABM of disease dynamics. These applications culminate in an assessment and
discussion of the performance of the novel methodology.

2 Related Work

Parametric variance-based GSA, specifically with Sobol’/Saltelli ANOVA tech-
niques, has become widely adopted for ABMs across various fields due to its
robust sensitivity estimates for non-linear models with parameter interactions
[2,23,29,33]. However, a crucial limitation of these methods is that variance in
model outputs is not always attributed to uncertainty [21], and sensitivity as-
sessment in ABMs for verification and validation is often insufficiently explored
[22]. This could be attributed to the lack of tools and methodologies focus-
ing on a comprehensive analysis of ABM dynamics. One such inefficient use of
Sobol’/Saltelli variance-based GSA is estimating sensitivity based solely on the
final time step, disregarding the preceding trajectory. This issue has been ad-
dressed by time-dependent GSA, which calculates Sobol’ sensitivity indices at
multiple time steps throughout the simulation [16].

The computational cost of the Sobol’/Saltelli method based on estimating
high-dimensional integrals via crude Monte-Carlo (MC) simulation is a practical
concern for researchers due to slow error convergence [29]. More efficient sam-
pling schemes have been proposed, such as Latin hypercube sampling and low-
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discrepancy or Sobol’ sequences [19,28], along with direct formulas for evaluating
Sobol’ indices with fewer model evaluations [15,20,24,27,32]. However, calculat-
ing Sobol’ indices for complex and large-scale spatial ABMs remains challenging
due to computational costs, particularly in models with systemic variability from
aleatory uncertainty [1]. Averaging over multiple ABM repetitions has been sug-
gested to address this issue [18], with some researchers leveraging multi-GPU
parallel computing and high-performance computing resources for GSA of large-
scale ABMs [31].

Besides MC and quasi-Monte-Carlo (QMC) methods, stochastic polynomial
methods such as PCE can be used for constructing surrogate models to approx-
imate ANOVA decomposition [5,30]. The calculation of Sobol’ indices for PCE
emulators is analytical, reducing the computational cost to that of computing
PCE coefficients [30]. Despite PCE’s advantages and the growing research on
sparse methods tackling the issue of exponential increase in the number of poly-
nomial basis functions with increasing input dimension—resulting in an excessive
computational cost for models with high-dimensional input, also known as “curse
of dimensionality” in uncertainty quantification (UQ) literature [8,13,17]—PCE-
based ANOVA decomposition is not commonly applied for GSA in ABMs with
only few examples of successful applications [4,8,10].

Sparse PCE methods help reduce the size of basis functions and experimental
design required for GSA but can become computationally intractable for high-
dimensional output [13]. Dimensionality reduction techniques, including linear
and non-linear methods, can address the challenge of model fidelity for UQ
tasks when, instead of a scalar or low-dimensional vector, high-dimensional re-
sponses are of interest [6,25]. While linear methods can extract the dominant
modes of data, they are ineffective in capturing the non-linear geometries of
a dataset. Transcending the limitation of linear techniques, non-linear meth-
ods for dimensionality reduction posit that high-dimensional data resides on a
manifold, which is a low-dimensional and more informative space [6,25]. Thus,
kernel-based diffusion maps (DMaps) can discover low-dimensional manifolds
embedded in Euclidean space and be exploited to construct accurate, lower-cost
surrogate models [11,12]. However, exceedingly high-dimensional data, such as
numerical simulations with many degrees of freedom, may not be well-described
in Euclidean space and may inherently reside on a submanifold of a Riemannian
manifold [6].

A proposed extension from and complement to DMaps is Grassmannian dif-
fusion maps (GDMaps) addressing limitations when dealing with data exhibit-
ing geometric structures on a Riemannian submanifold [6,25]. This is achieved
by combining pointwise linear dimensionality reduction with a multipoint, non-
linear dimensionality reduction step using DMaps with a suitable Grassmannian
kernel. GDMaps are particularly fitting for high-dimensional data represented
by vectors or matrices, where Euclidean metrics cannot meaningfully describe
distances between objects, thus capturing the geometric structures spanning
the data [6]. Dos Santos et al. present a simple example illustrating GDMaps’
capability to capture intrinsic geometric structures in data [6]. This example
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demonstrates that while conventional DMaps can find a low-dimensional repre-
sentation, the resulting manifold may not accurately represent the underlying
subspace structure of the data (see SI Section A).

Leveraging the suitability of GDMaps for latent representation of very high-
dimensional data on a lower-dimensional manifold, Kontolati et al. [14] proposed
a surrogate model construction method capable of generating out-of-sample pre-
dictions from a limited number of observations. The “encoder” path of the tech-
nique combining GDMaps and PCE for dimensionality reduction and mapping
between input parameters and diffusion coordinates provides a framework for
statistical moment estimation from PCE coefficients in the latent space [14], po-
tentially enabling sensitivity index calculations from PCE coefficients. However,
to the authors’ knowledge, GSA methods employing GDMaps and PCE have
not yet been suggested.

3 Methods

3.1 Variance-based Global Sensitivity Analysis: Sobol’ Indices

We consider a set of d independent random variables (RVs) X = {Xi}di=1, serving
as an input into a model Y = f(·). For simplicity, we assume that the RVs Xi

are uniformly distributed on [0, 1]: Qi ∼ U(0, 1), Γ = [0, 1]d and write the Sobol’
decomposition of the response f(X) as the finite, hierarchical expansion:

f(X) = f0 +

d∑
i=1

fi(Xi) +

d∑
i,j ̸=i

fij(Xi, Xj) + · · ·+ f12...d(X)

= f0 +
∑

u⊂{1,...,d}

fu(Xu),

(1)

where Xu := {Xi1 , . . . , Xis} and the summands satisfy the orthogonality condi-
tion:

∫
Γ
fu(Xu)fv(Xv)dX = 0 ∀u ̸= v. In Eq. (1), f0 is the mean response of

f , the univariate functions fi(Xi) quantify independent contribution given the
individual parameters, the bivariate functions fij(Xi, Xj) represent the interac-
tions of Xi and Xj on the response with similar interpretations for higher-order
interaction effects [26].

From the total variance theorem, the total variance V[Y ] = D can be decom-
posed as D =

∑d
i=1 Di +

∑
1≤i<j≤d Dij + · · · +D12...d, which we use to define

first- and total-order Sobol’ indices as

Si =
Di

D
=

V[E(Y |Xi)]

V[Y ]
, STi

= 1− D∼i

D
= 1− V[E(Y |X∼i)]

V[Y ]
=

E[V(Y |X∼i)]

V[Y ]
.

(2)

Calculation of Sobol’ Indices with Conventional Methods Using MC, we ob-
tain the following estimators for mean as f̂0 = 1/N

∑N
n=1 f(X

(n)), and for
total variance as D̂ = 1/N

∑N
n=1 f

2(X(n)) − f̂2
0 . To obtain the estimates for
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Di and D∼i, we use Saltelli’s algorithm (explained in [24,26]) to reduce the
number of evaluations from N2 for crude MC to N(d + 2) by construct-
ing three types of X samples: X = (X1, . . . , Xd)

⊤, its complete resample
X ′ = (X ′

1, . . . , X
′
d)

⊤, and (Xi, X
′
∼i) = (X ′

1, . . . , X
′
i−1, Xi, X

′
i+1, . . . , X

′
d)

⊤, with
i = 1, . . . , d, where all factors except for Xi are resampled. Thus, the estimates
for Di and D∼i become D̂i = 1/N

∑N
n=1 f(X

(n)
i X

(n)
∼i )f(X

(n)
i X ′(n)

∼i ) − f̂2
0 and

D̂∼i = 1/N
∑N

n=1 f(X
(n)
i X ′(n)

∼i )f(X
′(n)
i X ′(n)

∼i )− f̂2
0 , respectively. The derived es-

timators D̂, D̂i and D̂∼i are then used to calculate the first- and total-order
Sobol’ indices in Eq. (2).

Sobol’ Indices Using PCE PCE describes the input-output relationship using
polynomials orthogonal with respect to the probability density function (PDF)
of the input RVs. Sobol’ decomposition of a PCE results from reordering terms of
the truncated PCE approximating f(X), written as Ẽ(X) =

∑
α∈A ηαΦα(X),

where A is a total-degree multi-index set, ηs are corresponding PCE coefficients,
and Φs(X) are multivariate orthonormal polynomials with respect to fX such
that ⟨Φα(X)Φβ(X)⟩ =

∫
Z
Φα(X)Φβ(X)fX(X)dX = γαδαβ. We can obtain

interaction sets as Au = {α ∈ A : t ∈ u ⇔ αt ̸= 0} for a given u := {i1, . . . , is},
leading to the following decomposition: Ẽ(X) = E0 +

∑
u⊂{1,...,d} Eu(Xu), with

Eu(Xu) :=
∑

α∈Au
ηαΦα(X), resulting in the following general expression for

PCE-based Sobol’ indices, which can be derived analytically at any order from
the PCE coefficients [30]:

Su = Du/D =
∑

α∈Au

η2α/
∑

α∈A\0

η2α. (3)

3.2 GSA Using Grassmannian Diffusion Maps and PCE

The methodology presented in Algorithm 1 largely draws from GDMaps tech-
nique proposed by Dos Santos et al. [6] and manifold learning-based PCE devel-
oped by Kontolati et al. [14]. Refer to the corresponding papers for a thorough
description of the Grassmann manifold principles and other elements of differ-
ential geometry essential for developing GDMaps. See SI Section B.1 for more
details on the proposed methodology.

The GDMaps method is an extension of the conventional DMaps that consists
of two stages: a linear pointwise dimension reduction and a non-linear multipoint
dimension reduction. The implementation of GDMaps is outlined in Lines 1-5 of
Algorithm 1. This first step projects each element of the data on the Grassmann
manifold, or Grassmannian, denoted as G(p, n) and defined as a p-dimensional
subspaces embedded in n-dimensional Euclidean space Rn. The parameter p,
which relates p-dimensional subspaces embedding, is closely tied to the notion
of matrix rank or the number of linearly independent matrix columns. The non-
linear dimensionality reduction step consists of building a valid kernel (Lines 3-4
in Algorithm 1) and running the DMaps algorithm (Line 5 in Algorithm 1). The
projection kernel (see SI Section B.1) is adopted throughout this research. Using
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Algorithm 1: GSA using PCE on the Grassmann manifold
Input: Experimental design X = {Xi ∈ Rk}Ni=1 and model response

concatenated into a single vector and reshaped into n×m matrix
Y = {M(Xi)}Ni=1 = {Yi ∈ Rn×m}Ni=1; dimension of the Grassmann
manifold p; a number of diffusion coordinates to retain g.

Output: First-order Sobol’ indices {Si ∈ Rg}ki=1; total-order Sobol’ indices
{STi ∈ Rg}ki=1; approximated PCE error ϵval.

1 for i← 1 to N do
2 Perform singular value decomposition (SVD): Yi = UiΣiV

T
i , where

Σi ∈ Rp×p is a diagonal matrix containing singular values. Ui ∈ Rn×p

and Vi ∈ Rm×p are orthonormal matrices.
3 For each pair [Ui,Uj ] and [Vi,Vj ] compute the entries ki,j of the kernel

matrices kij(U) and kij(V ) using e.g., projection kernel as
kpr(Xi,Xj) =

∥∥XT
i Xj

∥∥2

F
.

4 (Optionally) construct a composed Grassmannian diffusion kernel K(U ,V ) by
taking the Hadamard product of the corresponding kernels:
k(U ,V ) = ki,j(U) ◦ ki,j(V ), or by summing ki,j(U) + ki,j(V ).

5 Run the DMaps with a Grassmannian kernel to obtain first g non-trivial
diffusion coordinates {Θi ∈ Rg}Ni=1, and their respective eigenvectors
{ψk}gk=1 with ψk ∈ RN and eigenvalues {λk}gk=1.

6 Construct a total-degree multi-index set Υ (with cardinality #Υ = S) that
satisfy ∥s∥1 ≤ smax, smax ∈ Z≥0, leading to a PCE basis of size (k+smax)!

k!smax!
.

7 Construct PCE approximation Ẽ(X) =
∑

s∈Υ ηsΦs(X) where ηs ∈ Rg is
computed by solving the least square problem
argmin
ζ∈R#Λ

1
N

∑N
i=1

{
E(Xi)−

∑
s∈Υ ηsΦs(Xi)

}2.

8 Approximate PCE generalisation error by calculating the validation error as

ϵval =
∑N∗

i=1(Θ
∗
i −Ẽ(X∗

i ))
2∑N∗

i=1(Θ∗
i −Θ̄∗)2

, where {X∗
i ∈ Rk}N∗

i=1 and {Θ∗
i ∈ Rq}N∗

i=1 comprise a

test set, chosen to be of size N∗ = 1
3
N ; Θ̄∗ = 1

N∗

∑N∗
i=1 Θ

∗
i is the mean

response of the test set on the latent space.
9 Obtain first-order Sobol’ indices {Si ∈ Rg}ki=1 and total-order Sobol’ indices
{STi ∈ Rg}ki=1 using Eqs. (8) and (9) from SI Section B.1, respectively.

GDMaps, we acquire g diffusion coordinates Θi for the top g non-trivial eigen-
values (non-parsimonuous implementation). To address the issue of “repeated
eigendirections” in complex data, we also utilise parsimonious representation
employing local linear regression to identify unique eigendirections [7].

Next, we calculate Sobol’ indices on the manifold using PCE following
Kontolati et al.’s approach [14]. PCE is used to approximate mapping be-
tween input parameters and corresponding model responses projected on the
latent space (i.e., coordinates on the diffusion manifold) E : X → Θ as
Ẽ(X) =

∑
s∈Υ ηsΦs(X). The implementation of the approach employing the

least square method to obtain vector-valued PCE coefficients ηs ∈ Rg is out-
lined in Lines 6-8 of Algorithm 1, with Line 8 used to calculate validation error
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to evaluate the surrogate’s accuracy. From Section 3.1, Sobol’ indices can be
acquired without extra calculations by collecting multi-indices related to partial
variance caused by individual random inputs (first-order effects) or combined
with other random inputs (total-order effects) into two multi-index sets. As the
PCE coefficients have a vector-valued dimension equal to the retained diffusion
coefficients g, we estimate the first- and total-order Sobol’ indices for each of the
g diffusion coordinates.

3.3 Applications

A classic dynamical system (Lotka-Volterra [14]) and an ABM (DeepABM-
COVID [3]) were selected as a sample demonstration of the range of model types
for which the framework is applicable. These were utilised to compare, albeit in-
directly, the performance of the proposed GSA framework and GSA employing
conventional Sobol’ index calculation methods over multiple time steps. The two
models used in illustrating the application of the proposed framework and the
setup used for the evaluation are described in SI Sections B.2 and B.3.

4 Results

Application 1: Lotka-Volterra Dynamical System First- and total-order
sensitivity indices, along with 95% bootstrap confidence intervals, were computed
for the Lotka-Volterra dynamical system with two uncertain parameters α and
β at fifteen evenly spaced time steps (Figs. 1a to 1d). Oscillatory behaviour in
both main and total-effect indices corresponds to the behaviour of the model
outputs for the defined parameter ranges for α and β (see SI Fig. C.1). The
difference between the resulting first- and total-order indices for both outputs is
small, hence the variance in model output is predominantly due to main effects
rather than interactions.

Mean and variance of first- and total-order Sobol’ indices were obtained us-
ing the GSA framework with GDMaps PCE from fifty resampled input matrices
(Figs. 1e and 1f). Three first- and total-order indices were derived from the PCE
coefficients for each output. Three non-trivial, parsimoniously selected diffusion
coordinates were used, converging to Θi = {θ1, θ2, θ5} for one solution1, which
can be found as 2D plots in SI Fig. C.2. In Figs. 1e and 1f, both main and inter-
action effects of α and β have close values, with β slightly higher for the first two
diffusion coordinates. Interaction effects are significantly larger for the second
and third coordinates. While direct comparison with Figs. 1a to 1d is inappro-
priate due to different data representations, the proposed framework arguably
better highlights parameter differences in terms of their influence on output
variance. The new GSA approach reveals a more apparent distinction between
main and total-effect indices compared to the conventional time-dependent GSA
methods. A similar comparison for the Lotka-Volterra model with four uncertain
parameters is presented in SI Fig. C.3.
1 Different sets of diffusion coordinates are possible for each resampled solution.
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Fig. 1. Estimates of first- and total-order sensitivity indices, Si and STi , respectively,
of α, and β (see SI Section B.2 Tab. 1) for two model output measures: number of prey
per time step u, and number of predators per time step v, using (a-d) conventional
Sobol’ index calculation methods and (e, f) the GSA framework employing GDMaps
PCE. Error bars indicate 95%-bootstrap confidence intervals in (a-d), and variance
from fifty resamples in (e, f). For GDMaps PCE, Grassmannian dimension p = 10 and
maximal polynomial degree smax = 6 were used.

Application 2: DeepABM-COVID We applied the proposed framework to
estimate Sobol’ indices on the Grassmann manifold using the DeepABM-COVID
model outputs. Data generation and the general procedure for GSA framework
are outlined in SI Section B.3. For GDMaps, we considered six dimensions, p =
{3, 13, 17, 22, 23, 24}, corresponding to most frequently occurring ranks in the
entire dataset (twenty runs). The frequency of occurrence and selection threshold
are shown in Fig. 2a. Non-trivial eigenvalues2 for chosen dimensions are presented
in Fig. 2b. Given the physical interpretation of DMaps based on Markov Chain
timescales, the regions around unstable equilibria (slow modes) with the largest
eigenvalues correspond to the slowest possible ergodic dynamics in a system.
From Fig. 2b, p = 3 is attributed to the slowest dynamics on the manifold

2 The first zero-indexed eigenvalue, λ0, is a trivial eigenvalue, which is always λ0 = 1.
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GSA using PCE on the Grassmann Manifold 9

compared to other dimensions. Smaller p values correspond to larger λi values,
particularly for i = 1 and i = 2, due to lower p allowing less detailed data
representation on the Grassmannian, resulting in a more coarse-grained subspace
structure revealed by DMaps performed on the manifold.
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Fig. 2. (a) The frequency of rank occurrence in the entire data (twenty runs) with a
threshold used for selection of the Grassmannian dimension, p. (b) Scree-plot of eigen-
values from GDMaps on DeepABM-COVID model output matrix Y ∈ R7168×900 for
run 3 and six Grassmannian dimensions p. (c-h) 2D plots of three diffusion coordinates
from GDMaps on DeepABM-COVID model output for run 16, using p = 13. Diffusion
coordinates converged to Θi = {θ1, θ2, θ17} for parsimonious representation (f-h).

We examined both parsimonious and non-parsimonious implementations to
retain diffusion coordinates. Figs. 2c to 2h present 2D plots of retained diffusion
coordinates (g = 3) for both implementations. The example demonstrates the
case when the first two coordinates coincide, but the third parsimoniously se-
lected one corresponds to shorter timescale dynamics indicated by the scale of
the y-axis. The remaining 2D plots for other Grassmannian dimensions are in SI
Figs. C.5 (non-parsimonious) and C.6 (parsimonious). Notably, for larger p, par-
simonious representation selected diffusion coordinates with lower corresponding
eigenvalues more frequently than for smaller p. This relates to Fig. 2b, where
larger p values are attributed to lower initial eigenvalues and exhibit lower decay
rates. Fig. 3 shows three examples of distributions of parsimoniously selected dif-
fusion coordinates. Multimodal distributions correspond to higher eigenvalues,
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while unimodal and Gaussian-like distributions are attributed to lower eigenval-
ues, as in Fig. 3f. Additional examples can be found in SI Figs. C.7 and C.8.
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Fig. 3. Distributions of parsimoniously selected diffusion coordinates for the Grassman-
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run 17 of the DeepABM-COVID model output Y ∈ R7168×900. Higher values in the
subscript correspond to lower non-trivial eigenvalues λi, ordered from high to low.
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To construct PCE surrogates with the total-degree PCE basis, we evaluated
different maximum polynomial degrees smax = {10, 15, 20, 25}. Validation errors
averaged over twenty runs, and standard deviations are presented in Figs. 4a
to 4c and Figs. 4d to 4f, respectively, for each Grassmannian dimension p, and
maximum polynomial degree smax with parsimonious representation used for
retaining three diffusion coordinates. While smaller smax values generally yielded
less accurate surrogates, smax = 15 exhibited the largest validation errors for all
p. Larger manifold dimensions led to increased mean errors and variability. Based
on this analysis, we used smax = 25 to obtain Sobol’ indices on the manifold.
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Fig. 5. Estimates of first- and total-order sensitivity indices, Si and STi , respectively,
of five uncertain input parameters (see SI Section B.3 Tab. 2) for five model output
measures, obtained from the GSA framework using GDMaps PCE. Error bars indicate
variance across 20 runs.
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Fig. 5 presents first- and total-order sensitivity indices, averaged over
twenty runs, from PCE using GDMaps with six Grassmannian dimensions,
p = {3, 13, 17, 22, 23, 24}, and both non-parsimonious and parsimonious rep-
resentations to keep three diffusion coordinates. As observed in Figs. 5a to 5d
and Figs. 5e to 5h, Si and STi

are comparable across representations for p = 3
and p = 13. This is due to GDMaps with lower p values resulting in larger initial
eigenvalues, leading to parsimonious representation selecting diffusion coordi-
nates that correspond to longer timescale dynamics more frequently. The main
difference between the two implementations can be seen for p = {17, 22, 23, 24},
especially in the main effect indices, Si. Larger p values provide more detailed
data representation on the manifold, while non-parsimonious selection results in
diffusion coordinates capturing the longest timescale dynamics on the manifold,
possibly related to individual parameter contributions to model output variance.
Overall, individual parameter contributions to output variance are smaller com-
pared to interaction effects, consistent with results using conventional methods
for obtaining Sobol’ indices, which can be found in SI Fig. C.4.

An interesting aspect of the proposed framework is the impact of different
maximum polynomial degrees smax used in PCE basis construction on resulting
Sobol’ indices. Increasing smax allowed for more accurate model output recon-
struction (reducing validation error) and higher total-order sensitivity indices
for all parameters and Grassmannian dimensions (see SI Fig. C.10). Lower smax

values resulted in higher first-order sensitivity indices, especially for the first
diffusion coordinates and lower Grassmannian dimensions (see SI Fig. C.9).

5 Discussion and Conclusions

The proposed method for parametric GSA utilises a manifold learning-based
approach to construct PCE emulators on lower-dimensional manifolds for high-
dimensional problems with significant interaction effects. Unlike traditional
methods, this technique enables a more general estimation of parametric sen-
sitivities by aggregating entire trajectories of multiple model responses. Using
an oscillating model example, we demonstrated that traditional Sobol’ index esti-
mation failed to provide a definitive answer to what parameter is relatively more
important and whether the variance in model output is influenced by main or
interaction effects. Conversely, the GSA method employing GDMaps PCE suc-
cessfully revealed clear relations between parameters and their relative influence
on the output variance.

Characterised by non-linearity, ABMs are suitable candidates for the GSA
approach using PCE on the Grassmann manifold. In this paper, we applied the
method to a large-scale spatial ABM of epidemic dynamics and captured strong
interaction effects of uncertain parameters on the variance of multiple aggregated
model responses. We also investigated the influence of hyper-parameters, such as
the dimension of the Grassmann manifold and maximal polynomial degree and
two approaches for retaining the desired number of diffusion coordinates, par-
simonious and non-parsimonious, on sensitivity measures. Lower Grassmannian
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dimensions yielded higher main effect indices due to a more coarse-grained data
representation. Non-parsimonious implementation produced larger first-order in-
dices, resulting from longer timescales of diffusion coordinates corresponding to
larger eigenvalues. Additionally, a higher maximal polynomial degree was at-
tributed to a smaller validation error, as expected, which was mainly caused by
the resolution of the interactions between parameters, leading to larger total-
effect indices.

A simulation outcome or trajectory is a time series of state variables with
dimension kN , where N is the number of agents and k is each agent’s state
variables. As typical agent-based simulations may involve a considerable number
of agents, these time series can become exceedingly high-dimensional. As part
of our future work, we aim to leverage the power of GDMaps to reduce the
complexity of simulation trajectories at the micro level. By doing so, we can
explore the impact of parameter sensitivity on the system’s dynamic modes,
key long-lasting states, transitional pathways, and essential degrees of freedom.
Furthermore, we plan to address a limitation in the current implementation of
not following general advice to perform over-sampling for the regression used in
calculating PCE coefficients [9]. Model selection, like Least Angle Regression,
should be added to the implementation to circumvent this issue.

In conclusion, the capabilities of the GSA framework utilising GDMaps PCE
to aggregate entire trajectories of multiple model outputs and capture different
timescales and degrees of structural complexity satisfy all the “good” proper-
ties of a global sensitivity measure extensively discussed in [21], providing a
more comprehensive estimation of parameter sensitivities. This methodology is
expected to open new avenues for ABM practitioners and Complexity Science
scholars to deepen their understanding of systems exhibiting complex spatiotem-
poral dynamics.

Supporting Information The Supporting Information can be found at
Valentina Bazyleva, Victoria Garibay, & Debraj Roy. (2023). Supporting In-
formation: Global Sensitivity Analysis using Polynomial Chaos Expansion on
the Grassmann Manifold. Zenodo. https://doi.org/10.5281/zenodo.7852159.

Data and Code Availability The code used in generating data for test-
ing the methodology proposed in this study can be found at https://github.
com/bazvalya/GSA_using_GDMaps_PCE. The output data of the DeepABM-
COVID simulations is at https://figshare.com/articles/dataset/output_data_
zip/22216921.
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