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Abstract. We consider a novel modeling and computational framework of the 

distributionally-robust optimization problem of jump-driven general affine pro-

cess focusing on its application to inland fisheries as a case study. In particular, 

we consider an exploitation problem of migrating fish population as a major fish-

ery issue. Our target process is the superposition of Ornstein–Uhlenbeck pro-

cesses (supOU process) serving as a fundamental model of mean-reverting phe-

nomena with (sub-)exponential memory. It is an affine process and admits a 

closed-form characteristic function being useful in applications. A theoretical 

novelty here is the assumption that the supOU process is allowed to have uncer-

tain model parameter values as often encountered in engineering applications. 

Another novelty is the formulation of a long-term exploitation problem of the 

supOU process where the uncertainty is penalized through a generalized diver-

gence between benchmark and distorted models. We present a strictly convex 

discretization of the optimization problem based on the model identified using 

the existing data of migrating fish population of a river in Japan. Further, the 

statistical analysis results in this paper are new by themselves. The computational 

results suggest the optimal harvesting policy of the fish population. 

Keywords: Computational Optimization; supOU Processes; Generalized Diver-

gence 

1 Introduction 

Computational optimization plays a vital role in the planning of resource and environ-

mental management because the problems of interest are not always analytically solv-

able [1-2]. Furthermore, in such problems, target dynamics (e.g., resource, environmen-

tal, and biological dynamics) are often stochastic [3-4] and hence the objective function 

to be minimized is given as some expectation. The expectation can then be evaluated 
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numerically [5] although it may be computationally prohibitive if the underlying dy-

namics are complicated and high-dimensional.  

Another potential issue encountered in the modelling and optimization related to re-

source and environmental management is that the target dynamics need to be identified 

using only a limited amount of data that is not necessarily accurate. The identified 

model therefore usually contains modelling errors emerging as incorrect parameter val-

ues and/or functional forms of coefficients [6-7]. The model uncertainty should then be 

taken into account when considering an optimization problem using the identified 

model in a computationally feasible way. 

In addition to the above-mentioned issues, processes of interest in resource and en-

vironmental dynamics have sub-exponential memory [8], postulating the use of a math-

ematical model that can capture this property. Volterra and mixed moving average pro-

cesses are such candidates from both theoretical and engineering viewpoints [9-10], 

while their computational optimization under model uncertainty has not been studied 

well to the best of the authors’ knowledge. 

Motivated by the issues reviewed above, the objectives of this paper are the formu-

lation and application of a computational optimization approach for resource and envi-

ronmental management under model uncertainty. We focus on the problem of exploit-

ing a part of migrating fish population at a fixed point in a river reach of an anthropo-

genically-disturbed river system and then distribute them to other parts of the same 

river system to sustain the regional fish population [11]. This is a major problem in 

inland fisheries in Japan whose bottleneck is the optimization of the harvesting rate of 

the population. We show that the dynamics can be identified as the superposition of 

Ornstein–Uhlenbeck processes (supOU process) [12] whose characteristic function is 

available in a closed form. This useful property allows us to compute the probability 

density function (PDF) by a discrete Fourier transform.  

Our optimization problem is to harvest the migrating fish population so that it is not 

excessively harvested because completely exploiting the population triggers a local ex-

tinction of the fish. The risk of the overexploitation is evaluated by a Conditional-

Value-at-Risk (CVaR) measure [13], while the model uncertainty is penalized by a gen-

eralized (Tsallis) divergence [14]. The latter is a generalization of the Kullback–Leibler 

divergence serving as a more flexible mathematical tool. 

The optimization problem is a feasible convex one once the PDF is given, which is 

father made strictly convex by regularizing the non-smoothness of the CVaR measure 

[15]; the strict convexity guarantees the unique solvability. We present computational 

examples using the real data [16] and analyze the impacts of model uncertainty on the 

distortion of the PDF and the optimal harvesting rate. Limitation and extendibility of 

the proposed computational approach are finally discussed. Our contribution thus co-

vers both theory and application of a new computational optimization approach under 

uncertainty. 
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2 SupOU process 

2.1 Formulation 

We formulate and review the supOU process following the literature [10, 12]. The 

supOU process is a superposition (i.e., integration) of infinitely many continuous-time 

OU processes using the jump-type random fields called Lévy bases [12]. These are 

tractable models of infinite-dimensional white noises having independent increments. 

It is known that Lévy bases associate equivalent representations based on Poisson ran-

dom measures that are physically easier to understand. We exploit this fact and set the 

supOU process 
tX  at time t  as 

 ( )( ) ( )
0 0

exp d ,d ,d
t

tX t s zN z s 
+ +

−
= − −   , t . (1) 

Here, N  is a Poisson random measure on ( ) ( )0, 0,+  +   with the compensator 

( ) ( )d d dv z s  , where   is a probability measure of a positive random variable, and 

v  is a Lévy measure of pure-jump Lévy processes having bounded-variations and pos-

itive jump sizes. The representation (1) is intuitive as the right-hand side can be for-

mally understood as a limit of the superposition: 

 ( )( ) ( )
0

1

exp d ,d
t

t i i i i

i

X t s z N z s
+

−
=

 − −   (2) 

with a suitable positive and strictly increasing sequence  
1,2,3,...i i


=

 and a family of mu-

tually-independent Poisson random measures  
1,2,3,...i i

N
=

 on ( )0,+  . Indeed, this 

approximation is theoretically justified in the sense of distribution [12]. This kind of 

discretization method is called Markovian lifts. 

 The supOU process (1) is assumed to be stationary that is why we do not explicitly 

specify an initial condition. The parameter 0   represents the reversion speed dis-

tributed according to the probability measure  . To guarantee the existence of the sto-

chastic integral of (1), we need to assume that the reversion speed is not too much ac-

cumulated around the origin 0 = : 

 ( )1

0
dR   

+
−  + . (3) 

Physically, R  represents the dominant time-scale of the supOU process, and hence it 

is a key quantity for better understanding its dynamics. The condition (3) guarantees 

the existence of the right-hand side of (1) as well as the stationarity and almost sure 

positivity of 
tX  [12, 17]. We will show that this condition is harmless in practice. 

 

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36030-5_45

https://dx.doi.org/10.1007/978-3-031-36030-5_45
https://dx.doi.org/10.1007/978-3-031-36030-5_45


4 

2.2 Statistical Properties 

An advantage of the supOU process is that its characteristic function is obtained ana-

lytically. The characteristic function ( )c   is given by [10] 

 ( ) ( )( ) ( )( )i

0 0
exp exp i 1 d dtX tc e R ze v z t

 
+ +

− = = −    ,    (4) 

with the imaginary unit i  ( 2i 1= − ) and a suitable expectation . The moment gener-

ating function, if necessary, is formally obtained as ( ) ( )im c = − . Hereafter, we as-

sume the Lévy measure of the form ( ) ( ) ( )1
d exp dv

vv z Az z z



− +

= −  ( 0A  , 1v  , 

0v  ) that covers the cases considered in our application. More general v  can also 

be utilized when preferred. 

 We close this section by presenting two remarks. Firstly, the closed-form availability 

of the characteristic function (4) allows for computing the corresponding PDF via a 

discrete Fourier transform [18]. We can therefore avoid computing expectations of the 

supOU process without resorting to a time-consuming statistical method like a Monte-

Carlo method. Indeed, the infinite-dimensionality implied in (1)-(2) suggests that we 

need to design a Monte-Carlo method to generate a sufficiently large number of paths 

of a high-dimensional system for evaluating an expectation, which would be computa-

tionally expensive and maybe infeasible. At the same time, key statistics, such as mean, 

variance, and skewness can also be obtained from (4). Secondly, the autocorrelation 

function that can handle both exponential and sub-exponentially decaying cases is ob-

tained in a closed-form, which becomes fully-explicit if we assume Gamma-type   

complying with the condition (3). We effectively use these properties in the application. 

3 Optimization Problem 

3.1 Generalized Divergence 

We define a generalized divergence before going to the formulation of the optimization 

problem. Given two equivalent positive PDFs ,p r  of a positive random variable Z , 

the generalized (Tsallis) divergence ( )qD r p  from p  to r  is set as [14]: 

 ( ) ( )( ) ( )( ) ( )
0

1
1 d

1

q

D r p Z q Z q p Z Z
q

 
+

 − + + −
− , (5) 

where ( 0,1q  with the Radon–Nikodým derivative /r p = . If 1q = , then (5) is 

understood as the classical Kullback–Leibler divergence 

 ( ) ( ) ( ) ( )( ) ( )
0

ln 1 dD r p Z Z Z p Z Z  
+

 − + . (6) 
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In both cases, we have ( ) 0D r p   and ( ) 0D r p =  if and only if p r= , and that 

( ) ( )D p r D r p  in general due to the asymmetry implied in (6). The divergence is 

therefore an index that can measure the probabilistic difference (i.e., model uncertainty) 

between two equivalent PDFs but is not a metric. The uncertainty is then evaluated by 
considering p  as the benchmark model and r  as a distorted model. A remark between 

the two cases (5)-(6) is that the integrand as a function of the Radon–Nikodým deriva-

tive ( )Z  is more strongly convex as well as becomes larger (i.e., has a sharper pro-

file) for larger q . It implies that the model uncertainty in our context is evaluated to be 

larger for larger q . Hence, the Kullback–Leibler divergence is an extreme case of the 

generalized divergence. There is no model uncertainty if 1 =  almost everywhere. 

For later use, define the q-exponential and q-logarithm functions: 

 ( ) ( )( )
1

1exp 1 1 q
q x q x −= + −  and ( )

1

ln
1

q

q

x x
x

q

− −
=

−
, 0x  . (7) 

We conventionally set ( ) ( )1exp expx x=  and ( )1ln lnx x= . 

 

3.2 Problem Formulation 

The optimization problem here is to determine the harvesting rate ( )th h X=  

( 0 1h  ) as a bounded measurable function of the observed process 
tX  now consid-

ered as a unit-time population of migrating fish species. The set of such functions is 

denoted as H . The fish should be harvested as large as possible by the decision-maker, 

a fishery cooperative, while fully exploiting them should be avoided to prevent a local 

extinction. The optimization problem without model uncertainty is then set as 

 Find ( )inf
h

J h
H

  with  ( ) ( ) ( )( )1 CVaR 1J h g h h X= − − −   . (8) 

Here, the expectation is based on the PDF p  of the stationary supOU process. The first 

term of J  with a non-negative, uniformly bounded, and strictly convex function g  

represents the averaged harvesting rate. The second term represents the risk of harvest-

ing the migrating fish population when it becomes small. Here, we use the upper CVaR 

measure with the weight 0   and the quantile ( )0,1   for generic non-negative 

random variable Z  

 ( )
( )

( )
 

0

1
CVaR inf max ,0

u

Z Z Z
Z u u Z

Z Z








    
= = − − + −   

    

 (9) 

with the indicator function ( )Z Z  of the set  Z Z  ( ( ) 1Z Z =  if Z Z  

and is 0 otherwise) and the quantile value Z  such that ( )Z Z  =   . The right-
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most side of (9) is the optimization-oriented dual formula [13]. The risk-aversion of the 

decision-maker becomes stronger as the penalization ( ) increases or the quantile level 

( ) decreases. 

The problem (8) is a convex optimization problem with the objective being lower-

semicontinuous in a Hilbert space of bounded functions with the norm   given for 

generic ( ): 0,f + →  by 

 ( ) ( )
2 2

0
df f X p X X

+

=  . (10) 

Owing to the convexity, the problem is feasible. 

We extend the problem (8) so that the model uncertainty can be evaluated in the 

context of distributionally-robust optimization [e.g., 19]. The distributionally-robust 

problem assumes that the expectation  is distorted and evaluated by r  equivalent to 
p  but not necessarily by p . Given a PDF p , the admissible set of positive measurable 

functions   such that ( ) ( )
0

d 1Z p Z Z
+

=  is denoted as W . 

We formulate the distributionally-robust optimization problem as follows: 

 Find ( )inf sup ,
h

W J h



 

=
H W

, (11) 

 ( ) ( ) ( )( ) ( ), 1 CVaR 1qJ h g h h X D p p   = − − − −   , (12) 

where the expectation q  is such that   q

q   =    to consistently reformulate the 

problem under uncertainty in the sense of Tsallis [20]. The last term of (12) penalizes 

the model ambiguity with another weight 0   in a way that larger model uncertainty 

and hence larger divergence ( )D p p  is allowed for smaller  . The case  →+  

thus corresponds to the benchmark case (8).  

The problem (11) is a min-max problem but can be rewritten as a minimization prob-

lem as shown below. Considering the dual representation formula (9), given hH , the 

inner maximization is achieved by 

 ( )
( ) ( )

( )

1

*
, , , ,

exp exp dq q

F X u h F X u h
X p X X

 

−

    
=      

    
 W  (13) 

with F  given by 

 ( ) ( ) ( ) ( )( ) ( )0 , , 1 max 1 ,0F X u h g h u h X X



 = − + − −  + . (14) 

Plugging (14) into (11) yields 
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( )( )

( )
0,

, ,
inf ln exp dq q

u h

F X u h X
W u p X X 

 

    
 = − +         
H

. (15) 

This is a convex optimization problem because F  of (14) is convex with respect to 

all the arguments and the second term of the right-hand side of (15) defines a convex 

certainty equivalent of the expectation ( ) ( ), , dF X u h p X X  [Theorem 5.1 of 21]. 

Further, we can replace the range  )0,+  of the auxiliary decision variable u  by a suf-

ficiently large compact set  0,U  with some constant 0U  . This is proven by a sim-

ple contradiction argument [Proposition 4 of 19]. Therefore, this distributionally-robust 

optimization problem is feasible. 

 

3.3 Regularization of CVaR 

The problem (15) is convex but not necessarily strictly convex, which is due to the non-

smoothness of the “max” function in the CVaR measure. We therefore regularize 

“max” function as the following strictly convex one with a small 0   [15]: 

 ( )
2 24

max
2

x x
x

+ +
=  for 0x  , (16) 

satisfying 

   ( )  max 0, max max 0,x x x   +  for 0x  . (17) 

The difference between max and max  functions is at most  , and can be made arbi-

trary small by choosing a suitably small  . 

Now, the regularized distributionally-robust optimization problem reads 

 Find 
( )( )

( )
0,

, ,
inf ln exp dq q

u h

F X u h X
W u p X X



  
 

    
 = − +         
H

 (18) 

with F  given by 

 ( ) ( ) ( )( ) , , 1 max 1 ,0F X u h g h u h X X 




= − + − − . (19) 

It is straightforward to show that the problem (18) is strictly convex, and that the range 

of the auxiliary decision variable u  can be made compact without changing the value 

of W . Consequently, the problem (18) admits a unique minimizing pair 0,u h H . 

The corresponding worst-case Radon–Nikodým derivative 
*  is then found as (13) 

with F  replaced by F . The regularized problem is therefore feasible and uniquely 

solvable. We numerically compute it with a small 0   as explained below. 
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3.4 Numerical Discretization 

The regularized problem (18) is discretized through a replacement of the PDF p  by its 

empirical version 
Np  ( N  ) on a uniform grid, which is formally given by 

 ( ) ( ) ( )
1

d
N

N i

i

p X X p i X X
=

 − , ( )
1

1
N

i

p i
=

=  (20) 

with the Dirac’s delta ( )  , a positive sequence ( ) 
1 i N

p i
 

 serving as discrete proba-

bilistic weights, and a non-negative and strictly increasing sequence  
1i i N

X
 

 as rep-

resentative points at which the process is evaluated. The harvesting rate h  and the Ra-

don–Nikodým derivative   are accordingly discretized on the same grid. The discreti-

zation of the regularized problem is then set as 

 Find 
( )( )

( ),
0,

, ,
inf ln exp dN q q N

u h

F X u h X
W u p X X



  
 

    
 = − +         
H

, (21) 

with the worst-case Radon–Nikodým derivative *  given by (13) with F  replaced by 

F  and p  by 
Np . 

 The computational procedure of the problem (21) in practice is as follows. Firstly, 

we identify the supOU process (1), namely the measures   and v , from some time 

series data. Then, the characteristic function (4) is Fourier inverted on a sufficiently 

fine uniform grid to compute 
Np  following Hainaut [18]. The size and spacing of the 

grid are chosen sufficiently large and fine so that the computed PDF is entirely positive 

(i.e., no or at most small Gibbs oscillations). The minimizing pair ,u h  is computed 

where the former is a real constant and the latter is distributed at each grid point. This 

process is carried out by using a gradient descent method with an inertia [22], but other 

optimization methods can be utilized if preferred. Finally, the worst-case Radon–Ni-

kodým derivative is accordingly obtained by the optimized pair ,u h . 

4 Application 

4.1 Study Site 

The study site of this paper is the weir called Meiji-yosui irrigation head works located 

at the midstream of Yahagi River pouring to Pacific Ocean, Aichi Prefecture, Japan 

(35° 02′ 52″ E 137° 10′ 43″). This weir is an observation point of the spring upstream 

migration of the fish ayu Plecoglossus altivelis altivelis from Pacific Ocean to the river 

[16]. P. altivelis is one of the most important inland fishery resources in Japan from 

ecological, fisheries, and cultural standpoints [23]. Recent river development critically 

degraded habitat and food availability for the fish, thereby their population as well as 
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catches have been decreasing. In some case, a part of the migrating fish population is 

harvested at a point in a river reach and distributed to the other reaches to prevent them 

from extinctions [11]. Such a project is usually planned and executed by a local inland 

fishery cooperative. When and how much of the fish should be harvested for this pur-

pose has been a crucial issue for inland fishery cooperatives in Japan. 

 The supOU process is fitted against the data of each year based on the verified 

least-squares approach [10, 17] that firstly fits the probability measure   by comparing 

theoretical and empirical autocorrelation function and then the Lévy measure v  by us-

ing mean, standard deviation, and skewness. We assume the Gamma-type 

( ) ( )1
d exp / d

     
−

 −  ( 1  , 0  ). Then, the autocorrelation of the 

supOU process with lag 0s   is sub-exponential given by ( )
1

1 s



−

+ , which ap-

proaches to the exponential case as  → +  with fixed ( )1   − . We need 1   

by (3). We set 2v = −  as it has preliminary been found to effectively work. 

 The collected data of daily migrating populations of the P. altivelis from 2010 to 

2020 is available in the recent report [16]. This kind of fine and large amount of data is 

rarely available, which is why we have chosen the present study site. Fig.1 plots the 

reported daily migrating population in each year. Table 1 shows the total, mean, stand-

ard deviation, skewness, and kurtosis of the time series data in each year. Hereafter, we 

normalize 
tX  in each year by the total migrated population without significant loss of 

generality. Table 2 shows the fitted parameter values for the data and the time-scale R  

of each year for self-centeredness of the paper. Indeed, this kind of statistical results 

against the time series data, namely Tables 1-2, are unique contributions by themselves. 

Tables 1-2 show that the time series data is probabilistically positively skewed and 

has sharper PDFs than Gaussian ones. In addition, the yearly difference of the memory 

structure is found to be significantly different;   ranges from 0(10 )O  (polynomial) to 
4(10 )O  (almost exponential). The relative errors of the statistics are on average 0.014 

(mean), 0.034 (standard deviation), 0.011 (skewness), and 0.0084 (kurtosis). Hence, the 

supOU process can capture the wide range of statistical behavior of the migrating fish 

population dynamics. The time scale R  ranges from 1(10 )O −  (day) to 1(10 )O  (day), 

suggesting that the decaying speed of peaks are broadly different among different years. 

Interestingly, the total migrated population is significantly different among different 

years. Biological understanding of this large difference is beyond the scope of this pa-

per, but will be an interesting research topic to be resolved in the future. 
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Fig. 1. Reported time series data of the daily migrating population of P. altivelis in each year.  
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Table 1. Total, mean, standard deviation, skewness, and kurtosis of the migrating population. 

The statistics are computed for the supOU process X normalized (divided) by the total. 

Year Total Mean Standard deviation Skewness Kurtosis 

2010 487,951 0.0118 0.0205 3.39 12.5 

2011 985,637 0.0106 0.0184 3.32 12.8 

2012 761,990 0.0126 0.0141 2.30 4.94 

2013 839,587 0.00741 0.0187 4.62 30.4 

2014 601,147 0.0114 0.0215 3.47 15.8 

2015 1,276,048 0.0124 0.0185 2.91 9.12 

2016 10,030,840 0.0133 0.00890 1.57 1.69 

2017 1,440,609 0.0133 0.0176 2.55 7.37 

2018 2,307,520 0.0134 0.0223 3.09 11.7 

2019 447,134 0.0185 0.0230 2.35 6.67 

2020 1,103,486 0.0138 0.0128 1.85 3.44 

Table 2. Fitted parameter values of the supOU process. The time unit is day. 

Year A  
v      R  

2010 1553.5 42.037 2.3720 2.5778  0.28273 

2011 344.85 47.009 3.4618 0.25484  1.5940 

2012 2375.1 95.032 3,754.2 0.00011700  2.2774 

2013 80.293 31.808 25,577 0.000026310  1.4861 

2014 162.09 36.756 12.838 0.048555  1.7397 

2015 545.64 54.224 3.5410 0.217560  1.8089 

2016 13,781 251.33 2,270.0 0.000057746  7.6321 

2017 2,424.2 64.165 5,334.1 0.00025953  0.72249 

2018 265.73 40.360 2.8859 0.32082  1.6528 

2019 5,288.0 52.455 3.2520 1.7553  0.25298 

2020 4,005.6 125.28 63,896 0.0000046289  3.3810 

 

4.2 Computational Results and Discussion 

We present demonstrative computational examples of the regularized distributionally-

robust optimization problem for years 2018 and 2019. The year 2018 has a relatively 

longer memory with   closer to 2 than the other years and the PDF in 2018 is more 

skewed as well as sharper than 2019 (See, Tables 1-2). The PDF was computed using 

the discrete Fourier transform with the space increment of 1/2,500 and the degree-of-

freedom 2,500N = . We needed a post-processing using an exponential spectral filter 

[23] to obtain oscillation-free PDF profiles. This procedure can be considered as a part 

of model uncertainty although its influences would be small in our case. The 
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regularization parameter is  0.00000125 =  that has been found to be sufficiently 

small. We report that if 0 =  then the gradient descent fails to converge due to discon-

tinuous variational derivatives. We set the nominal parameter values 0.5q = , 10 = , 

and 0.30 =  unless otherwise specified. All the decision variables below are obtained 

from (21). All the solutions have been obtained without numerical instabilities. 

 Firstly, we analyze the harvesting rate. Fig. 2 compares the computed harvesting 

rates in 2018 and 2019 as a function of the (normalized) migrating population X  and 

the weight  . The optimal harvesting rate is 1 at 0X = , while it does not play a role 

in practice because no fish can be harvested in such as case. For 0X  , the harvesting 

rate is increasing in the migrating population. No fish should be harvested for relatively 

small positive X , which appears due to the use of the CVaR term effectively penaliz-

ing the local extinction. This non-harvesting area in the figure contracts as the weight 

  and hence the extinction risk increases. This observation suggests that the decision-

maker should not be too much afraid of the risk of local extinction for the global mini-

mization of the objective (12). The impacts of the risk-aversion are concentrated more 

on the small population for the sharper PDF in 2018. The analysis below focuses on the 

year 2019 as the impacts of the uncertainty are more visible for a wider range of the 

population. 

 Secondly, we analyze the uncertainty and its influences on the distortion of the PDF. 

Fig. 3 compares the computed worst-case uncertainties, the Radon–Nikodým deriva-
tives, for the nominal 10 =  and smaller 1 =  potentially allowing for larger uncer-

tainty. Fig. 4 then compares the corresponding computed PDFs. Larger model uncer-

tainty leads to the worst-case Radon–Nikodým derivatives and PDFs be more concen-

trated on small X , thereby underestimating the mean population. 

 Finally, we analyze impacts of the parameter q  in the generalized divergence. Fig. 

5 shows the computed harvesting rates for 0.25q =  and 1q = . It is shown that the use 

of the sharper divergence (larger q ) results in less conservative harvesting rate having 

smaller range of no-harvesting. This is due to that the Radon–Nikodým derivative is 

restricted to be smaller for the sharper divergence. 

 Consequently, the decision-maker can design his/her harvesting strategy flexibly as 

demonstrated in this paper. 

 

 
Fig. 2. Harvesting rate in (a) 2018 and (b) 2019. 0h =  is optimal in the white area. 
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Fig. 3. Worst-case ambiguity in 2019 with (a) nominal and (b) larger uncertainty. 

 

 
Fig. 4. Worst-case PDF in 2019 with (a) nominal and (b) larger uncertainty. 

 

 
Fig. 5. Harvesting rate in 2019 with (a) 0.25q =  and (b) 1q = . Compare with Fig.2. 

5 Conclusion 

A distributionally-robust optimization problem of the supOU process was formulated 

focusing on a sustainable exploitation problem in fisheries. Key points in our 
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formulation were the use of the generalized divergence covering the classical Kull-

back–Leibler divergence and the closed-form availability of the characteristic function 

of the supOU process with which the expectations can be evaluated without resorting 

to time-consuming statistical methods. The computational results based on the real data 

suggested that our framework can be utilized to support the decision-making for resolv-

ing the fisheries problem. 

 Our formulation can be extended to more complex cases provided that the charac-

teristic function of the target process is accessible in a closed form. Affine stochastic 

Volterra processes [25] and self-exciting affine processes [10] would be such examples. 

In this view, a variety of modern engineering issues related to sustainability such as the 

water abstraction for hydropower generation can be analyzed by a suitable modification 

of our framework. We focused on a jump-driven process, while considering jump-dif-

fusion processes would not encounter significant technical difficulties. 

 A problem that was not addressed in this paper is multi-stage problems as fish mi-

gration would be more reasonably considered as seasonal population dynamics. The 

(conditional) characteristic function would be still available in a closed-form even in 

such cases, while our preliminary investigations suggested that computing transient 

PDFs is highly subject to Gibbs oscillations. The oscillations will be mitigating by a 

more careful application of a spectral filter [24]. From a biological standpoint, better 

understanding of the fish migration would advance the modeling strategy and its appli-

cation to fisheries optimization. 
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